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Predicting the Lossless Compression Ratio of Remote
Sensing Images With Configurational Entropy
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Abstract—Compression of remote sensing images is beneficial to
both storage and transmission. For lossless compression, the upper
and lower limits of compression ratio are defined by Shannon’s
source coding theorem with Shannon entropy as the metric, which
measures the statistical information of a dataset. However, the
calculation of the actual Shannon entropy of a large image is
not an easy task, which limits the practicality of predicting the
lossless compression ratio with Shannon entropy. On the other
hand, most recently developed compression techniques take into
consideration the configurational information of images to achieve
a high compression ratio. This leads us to hypothesize that a metric
capturing configurational information can be employed to build
mathematical models for predicting compression ratios. To test this
hypothesis, a two-step investigation was carried out, i.e., to find the
most suitable metric through extensive experimental tests and to
build a model upon this metric. A total of 1850 8-b images with
15 compression techniques were used to form the experimental
dataset. First, 29 metrics were analyzed in terms of correlation
magnitude, distinctiveness, and model contribution. As a result,
the configurational entropy outperformed the rest. Second, six
configurational entropy-based prediction models for predicting the
compression ratio were established and tested. Results illustrated
that these models work well. The PolyRatio model with 9.0 as a
numerator, which was in a similar form to Shannon’s theorem,
performed best and was thus recommended. This article provides
a new direction for building a theoretical prediction model with
configurational entropy.

Index Terms—Compression ratio, configurational information,
empirical model for predicting compression ratios, image coding,
Shannon’s source coding theorem.

I. INTRODUCTION

H IGH spatial resolution remote sensing images are widely
available, leading to the dramatic increase in the data

volume size. To reduce the burden on image storage and trans-
mission, data compression is one of the efficient solutions. As
a result, lots of compression techniques have been developed
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Fig. 1. Three images with the same Shannon entropy but different configura-
tions.

over the past seven decades (see [1]–[15]). It is well known that
compression can be either lossless or lossy. Lossy compression
chooses to discard some information for achieving a very high
compression ratio. On the other hand, lossless compression
means that the original image can be completely recovered after
decompression, which is very essential for some tasks (e.g.,
geological surveying, image quality assessment). Therefore, it
is very desired and hence selected as the research topic of this
article.

The prediction of lossless compression ratio can be traced
back to Shannon’s paper entitled “A Mathematical Theory of
Communication” [1]. In that paper, Shannon’s source coding
theorem established the upper and lower limits to lossless
compression through coding and demonstrated the operational
definition of Shannon entropy. Some techniques (e.g., Huffman
encoding [2] and arithmetic encoding [4]) that encode discrete
data into variable-length codewords based on the statistical
information of images (i.e., the proportion of pixels at different
gray levels) cannot perform better than Shannon’s theorem.
Since the 1980s, such techniques are usually combined with
other techniques that utilize the configurational information
(spatial structures) of images to implement compression. Indeed,
some algorithms, e.g., LZMA [3], [8], CALIC [5], JPEG-LS [6],
[7], FLIF [9], and HEIC [10], [11], have achieved a compression
ratio much higher (see Section II for more details) than the upper
limits defined by Shannon’s theorem [16]–[18]. This can be
easily reasoned that Shannon entropy, which is widely used in
the image processing field [19]–[21], captures only statistical in-
formation. For instance, the three images shown in Fig. 1 are the
same in terms of Shannon entropy although the configurations
are quite different [22]–[25].

In fact, different order Shannon entropies with length n,
which measures the correlation among pixels, can be used to
improve the prediction performance of the compression ratio.
However, the nth-order Shannon entropy when n approaches
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infinity (referred to as the actual Shannon entropy) is not easy to
calculate [26] in practice and cannot capture the configurational
information of images from the theoretical perspective, which
will be introduced in the following sections.

From the literature, it can be found that some alternative
techniques for predicting the lossless compression ratio based
on the entropy of the “residual data” generated at preprocessing
stage have been developed, such as the context tree weighting
algorithm [27], prediction by partial matching [28] and the
probabilistic suffix tree prediction algorithm [29]. However,
such residual data is not available to (compression software)
users in practice.

This means that there is an urgent need to develop new
mathematical models for the reliable prediction of the lossless
compression ratio for any given image in hand. It is hypothe-
sized here that such a model is possible when a metric capable
of characterizing the configurational information of the image
is employed. Indeed, some preliminary experiments [16]–[18]
have supported such a hypothesis. Therefore, this article is
dedicated to establishing new models for this purpose.

Apart from the introduction, the remainder of this article is
structured as follows. First, Shannon’s source coding theorem
concerning the prediction of the lossless image compression
ratio is introduced and described. Then, a novel solution for
building new models is outlined in general, i.e., the detection
of the best metric candidate that captures the configurational
information of images and the construction of mathematical
prediction models. Second, the solution to identifying the best
metric candidate is explained and implemented in detail; in
particular, configurational entropy (Boltzmann entropy) is iden-
tified as the best metric candidate. Third, empirical models with
configurational entropy are constructed and tested. Finally, a
discussion and some concluding remarks are presented.

II. SHANNON’S SOURCE CODING THEOREM IN REGARD TO

THE PREDICTION OF THE IMAGE COMPRESSION RATIO:
ANALYSIS AND A NOVEL SOLUTION

A. Basic Introduction to Shannon’s Source Coding Theorem

Compression can be thought of as a kind of coding and should
follow the source coding theorem first proposed by Shannon in
1948 [1]. This theorem theoretically defines the upper and lower
limits of the average codeword length (referred to as Ln) for a
zero-memory source while suffering no information loss. This
theorem was built with nth order block codes and can be written
as follows:

Hn ≤ Ln < Hn + 1
n (1)

where Hn denotes the nth-order Shannon entropy of the zero-
memory source and is calculated as follows:

Hn = 1
n

n∑
i = 1

P (X = xi ) logP (X = xi ) (2)

where X is a random variable that represents the symbol blocks
{x1, x2, x3, x4···xn} and P(X = xi) denotes the occurrence
probability of the ith symbol block. Note that the higher the
n is, the lower the Hn. In Equation (1), Ln is the sum of the
product of l(xi), the codeword length of xi, and P(X = xi) in the

TABLE I
FIRST-ORDER BLOCK CODING FOR THE IMAGE SHOWN IN FIG. 3

TABLE II
SECOND-ORDER BLOCK CODING FOR THE IMAGE SHOWN IN FIG. 3

nth order coding. It can be computed as follows:

Ln = 1
n

n∑
i = 1

P (X = xi )× l (X = xi ) (3)

Note that Shannon’s theorem holds when n tends to infinity.
That is, Ln approaches the upper and lower limits shown in
Equation (1). Fig. 2 shows an example in which each symbol is
independent of calculating Shannon entropy (i.e., n = 1).

B. Shannon’s Source Coding Theorem for Predicting the
Compression Ratio of Images: Analysis with Theoretical and
Practical Perspectives

Shannon’s source coding theorem was originally used to de-
fine the theoretical compression limits of a zero-memory source
without any information loss. Regarding image compression,
when an image is under the assumption that it was derived
from an image source sending statistically independent pixels,
according to a probability law [26], Shannon’s theorem can be
applied to determine the theoretical upper and lower limits of
the compression ratio. This section analyzes such a case from
both theoretical and practical perspectives. For the image shown
in Fig. 3, regarding first-order block coding (see Table I where
Huffman encoding [5] is used), based on Equations (2) and (3),
H1 and L1 are 1.78 and 1.83 bits per pixel, respectively.

The fundamental premise of using Shannon’s theorem is that
the process of generating a source will be modeled as a proba-
bilistic model. Then, by assuming that the image is connected
row by row from beginning to end, the image can be mapped to
a linear sequence. Subsequently, second-order block coding can
be performed, which is given in Table II. H2 and L2 are 1.44
and 1.47 bits per pixel, respectively. Clearly, L2 is smaller than
L1, and H2 is smaller than H1.

In practical compression applications, the compression ratio
(CR) [26] is one of the primary concerns for developers and
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Fig. 2. Example of Shannon’s source coding theorem under first-order block coding.

Fig. 3. Image of size 6 × 6.

Fig. 4. Upper and lower bounds of the compression ratio defined by Shannon’s
theorem with H1.

users. The upper and lower limits defined by Shannon’s theorem
for 8-b images with first-order entropy can be described in
Fig. 4, which provides perfect guidelines for traditional coding
techniques (see Fig. 5).

However, for modern compression techniques which take
into consideration configurational information, the CR is much
higher (see Fig. 6) than predicted by Fig. 5. Even with higher
order Shannon entropy is employed (see Fig. 6), the modern

Fig. 5. Plots of Shannon’s theorem against the compression ratio by two
techniques that consider statistical information only.

compression algorithms still perform better than predicted by
Fig. 5.

The above examples tell us that high-order Shannon entropy
can improve the prediction. Then one may wonder whether
very high-order Shannon entropy or actual Shannon entropy
should be good enough for the prediction of compression ratios.
However, the following problems cannot be solved.

1) Very High-Order Shannon Entropies are Computationally
Expensive for Ordinary Users: When calculating the 4-th order
Shannon entropy of an 8-b image, relative occurrence proba-
bilities of (28)4 pixel pairs should be computed. Unfortunately,
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Fig. 6. Plots of Shannon’s theorem with Shannon entropy of different orders
against the compression ratio derived from JPEG-LS.

when sixth-order Shannon entropy is considered, we shall first
compute the occurrence probabilities of (28)6 possible tuples
[26], indicating a high memory cost that is unendurable. The
higher order the Shannon entropy, the higher computation cost
(i.e., computation time and memory) we need to take.

2) Calculation of the Actual Shannon Entropy is Impossible
and Unreliable: Originated from the field of telecommunica-
tion, the actual Shannon entropy is available for a memoryless
source. Unfortunately, images are not a kind of memoryless
source.

C. A Novel Solution for Building Models for Predicting the
Compression Ratio

By analyzing Shannon’s theorem for predicting the lossless
compression ratio, one might imagine that image metrics, which
are structural measures, could be used to build new prediction
models. Therefore, we carry out investigations to build the rela-
tionship between the compression ratio and metrics measuring
the configurations of images. As shown in Fig. 7, the objective
is to select the best metric, then build mathematical models for
the upper and lower bounds of the compression ratio.

Fig. 7. Flowchart of building models for predicting the compression ratio.

Fig. 8. A schematic diagram of building prediction models.

To realize such an objective, the following solution is pro-
posed.

1) Typical techniques are used to compress a large number of
images with different complexities to form experimental
datasets.

2) The most appropriate image metric for measuring config-
urational information is identified to build models.

3) Mathematical models of the upper and lower bounds of
the lossless compression ratio are built with the most
appropriate metric.

The general process of implementing such a solution is shown
as a diagram in Fig. 8, where three main stages can be dis-
tinguished, i.e., the formation of experimental datasets, metric
selection, and model construction. For the first stage, from the
perspective of statistical modeling, the larger the volume of the
training dataset is, the more reliable and general the constructed
models will be. Hence, a large number of images with different
complexities and many typical compression techniques will be
employed. Notably, data in which the compression ratio is larger
than Shannon’s upper bound are reserved. The reason is that
for any given image, compression techniques cannot always
achieve a compression ratio larger than the upper bound given by
Shannon’s theorem. After the construction of the experimental
datasets, we can build new mathematical models for predicting
the compression ratio, which will be introduced in Sections III
and IV. Such mathematical models can be obtained by theoretical
analysis (i.e., theoretical models) or be trained by experience
(i.e., empirical models). In this article, only empirical models
are considered.
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Fig. 9. Four remote sensing images (red band) from “NWPU-RSCI45” dataset
[31].

III. IDENTIFICATION OF THE MOST APPROPRIATE METRIC FOR

MODEL DEVELOPMENT

A. Metric Identification: Basic Ideas and Procedures for
Implementation

As mentioned earlier, we need to identify the most appropriate
metric for building models. Many metrics for quantifying the
configurational information of images have already been de-
veloped. Hence, we should identify the most appropriate metric
considering the three constraints shown in Fig. 7. To realize such
an objective, a multilayered solution is proposed based on these
three constraints from multivariate mathematical statistics, as
follows.

1) Correlation: In statistical modeling, a correlation is any
relationship between two variables, indicating the degree
to which they change in coordination with one other.
Therefore, metrics holding a high statistical correlation
with the compression ratio are first selected.

2) Distinctiveness: A correlation may exist between metrics.
In this respect, the selected variables should be highly
distinctive.

3) Model Contribution: Different independent variables have
different contributions to predicting the value of a depen-
dent variable. Thus, the independent variable making the
highest contribution should be selected.

More detailed descriptions about the employment of these
constraints to identify the most appropriate metric for mea-
suring configurational information will be introduced in
Section III-C–E.

The image dataset called “NWPU-RSCI45” (some examples
can be seen in Fig. 9) [31], where 1650 images (first 150 images
for each of the first 11 classes) are used with nine compression
methods given in Table III.

B. Selection of Candidate Metrics for Measuring
Configurational Information

Many image metrics that measure configurational information
have been developed for image processing. From a theoretical
standpoint, these metrics are classified into four categories,

TABLE III
COMPRESSION TECHNIQUES USED TO COMPRESS IMAGES

TABLE IV
METRICS CAPTURING CONFIGURATIONAL INFORMATION

as given in Table IV. The first is based on the gray level matrix of
an image. The second is based on the results of the operations on
the gray level matrix (i.e., the gray level co-occurrence matrix,
neighboring gray level dependence matrix, neighboring gray
tone difference matrix, gray level run length matrix, and gray
level size zone matrix). The third category is based on the Sobel
gradient, which detects edges to measure the configurational in-
formation of images. The final category involves entropy. Since
different improved Shannon entropies have been examined and
none of them can measure the configurational information of
images [19], only metrics derived from configurational entropy
are investigated here. Table IV gives the 29 metrics used in this
article. To distinguish the metrics that belong to the second cate-
gory, their abbreviations are combined with operation directions
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(i.e., right (R), right-down (RD), down (D), left-down (LD), up
(U)). For example, the dissimilarity metric based on the gray
level co-occurrence matrix using operation in the right direction
is referred to as GLCM-DIS-R. Other metrics will be used with
their abbreviations.

C. Identification of Image Metrics With a Strong Correlation
Magnitude

The correlation between the independent variable (i.e., the
compression ratio) and the dependent variable (image metrics
measuring the configurational information) is an essential ref-
erence used to identify the most appropriate metric for building
models. To quantitatively measure the first constraint (i.e., the
strength of the relationship between two variables), Spearman’s
rank correlation coefficient [56], [57] (referred to as RS) is
employed. In this article, metrics having strong relationships
with the compression ratio are first reserved. As a rule of
thumb, the strength of the relationship between the variables is
considered strong when the absolute Rs value at the confidence
interval is larger than 0.70 [59]. The RS values of 29 metrics are
illustrated in Table V, where all p values [60] are smaller than
0.01, indicating that these metrics are statistically significantly
correlated with compression ratio. However, only 18 metrics are
reserved for the next identification process. The scatter plots
of those metrics against the compression ratio are shown in
Fig. 10.

D. Identification of Image Metrics With High Distinctiveness

In Section III-C, 18 metrics having strong correlations with
compression ratio have been identified. However, many of them
are correlated with each other. Thus, we need to identify metrics
with the second constraint (i.e., high distinctiveness). To this
end, two multivariate statistical analysis approaches are used,
namely, factor analysis (FA) [61] and hierarchical cluster anal-
ysis (HCA).

1) Factor Analysis: FA is a statistical method for describing
the variance among variables and reducing them into many
factors [62]. To assess the appropriateness of conducting FA
on the metrics, this article conducts two tests, namely, the
Kaiser–Meyer–Olkin (KMO) measurement [63] and Bartlett’s
test of sphericity [64]. In this article, when the KMO measure
of sampling adequacy is larger than 0.5 and Bartlett’s test of
sphericity significance is smaller than 0.05 [65], the data are
adequate for conducting FA. Table VI gives the test results,
which indicate that FA is appropriate.

Principal component analysis is used in the FA to form compo-
nents. Fig. 11 shows the scatter plots of components, where the
eigenvalue represents the measure of significance. Eigenvalues
of 1.0 or higher are considered significant [66].

Two principal components with eigenvalues larger than 1
are significant. The loading matrix for all metrics is given in
Table VII, where the loading values are the correlation coeffi-
cients for the metric and components. The rule is that the higher
the loading value for the component is, the more important it
is for this component. Then, we classify 18 metrics into two
categories, as given in Table VIII.

TABLE V
METRICS AND THEIR CORRESPONDING Rs VALUES

TABLE VI
RESULTS OF THE KMO AND BARTLETT TESTS
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Fig. 10. Scatter plots of the metrics against CR.

To further identify the metrics with high distinctiveness, HCA
on the metrics is conducted. HCA is a method that reveals the
underlying structures of objects by clustering or dividing objects
one by one in a hierarchical process [67]. In this article, the
squared Euclidean distance is used as the criterion for evaluating
the similarity between two objects; the average linkage method
is used as the linkage criterion. The HCA results are graphically
shown in Fig. 12. Clearly, SR and SA are the most distinctive
metrics in category no. 1. However, the metrics in category no.
2 are difficult to distinguish. Thus, SR, GLCM-DIS-R, GLCM-
DIS-RD, GLCM-DIS-U, and GLCM-DIS-LD are reserved and

will be further investigated for their appropriateness for building
models predicting the compression ratio.

E. Final Identification of Configurational Entropy (SR) as the
Recommended Metric With Model Contribution

In Section III-D, six metrics have been selected out of the 18
metrics selected in Section III-C. The final stage is to identify
the most appropriate metric following the last constraint (i.e.,
the contribution to the construction of prediction models). To
this end, the least absolute shrinkage and selection operator
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Fig. 10. (Continued.)

(LASSO) is used. The LASSO sets some coefficients of variables
to 0, thus generating an interpretable model, and it is believed
to select certain important variables from irrelevant features
[68]–[70]. Imagine that we have a matrix X of features and
an n-dimensional response γ. A linear model describing the
relationship between y and X is as follows:

γ = Xβ + z (4)

where z is a noise term. The LASSO is the family of solutions
to the following problem:

β̂ (λ) = argmin
1

2
‖y − xb‖2 + λ‖b‖1 (5)

where b ∈ Rp, p is the number of variables and λ is the regular-
izing parameter. β̂(λ) is referred to as the LASSO path, which
reflects the importance of a variable in building models to predict
the response variable value.

As a result, the LASSO path is generated for the five metrics
reserved in the aforementioned Section III-D. The results are
illustrated in Fig. 13, where each line represents a metric.
Clearly, only the coefficient values of SR have been nonzero
numbers in the whole regularization process, which means that
SR is more important than the remaining metrics. Therefore,
SR is finally considered to be the most appropriate metric for
building prediction models.
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Fig. 10. (Continued.)

F. Verification of Configurational Entropy (SR) as the Best
Choice

In order to avoid running the risk of introducing sig-
nificant statistic bias. Another six compression techniques
(i.e., two-dimensional (2-D) linear prediction encoding [71],
FLIF [9], HEIC [10], [11], TIFF [72], PNG [73], and JPEG
2000 [74]) were employed apart from-9 compression methods

already used. Another three image datasets given in Table IX
have been utilized apart from the “NWPU-RESISC45” im-
age datasets. With 15 compression methods and 13 com-
binations (e.g., “NWPU-RESISC45” and “UCID”) of im-
age datasets, we used the proposed method to search
for the best metric. Fortunately, the experimental results
showed that the configurational entropy was always the best
one.
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Fig. 11. Scatter plot of the components.

TABLE VII
LOADING MATRIX FOR ORTHOGONALLY ROTATED COMPONENTS

TABLE VIII
TWO CATEGORIES OF METRICS

Fig. 12. Dendrogram of the results by HCA.

Fig. 13. LASSO path for metrics.

TABLE IX
EXPERIMENTAL IMAGE DATASETS

IV. BUILDING EMPIRICAL MODELS FOR PREDICTING THE

LOSSLESS IMAGE COMPRESSION RATIO WITH

CONFIGURATIONAL ENTROPY

A. Model Development: Basic Ideas and a Solution

After the most appropriate metric is identified, the next step
is to build an appropriate empirical model. In doing so, three
aspects should be considered as follows.

1) The data sample size is essential for regression modeling.
Theoretically, the size of the data used to train models
should be as large as possible.

2) Candidate mathematical models for predicting the lossless
compression ratio should be selected from mathematical
model sets and analyzed both theoretically and experimen-
tally.

3) An approach will be developed to determine the coeffi-
cients of candidate models for fitting the data boundary.
The best trend line for the training dataset can be deter-
mined and then utilized to determine the upper and lower
bounds of the compression ratio.

By following this line of thought, a solution for building
models can be proposed. Its implementation procedures are
illustrated in Fig. 14. This article aims to develop mathematical
models for the upper and lower bounds of the compression ratio.
To obtain a reliable model with high accuracy, all images and
compression methods used in section III are employed again
here to develop mathematical models.

1) Criteria for Candidate Model Selection: In this article,
mathematical models must be selected based on specified crite-
ria. In fact, [79] has proposed criteria, which are given in Table X.
These criteria are employed here to select models.
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Fig. 14. General procedures for developing models.

TABLE X
CRITERIA FOR EVALUATING MATHEMATICAL MODELS [78]

In this article, for fruitfulness, descriptive realism and ac-
curacy, candidate models should be capable of describing a
monotonic relationship, and from the theoretical perspective,
the dependent variable values obtained by models should be
infinitely large when the independent variable value is 0.

2) Selection of the Most Appropriate Type of Mathematical
models: Theoretical and Experimental Analysis: After deter-
mining the criteria for model selection, mathematical models
are formulated. First, the number of candidate models must be
kept small, but it must be large enough to avoid omitting a good
prior model [80]. Second, the selection of mathematical models
should be conducted through both theoretical and experimental
analysis. Based on these two points, theoretically, six mathemat-
ical models from CurveExpert [81] are selected; they are given in
Table XI. Notably, in terms of form, the equations of the first two
models are the same as the theoretical upper and lower bounds
defined by Shannon’s theorem for the compression ratio. The
remaining models are selected from different families.

The candidate mathematical models have been outlined
briefly from the theoretical standpoint. Experimental analysis
is now conducted to investigate whether in practice these can-
didate models are reliable for fitting a dataset consisting of the

TABLE XI
CANDIDATE MATHEMATICAL MODELS

compression ratio and SR. Fig. 15 shows the plots of the fitted
models. Clearly, all models are appropriate for predicting the
lossless compression ratio in accordance with the criteria given
in Table X. However, they have different performances when
SR is located at different intervals. The increase in the CR value
becomes increasingly larger with the decrease in SR, as shown
in Fig. 15(c), (e) and (f).

B. Establishment of Empirical Models

1) Determination of the Trend Line Based on the Best-Fitting
Approach: Here, we use the regression approach to fit all can-
didate models to the data points. To that end, we need to first
determine the weighting of each data point shown in Fig. 16(a).
Kernel density estimation (KDE) [82] is employed here to check
the distribution of the compression ratio.

As illustrated in Fig. 16(b), the compression ratio values are
obviously not consistent with the normal distribution. Moreover,
the data are clearly distributed unevenly when SR falls in the
intervals [8.0, 9.0] and [2.0, 3.5], and we do not know how the
compression ratio varies as the SR value varies. To lessen the
effect of an insufficient number of data points and to robustly
estimate the values of the model coefficients, a hybrid of the
bootstrap method [83] and the weighted least squares [84]
method is utilized to complete the regression task. Furthermore,
considering that many data points have the same SR value, the
following regression is used for minimization:

Sum− of − Square =
∑(

Ydata−Ymodel

SD

)2 (6)

where Ydata is the observed CR value; Ymodel is the predicted
value; and SD is the standard deviation of the observed CR

values.
By using the regression, all fitted models are generated and

are plotted in Fig. 17. To determine which model has the best
trend line, the Akaike information criterion (AIC) [85] is used.
The lower the AIC value of the fitted model is, the greater
the reliability of the model. From the information-theoretic
perspective, the AIC is used to measure the extent to which
the model approaches the “true model” for the data, and it is
calculated as follows:

AIC = N × ln
(
SS
N

)
+ 2K (7)
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Fig. 15. Plots of models fitted to practical data points. (a) PolyRatio (01) model. (b) Modified PolyRatio (0, 1) model. (c) Michaelis–Menten model. (d) Power
fit model. (e) Modified exponential model. (f) Harris model.

where SS is the sum of square shown in Equation (6), N is the
number of data points used to estimate the model coefficients,
and K is the number of parameters plus 1.

Since the calculation of AIC is greatly affected by the size of
the data samples and model selection uncertainty is involved,
AIC is used as a reference, not as the sole criterion for selecting
the best trend line. Thus, considering the implications of Shan-
non’s coding theorem, the selection priority of the best trend
lines is given to the PolyRatio (0, 1) model and the modified
PolyRatio (0, 1) model. Fig. 17 clearly shows that there is no

significant difference in the AIC values of the fitted models.
Therefore, both the PolyRatio (0, 1) model and the modified
PolyRatio (0, 1) model are considered to have the best trend lines.
Their coefficients and the standard errors of the coefficients are
given in Table XII. The numerator of the second model is close
to 9.0, which is the bit depth of the experimental images plus
one.

2) Building Empirical Models: Determination of the Upper
and Lower Bounds: Based on the best trend lines, their coef-
ficient values can be adjusted to acquire the upper and lower



11948 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 16. Visual analysis of the dataset. (a) Scatter plot of SR against CR.
(b) KDE plot of CR.

TABLE XII
TWO BEST TREND LINES FOR THE TRAINING DATASET

bounds of data. This article aims to build a series of mathematical
models for these bounds. To meet this objective, the following
strategy is proposed.

1) Determine the general model form for the bounds of the
compression ratio based on trend lines.

2) Select the coefficients of the trend lines to be adjusted to
generate the upper and lower bounds.

The generation of bounds is aided by a generalized least
squares approach [86]. To form models with high consistency,
the numerator of the models should be set to be constant, which
we can do. Based on the trend lines given in Table XII and
the empirical knowledge learned from Shannon’s source coding
theorem, the general form of the upper and lower bounds is

Fig. 17. Scatter plots of SR against CR and plots of the fitted models.

TABLE XIII
GENERAL MODEL FORMS FOR THE UPPER AND LOWER BOUNDS

TABLE XIV
ALL MODELS FOR UPPER AND LOWER BOUNDS

expressed as follows:

CR = C
SR×e+f (8)

where C is a constant. Notably, the reason behind the existence of
e is that the constant k of configurational entropy was temporarily
set to 1[87]. With the two best trend lines for the training dataset,
the numerators, i.e., 9.7 and 8.8, are rounded up to the next
integer values, i.e., 10.0 and 9.0, respectively. Then, two general
forms are given in Table XIII.

Two strategies are employed to fine-tune the coefficients (i.e.,
e and f) to determine the upper and lower bounds. The first
strategy is to adjust the two coefficients simultaneously. The
second is to adjust only one coefficient, with the other coefficient
remaining unchanged. Table XIV gives all available models for
the upper and lower bounds by these two approaches.

These models are graphically shown in Fig. 19. Clearly, in
Fig. 18(a) and (d), the model seems to be satisfactory for fitting
the boundary. However, in Fig. 18(b), the difference between the
upper bound and the lower bound is increasingly higher when
the SR value decreases, whereas in Fig. 18(c), this difference
increases smoothly.
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Fig. 18. Plots of the models for the upper and lower bounds based on the general forms. (a)–(c) Based on general model form no. 1. (d) Based on general model
form no. 2.

C. Model Testing and Recommendation

Once the empirical models for the upper and lower bounds
of the compression ratio have been established, their usefulness
should be assessed by the testing dataset. Fig. 19 shows the
plots of the models and the testing dataset, indicating that most
data points fall within the range between the upper and lower
bounds. This means that the established models are effective in
predicting the lossless compression ratio in most cases. Nev-
ertheless, some data points are slightly higher than the upper
bound. The prediction error of the models is measured by the
absolute difference between the CR value and the predicted value
for a given grayscale image regarding data points that fall out
of the range formed by the upper and lower bounds. As a result,
the maximum prediction errors in Fig. 19(a)–(d) are 0.54, 0.72,
0.03, and 0.54, respectively.

Regarding the recommendation of models, two aspects should
be considered. The first aspect is the performance of the models
in fitting the data boundary and predicting the compression ratio.
The second is that, from the theoretical perspective, the models
that are beneficial for developing theoretical models deserve to
be recommended. Based on these aspects, the following model

is the final recommendation:

CR =

{ 9.0
0.7×SR− 0.4 Upper bound

9.0
1.4×SR+1.3 Lower bound

Compared to the other models, this model fits the data
boundary well when SR falls in the whole interval [2.0, 9.0].
Meanwhile, its maximum prediction error (i.e., 0.54) is relatively
small and is acceptable. Moreover, the coefficient values in the
denominator of this model are very close to each other, indicating
high consistency and fruitfulness.

Specifically, the numerator value is 9.0, which is the maximum
configurational entropy value of the 8-b experimental grayscale
images used in this article and can be regarded as the maximum
Shannon entropy (i.e., 8.0) plus one. Therefore, in theoretical
terms, it is beneficial to use this model to connect Shannon’s
theorem and to then build a more comprehensive family of
models. Regarding the prediction ability of this model, two
points are intuitive. First, when SR is in the interval [0.57, 9.0],
we can use this model to predict the compression ratio of a given
image. Second, the CR predicted by this model is effective when
it is not significantly different (e.g., one time, two times) from
the true CR.
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Fig. 19. Plots of the validation dataset and the trained models.

V. DISCUSSION: SHANNON’S SOURCE CODING THEOREM

VERSUS CONFIGURATIONAL ENTROPY-BASED MODELS

This section explores two issues. First, it compares config-
urational entropy-based models and Shannon’s source coding
theorem regarding the prediction of the compression ratio. As
mentioned earlier, the recommended empirical configurational
entropy-based model is very similar to Shannon’s theorem.
Thus, one may wonder whether there is a definite relationship
between Shannon entropy and configurational entropy. We per-
formed a preliminary exploration, and the results, as illustrated
in Fig. 20, indicate a correlation between these two kinds of
entropy in general. Some points (e.g., A in Fig. 20) have high
Shannon entropy but very low configurational entropy. On the
other hand, other points (e.g., B in Fig. 20) may have low
Shannon entropy, but very high configurational entropy. This
also implies that it is not possible to adjust the coefficients of
models based on Shannon’s theorem to predict the compression
ratio by state-of-the-art compression techniques that consider
the configurational information of images.

Second, we observe the performance of models in which the
numerator of the models is set to 8.0. By using the approach
employed in Section IV, two models are generated and shown
in Fig. 21. Clearly, the data boundaries are fitted well by these

Fig. 20. Scatter plot of Shannon entropy versus configurational entropy.

models, and the model coefficients in the denominator are closer
to each other. The range between the upper and lower bounds
in Fig. 21(b) is narrower than Fig. 21(a) when SR is in the
interval [2.0, 4.0]. This result means that the model shown in
Fig. 21(b) performs better than the other model. Nevertheless,
the upper bounds of the compression ratio by these two models
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Fig. 21. Models of the upper and lower bounds where the numerator is set to
8.0.

are higher than those of the models illustrated in Fig. 18(a)–(d).
Thus, recommending them is not appropriate.

Note that the computation cost for the configurational entropy
is far smaller than that for higher order Shannon entropy. For
instance, regarding an 8-b 1024 × 1024 image, the compu-
tation time for configurational entropy is around 0.4 s which
is smaller than that (i.e., around 1.3 s) for third-order Shan-
non entropy in the operating environment (Intel Core i7–4790
CPU @ 3.60 GHz, 8.00 GB RAM, and 64-b Windows 10).
Compared with higher-order Shannon entropy, the memory cost
for computing the configurational entropy is always small and
acceptable for ordinary users (see [42] for more details).

VI. CONCLUSION

The compression ratio is a critical factor in the development
of compression techniques. Shannon’s source coding theorem
defines the upper and lower limits of the compression ratio with
Shannon entropy, guiding data compression and determining the
applicability of various techniques for different data. However,
in practice, it is not convenient to use Shannon’s theorem to
predict the image compression ratio by techniques that consider

the configurational information of image. The reason is that the
calculation of Shannon entropy is limited by the measurement
scale and Shannon entropy measures the statistical information
of pixels only, not the actual configurational information of
images.

Therefore, it is very desirable to construct new models for
predicting the lossless compression ratio without the need to
remove interpixel redundancy beforehand. In doing so, a two-
step investigation was conducted in this article. The first step
was to identify the most appropriate metric to use for building
models. The second step was to build empirical models based
on this metric. In doing so, a total of 29 metrics that capture
the configurational information of pixels were selected, and a
multilayered solution was developed to identify the most appro-
priate metric for building models. Then, a weighted least squares
approach was developed to build models. From the experiments,
the following conclusions can be drawn as follows.

1) Configurational entropy is the most appropriate for build-
ing models.

2) Configurational entropy-based models are effective in
predicting the lossless compression ratio. Specifically, a
model having high similarity to Shannon’s source coding
theorem with regard to the compression ratio is finally
recommended.

This model provides directions for further building theoretical
models. Three aspects are considered for future research. First,
theoretically, the maximum configurational entropy for a given
grayscale image must be determined. Second, for a single band
of a remote sensing image, we can use configurational entropy
to mathematically represent its quantification, transformation
and context modeling stages in a complex compression scheme
and then construct theoretical models. Third, considering the
prediction of the lossless compression ratio of multispectral
image, the configurational entropy is hopefully conceptualized
and then calculated by a feasible solution.
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