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Graph-Based Logarithmic Low-Rank Tensor
Decomposition for the Fusion of Remotely

Sensed Images
Fei Ma , Shuai Huo , and Feixia Yang

Abstract—Hyperspectral images with high spatial resolution
play an important role in material classification, change detection,
and others. However, owing to the limitation of imaging sensors, it is
difficult to directly acquire images with both high spatial resolution
and high spectral resolution. Therefore, the fusion of remotely
sensed images is an effective way to obtain high-resolution desired
data, which is usually an ill-posed inverse problem and susceptible
to noise corruption. To address these issues, a low-rank model
based on tensor decomposition is proposed to fuse hyperspectral
and multispectral images by incorporating graph regularization,
in which the logarithmic low-rank function is utilized to suppress
the small components for denoising. Furthermore, this article takes
advantage of the local spatial similarity of remotely sensed images
to enhance the reconstruction performance by constructing spatial
graphs, and also promotes signature smoothing between adjacent
endmember spectra using the neighborhood-based spectral graph
regularization. Finally, a set of efficient solvers is carefully designed
via alternating optimization for closed-from solutions and compu-
tational reduction, in which vector-matrix operators are adapted to
solve the 3-D core tensor. Experimental tests on several real datasets
illustrate that the proposed fusion method yields better reconstruc-
tion performance than the current state-of-the-art methods, and
can significantly suppress noise at the same time.

Index Terms—Graph regularization, hyperspectral image (HSI)
super-resolution, image fusion, low rank, tensor decomposition.

I. INTRODUCTION

W ITH the rapid development of imaging sensors in remote
sensing, hyperspectral images (HSIs) are widely used in

many fields, such as objective classification and target detection
[1], [2]. However, they are susceptible to noise corruption and
spectral variability [3], which seriously affect the image quality.
Generally speaking, the common remotely sensed data include
panchromatic (PAN), multispectral, and hyperspectral images.
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PAN images have high spatial resolution but only one spectral
band. Furthermore, multispectral images (MSIs) usually take
several to a dozen bands and relatively high spatial resolution,
while HSIs occupy dozens to several hundred bands but low
spatial resolution. Remote sensing images with both high spatial
resolution and high spectral resolution can perform material
identification and classification more accurately. However, ow-
ing to the limitation of mutual constraint between spatial and
spectral resolution, the images by remote sensing satellites can
hardly be obtained in both high spatial resolution and high
spectral resolution at the same time [1], [4]. Therefore, image
fusion is an effective way to enhance the spatial resolution of
hyperspectral images, which has become a research hotspot in
remote sensing.

So far, there have been various research results on the fusion
of HSIs and MSIs, which can be roughly divided into three
categories from the perspective of signal models, including
matrix factorization, deep learning, and tensor decomposition.
The representative approaches based on matrix factorization
are panchromatic sharpening [5], Bayesian inference [6], and
coupled nonnegative matrix factorization (CNMF) [7]. Such
methods usually need to reshape the original cubic data into
matrix form, and then extract spectral and spatial signatures
separately from the observed data for image reconstruction.
Obviously, data fusion is an ill-posed inverse problem, which
can be solved by the regularization method. Therefore, the
regularized terms of low-rankness [8], sparsity [9], smoothness
[10], and minimum-volume [11] were developed to improve the
quality of reconstruction images. For example, Veganzones et al.
[12] proposed a low-rank super-resolution method to partition
the image into subgraphs and solve the data fusion problem of
each subgraph independently in the low-dimensional subspace
by exploiting the local low-rank property of real datasets. Zare
et al. [13] brought forward a fusion model based on smoothed
graph signals, and took the clustering method to redefine the
spatial similarity of HSIs. In general, matrix factorization-based
methods inevitably have to unfold the original 3-D data into
matrices, so that the structure information of the observed HSI
is lost, resulting in a certain degree of spatial and/or spectral
distortion of the reconstructed image. With the development of
artificial intelligence, some algorithms based on deep neural
networks have emerged. Deep learning-based fusion models
were designed to train the observation data and hyperparam-
eters, and then reconstruct the super-resolution images using
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Fig. 1. Flowchart of the proposed HSI-MSI fusion based on low-rank Tucker decomposition with graph regularization.

the related constraint conditions [14], [15]. For instance, Yao
et al. [16] developed an unsupervised cross-attentive neural
network that performed feature extraction via two convolutional
networks with shared parameters for resolution enhancement.
Hong et al. [17], [18] proposed a minibatch graph convolutional
network (miniGCN) to drop the computational cost by training
large-scale GCNs in a minibatch fashion, and also developed a
general multimodal deep learning framework. Compared with
matrix factorization, deep learning-based approaches can ad-
dress nonconvex models in remote sensing [19]. However, these
methods generally require the establishment of training samples
(i.e., image elements or features), and involve the adjustment
of a large number of hyperparameters. Meanwhile, the per-
formance of network model is often limited by the size of
datasets.

Another popular methods can achieve the HSI-MSI fusion
via tensor decomposition without destroying the original data
structure. The common forms of tensor decomposition include
Canonical polyadic decomposition (CPD) [20] and Tucker de-
composition [21]. For example, Kanatsoulis et al. [22] proposed
a CPD-based coupled tensor decomposition model and per-
formed the fusion performance in the case where the degrading
operator was unknown. CPD with rank-1 property is a special
case of Tucker decomposition, so the Tucker-based tensor model
has received more attention due to its universality. However, the
rank of a tensor has multiple different definitions and is not
exactly equal in value, which is different from that of a matrix
[23]. Imposing prior information or regularization may address
the nonuniqueness of tensor rank. For instance, Bu et al. [24]
brought forward a Tucker-based fusion model by exploiting the
smoothness of factor matrices and the sparsity of core tensor.
Zhang et al. [25] designed a super-resolution method based
on Tucker tensor decomposition and joint spatial-spectral-graph
regularization. Ma et al. [21] put forward a Tucker-based model
by imposing low-rank and sparsity regularization on factor ma-
trices and core tensor, respectively. Since Tucker decomposition

can keep the 3-D data cube unchanged during processing, there
is no loss of structural information.

To utilize the advantages of tensor models, this article incorpo-
rates low-rank and graph regularizers into Tucker decomposition
to redefine the fusion of HSIs and MSIs as an optimization
problem. Our contributions to this article mainly include the
following aspects. First, owing to local similarity in spatial
and spectral dimensions, the logarithmic sum function is lever-
aged to promote the low-rankness. Second, the graph matrices
in the spatial and spectral subspaces are constructed respec-
tively to smooth the spatial-spectral signatures for the removal
of redundant information and spectral variability. Finally, an
efficient algorithm is carefully developed to obtain the closed-
form solution to each variable using alternative optimization
(AO) [26] and alternating direction multiplier method (ADMM)
[27], especially vector-matrix operators for the core tensor. The
flowchart of simulations is given in Fig. 1, and the experimen-
tal results on several widely used real datasets show that our
proposed fusion method performs better performance than the
state-of-the-art approaches, which also verifies the effective-
ness of incorporated regularization for super-resolution image
reconstruction.

The rest is organized as follows. Section II presents the obser-
vation model and regularization terms. In Section III, we redefine
the fusion method as a regularized optimization problem and
design a set of efficient solvers to get the closed-form solutions
via ADMM. Then, the experimental tests are conducted on
different datasets in Section IV. Finally, Section V concludes
the articles.

In addition, two proofs are given in the appendix. Some key
notations are defined as follows. Scalar, vector, and matrix are
represented as lower case letters, bold lower case letters, and bold
upper case letters, respectively. The N th order tensor is given as
A ∈ RI1×...×Ik×...×IN , the element of which is ai1...ik...iN (1 ≤
ik ≤ IK). vec(A) indicates a vectorization of tensor variable A.
The matrices A(n) ∈ RIn×I1I2,...,In−1In+1,...,IN and A<n> ∈



MA et al.: GRAPH-BASED LOGARITHMIC LOW-RANK TENSOR DECOMPOSITION FOR THE FUSION OF REMOTELY-SENSED IMAGES 11273

RI1I2,...,In×In+1,...,IN denote the mode-n unfolding and the
mode-n canonical unfolding of the tensor A, respectively.

II. SIGNAL MODELS AND REGULARIZATION TERMS

This section presents the observed models and Tucker decom-
position, and then reformulates the fusion of remotely sensed
images as a regularized optimization problem. At the same time,
the logarithmic low-rank and graph regularizers are given in the
following sections.

A. Observation Models and Tucker Decomposition

In this article, a desired HSI (also called target or refer-
ence image) with high spatial resolution is denoted as Z ∈
RNw×Nh×Na , where Nw, Nh, and Na represent the width,
height, and spectral bands of Z , respectively. The observed HSI
Y ∈ Rnw×nh×Na has low spatial resolution, where nw and nh

are the width and height, respectively, and the number of spectral
bandsNa is the same inZ . The observed MSIX ∈ RNw×Nh×na

has high spatial resolution, where na is the number of spec-
tral bands, and the spatial resolution Nw ×Nh is the same in
Z . Image fusion aims to reconstruct the hyperspectral super-
resolution image by integrating the observed hyperspectral and
multispectral data. Conversely, these two observation images
can be viewed as the degraded versions of the reference image
separately in spatial and spectral subspaces, as shown in Fig. 1.
In this way, the tensor-based observation model can be expressed
as

Y = Z ×1 P1 ×2 P2 + Ey (1)

X = Z ×3 P3 + Ex (2)

where r = Nw

nw
= Nh

nh
represents the degradation ratio in the

spatial dimensions; P1 ∈ Rnw×Nn and P2 ∈ Rnh×Nh denote
the degradation matrices in the width and height, which can
be constructed by downsampling the corresponding Toeplitz
matrix from the point spread function (PSF), respectively;
P3 ∈ Rna×Na denote the degradation matrices in the spectral
dimensions, which can be constructed by the spectral response
functions (SFRs) of hyperspectral and multispectral sensors; Ey
and Ex are the error terms.

According to the definition of Tucker decomposition [28], the
target image can be decomposed as

Z = C ×1 W ×2 H×3 A+ Ez (3)

where W ∈ RNw×rw , H ∈ RNh×rh , and A ∈ RNa×ra denote
the factor matrices of width, height, and spectrum, respectively;
C ∈ Rrw×rh×ra is the decomposed core tensor; rw, rh, and ra
represent three dimensions of the core tensor; Ez means the error
term.

B. Fusion Model

Combining the observation models (1) and (2) [29], HSI-MSI
fusion can be reformulated as

min
Z

1

2
||Y − Z ×1 P1 ×2 P2||2F +

1

2
||X − Z ×3 P3||2F

s.t. Z = C ×1 W ×2 H×3 A. (4)

Since image reconstruction is an ill-posed inverse problem, this
article incorporates prior information to regularize the model (4).
In hyperspectral data, each group of adjacent bands has close
correlation, and the neighboring pixels also have strong similar-
ities. So imposing graph regularization on spatial and spectral
matrices separately aims to reduce the impacts of distortions
for performance enhancement. Instead of the accurate value of
tensor rank, we exert the low-rank regularization on the core
tensor for denoising and addressing the nonuniqueness of tensor
rank. Thus, (4) can be rewritten as

min
Z

1

2
||Y − Z ×1 P1 ×2 P2||2F +

1

2
||X − Z ×3 P3||2F

+ αφa(C) + βφb(W,H) + γφc(A)

s.t. Z = C ×1 W ×2 H×3 A (5)

where φa(C) denotes the low-rank regularizer of the core tensor;
φb(W,H) and φc(A) indicate the spatial and spectral graph
regularization terms, respectively; α, β, and γ denote the corre-
sponding weights. As shown in Fig. 1, the HSR hyperspectral
data can be reconstructed by the factor matrices and core tensor
under the low-rank regularization on basis of Tucker decompo-
sition.

C. Regularization Terms

1) Logarithmic Low-Rank Function: Generally, the rank of
a matrix M is equal to the number of positive singular values,
but it is difficult to solve directly due to nonconvexity. In order to
address this issue, the nuclear norm is often a convex surrogate
of low rank, and it is equal to the sum of singular values of M.

A recent study [30] has shown that convex relaxations for low-
rank problems can be adapted to the more general case, i.e., the
logarithmic sum function can be more efficient in strengthening
the low-rankness of a matrix. It is found that the larger singular
values of the matrix represent dominant features or structural
information, while the smaller singular values mainly contain
noise or interference. The logarithmic sum function [31], [32]
is defined as

logsum(M) =
∑
i

log (σi(M) + ε) (6)

where ε is a small positive number to avoid the case of zero
values. We can observe that the logarithmic function can further
shrink the matrix rank to preserve the structural information
and suppress the noise in the smaller singular values. Let 0 <
α, 0 < ε < min(

√
α, (α/σ1)) and define the low-rank recovery

problem as

min
M

1

2
‖Γ−M‖2F + α

∑
i

log (σi(M) + ε) (7)

Γdenotes a known observation matrix, we can obtain the optimal
solution as

M = Udiag (d1, d2, . . . , dn)V (8)

where di = Dα,ε(σi), and the operator Dα,ε(σi) is defined as

Dα,ε(x) =

{
0 c2 ≤ 0
c1+

√
c2

2 c2 > 0
(9)
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where c1 = |x| − ε and c2 = c21 − 4(α− ε|x|). Among the var-
ious definitions of tensor rank, the tensor-train rank is adopted
in this article.

2) Tensor-Train Rank: Given an N -dimensional tensor G ∈
RI1×I2,...,×IN , and decompose it into a tensor train to obtain
G(1),G(2), . . . ,G(N), where G(n) ∈ RRn−1×In×Rn

and R0 =
RN = 1 (n = 1, 2, . . . , N ). The elements in G are expressed
as

Gi1,i2,...,iN =

R1,R2,...,RN−1∑
r1,r2,...,rN−1=1

G(1)
1,i1,r1

G(2)
r1,i2,r2

, . . . ,G(N)
rN−1,iN ,1

(10)
where {R1, R2, . . . , RN−1} is called the tensor-train rank of G
[33]. However, the train decomposition of a tensor is also not
unique due to the different parameters [34]. In practice, the lower
bound of tensor-train rank is more interesting, especially for 3-D
hyperspectral data.

Proposition 1: If the mode-n canonical unfolding of an N -
dimensional tensor Gn is G<n>, then the tensor-train rank Rn

of Gn satisfies Rn ≥ Tn, where Tn = rank(G<n>).
More specifically, the rank of G<n> is the lower bound of

tensor-train rank Rn. The detailed proof is given in Appendix
V. We employ the lower bound to denote the tensor-train rank
in low-rank problems. Thus, the tensor-train rank is defined as

N−1∑
n=1

αnrank
(
G〈n〉

)
(11)

where αn is the weight and satisfies
∑N−1

n=1 αn = 1. The matrix
G<n> can be obtained by unfolding the tensor along the first n
modes, so that its rank can model the correlation between the first
n modes and next N − n modes. Owing to the structure of hy-
perspectral datacube, this article employs the mode-2 canonical
unfolding to partition the spatial and spectral information into
different subspaces [35], with the corresponding weightα2 = 1.
Incorporating the logarithmic sum function with the tensor-train
rank, the low-rank regularization on core tensor can be expressed
as

φa(C) =
∑
i

log (σi(C<2>) + ε) . (12)

3) Spatial Graph Regularizer: It is well known that the
observed hyperspectral images in a low-dimensional subspace
contain high redundancy [36]–[38]. To further drop the redun-
dancy, this article takes advantage of the manifold information
of pixels in the MSI [39] and constructs a spatial graph to
evaluate the local correlation in the pixel subspace, which can
transfer the spatial information from the observed MSI to the
fused image. Thus, this can maintain the spatial structure better
in the reconstructed image. The spatial graph is represented as
GW = (VW ,EW ,SW ), where VW denotes the vertexes (i.e.,
the pixels in the MSI), EW represents the corresponding set
of edges, and SW involves the connection weights between
vertexes. Thus, the adjacency matrix SW can be calculated by

Fig. 2. Augmented graph Laplacian matrix.

the following:

SW (i, j) = exp

(
−‖m (xi, yi, :)−m (xj , yj , :)‖2

σ2

)
(13)

where m(xi, yi, :) denotes the fiber of the MSI, and σ is the
smoothing factor. From the spatial graph GW , the normalized
spatial Laplacian matrix can be defined by

L̂W = D
− 1

2

W (DW − SW )D
− 1

2

W = D
− 1

2

W LWD
− 1

2

W (14)

where LW = DW − SW denotes the graph Laplacian matrix;
DW = diag(d1, d2, . . . , dn) is the degree matrix, and di =∑

j SWi,j
; IW is the unit matrix with proper sizes. According to

the properties of normalized Laplacian matrix [40], it is a semi-
positive definite matrix and its eigenvalues are between 0 and 2,
which is prone to over-smoothing in multiple iterations. There-
fore, in order to suppress the over-smoothing phenomenon, this
article constructs an augmented Laplacian matrix by enhancing
the self-connection, i.e., L̃W = L̂W + I. The physical meaning
of the augmented Laplacian matrix is shown in Fig. 2, which is
equivalent to adding a self-connected edge to each node on the
original graph structure. Thus, the spatial graph regularizer [41]
can be defined as

φb(W,H) = tr
(
(H⊗W)T L̃W (H⊗W)

)
. (15)

4) Spectral Graph Regularizer: As we all know, the end-
member signature describes the spectral reflection of a material
that varies gradually with the spectra, so it is usually a smooth
curve. Similar to the endmember signature in the linear unmixing
model [9], the third factor matrix also represents the spectral
signature in the tensor decomposition. Thus, this article develops
a neighborhood graph to regularize the spectral factor matrix for
smoothing [42], [43]. Based on the nearest neighbor spectrum,
the spectral graph can be defined as GA = (VA,EA,SA),
where VA denotes the spectral bands, EA is the set of edges
between the neighborhood-based spectral bands, and SA is the
adjacency matrix.

The smoothing regularizer is often expressed as

φc(A) �
N∑
j=1

∑
{m,n}∈ε

|aj(m)− aj(n)| (16)

where ε denotes the column neighborhood set of endmember
matrix, and aj(m) denotes the mth element of the jth endmem-
ber aj . Thus, (16) can be reshaped into a neighborhood-based
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adjacency matrix as

SA(m) = exp

(
−‖A(:,m)−A(:,m+ 1)‖2

σ2

)
(17)

whereA(:,m) denotes themth spectral signature of endmember
matrix, and σ is the smoothing factor.

Similar to the spatial graph, the spectral Laplacian matrix can
be obtained by

L̂A = D
− 1

2

A LAD
− 1

2

A (18)

where LA = DA − SA denotes the graph Laplacian matrix,
DA = diag(g1, g2, . . . , gn) is the degree matrix and gi =∑

j SAi,j
. Similarly, we can obtain the augmented Laplacian

matrix L̃A = L̂A + I. Thus, the regularization expression of
spectral graph can be rewritten as

φc(A) � tr(AT L̃AA). (19)

III. OPTIMIZATION ALGORITHM

After redefining the models and regularization terms, the
fusion model in (5) can be reformulated as

min
Z

1

2
||Y − C ×1 (P1W)×2 (P2H)×3 A||2F

+
1

2
||X − C ×1 W ×2 H×3 (P3A) ||2F

+ βtr
(
(H⊗W)T L̃W (H⊗W)

)
+ γtr(AT L̃AA)

+ αlogsum(C).
(20)

Then, (20) is solved using AO, which can be decoupled into
several univariate alternating iterations as

Wk+1 ∈ argmin f
(
W,Hk,Ak, Ck

)
(21a)

Hk+1 ∈ argmin f
(
Wk+1,H,Ak, Ck

)
(21b)

Ak+1 ∈ argmin f
(
Ak+1,Hk+1,A, Ck

)
(21c)

Ck+1 ∈ argmin f
(
Wk+1,Hk+1,Ak+1, C) (21d)

where k denotes the number of iterations, f(W,H,A, C) de-
notes the objective function.

A. Estimation of Factor Matrix W

Since (21a) contains the graph regularization and data fitting
terms, it cannot be solved directly. Therefore, ADMM is adopted
to conduct variable splitting by adding equation constraints.
Substituting the spatial graph regularizer into (21a), we have

min
W

1

2
||Y − C ×1 (P1W)×2 (P2H)×3 A||2F

+
1

2
||X − C ×1 W ×2 H×3 (P3A) ||2F

+ βtr
(
(H⊗W)T L̃W (H⊗W)

)
. (22)

In general, the calculation of factor variable requires the unfold-
ing of a tensor into 2-D form. Thus, (22) can be unfolded along

mode-1 into matrix form as

min
1

2

∥∥Y(1) −P1WUW

∥∥2
F
+

1

2

∥∥X(1) −WVW

∥∥2
F

+ βtr
(
(H⊗W1)

T L̃W (H⊗W1)
)

s.t. W1 = W (23)

whereUW = (C ×2 (P2H)×3 A)(1) andVW = (C ×2 H×3

(P3A))(1).
Then, the augmented Lagrangian function of (23) can be

written as

L (W,W1,M1) =
1

2
‖Y−C ×1 (P1W)×2 (P2H)×3 A‖2F

+
1

2
‖X − C ×1 W ×2 H×3 (P3A)‖2F

+ βtr
(
(H⊗W1)

T L̃W (H⊗W1)
)

+
η

2
||W1 −W +

Mw1

η
||2F (24)

where Mw1 is the dual variable and η is the weight. Using
ADMM to update the original variables W, W1 and the dual
variable Mw1 iteratively until convergence, the closed-form
solution of each variable is obtained as follows.

1) Update W: Obviously, (24) is a convex quadratic pro-
gramming problem. However, since it often involves heavy
computational burden, the Sylvester equation can be obtained
as Formula (25) via least-squares criterion. Therefore, the con-
jugate gradient algorithm is utilized to updateW for the optimal
solution

PT
1 P1WUwU

T
w +W

(
VwV

T
w + ηI

)
= PT

1 Y(1)U
T
W +X(1)V

T
W + ηW1 +Mw1. (25)

2) Update W1: The update of W1 is hard to optimize be-
cause of the Kronecker product contained in the spatial graph
regularization term. The problem can be simplified by the graph
Laplacian matrix, and the detailed procedure is shown in Ap-
pendix VI. Thus, the subproblem of W1 can be rewritten as

min
β

2

∥∥WT
1 NW

∥∥2
F
+

η

2

∥∥∥∥W1 −W +
Mw1

η

∥∥∥∥2
F

(26)

where Nw is the unfolding form of U ×2 H
T
1 along mode-1, U

is the tensor form of the upper triangular matrix derived from
the decomposition of graph Laplacian matrix. The closed-form
solution of W1 can be obtained as

Wj+1
1 = (βNwN

T
w + ηI)−1(ηWj+1 −Mw1). (27)

3) Update Mw1:

Mj+1
w1 = Mj

w1 + η(Wj+1
1 −Wj+1). (28)
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B. Estimate of Factor Matrix H

The solving process of factor matrix H is similar to that of
W, so (21b) is rewritten in the tensor form as

min
H

1

2
||Y − C ×1 (P1W)×2 (P2H)×3 A||2F

+
1

2
||X − C ×1 W ×2 H×3 (P3A) ||2F

+ βtr
(
(H⊗W)T L̃W (H⊗W)

)
. (29)

Owing to the symmetry of spatial factor matrices, the solution
of H is similar to W as follows.

1) Update H: The Sylvester equation (30) with respect to
H can be obtained via least squares criterion, and the conjugate
gradient algorithm is adopted to solve the variable H

PT
2 P2HUhU

T
h +H

(
VhV

T
h + ηI

)
= PT

2 Y(2)U
T
h +X(2)V

T
h + ηH1 +Mh1 (30)

where the structure matrices Uh = (C ×1 (P1W)×3 A)(2),
and Vh = (C ×1 W ×3 (P3A))(2).

2) Update Other Variables:

Hj+1
1 = (γNhN

T
h + ηI)−1(ηHj+1 −Mj

h1) (31)

Mj+1
h1 = Mj

h1 + η
(
Hj+1

1 −Hj+1
)

(32)

where Nh is the mode-2 unfolding form of U ×1 W
T
1 . In sum,

owing to spatial symmetry,H andW can be updated in the same
solvers.

C. Estimation of Factor Matrix A

For spectral factor matrix, by incorporating spectral graph
regularization into two data fitting terms, (21c) can be redefined
as

min
1

2
‖Y − C ×1 (P1W)×2 (P2H)×3 A‖2F

+
1

2
‖X − C ×1 W ×2 H×3 (P3A)‖2F

+ γtr(AT L̃AA). (33)

Similar to the spatial graph, the Laplace matrix L̃A can be
factorized into the product of two matrices via Cholesky decom-
position, i.e., L̃A = VTV. Thus, tr(AT L̃AA) can be rewritten
as γ

2 ||VA||2F . It is worth mentioning that the spectral graph
regularization is equivalent to the vertical total variation of
mode-3 factor matrix [11]. Using ADMM, (33) is unfolded into
matrix form along mode-3. We have

min
A,A1

1

2

∥∥X(3)−P3AVa

∥∥2
F
+

1

2

∥∥Y(3)−AUa

∥∥2
F
+

γ

2
||VA1||2F

s.t. A1 = A (34)

where Ua = (C ×1 (P1W)×2 (P2H))(3),Va = (C ×1

W ×2 H)(3). The solutions of these variables are computed
separately using the conjugate gradient and least square
methods, which are updated iteratively in turn.

1) Update A: Because of high computational complexity,
the Sylvester equation (35) can be solved via the conjugate
gradient method

PT
3 P3AVaV

T
a +A

(
UaU

T
a + ηI

)
= PT

3 X(3)V
T
a +Y(3)U

T
a + ηA1 +Ma1. (35)

2) Update Other Variables:

Aj+1
1 = (γVTV + ηI)−1(ηAj+1 −Mj

a1) (36)

Mj+1
a1 = Mj

a1 + η(Aj+1 −Aj+1
1 ). (37)

D. Estimate of Core Tensor C
For the core tensor, (21d) with low-rank regularization can be

rewritten as

min
C

1

2
‖Y − C ×1 (P1W)×2 (P2H)×3 A‖2F

+
1

2
‖X − C ×1 W ×2 H×3 (P3A)‖2F

+ αlogsum(C). (38)

To simplify two data fitting terms in the objective function, the
core tensor should be reshaped into a vector as c = vec(C).
After splitting variables with equation constraints, (38) can be
expressed as

min
1

2
‖y −B1c‖2F +

1

2
‖x−B2c1‖2F + αlogsum(F<2>)

s.t. c1 = c,F<2> = C<2> (39)

where B1 = A⊗ (P2H)⊗ (P1W); B2 = (P3A)⊗H⊗
W; x and y denote the vectorized versions of observed images
X and Y , respectively, i.e., x = vec(X ) and y = vec(Y).

Obviously, the update of F<2> is a low-rank regularization
problem. According to (8), the closed-form solution of F<2>

can be obtained as

Fj+1
<2> = ŨF diag(q1, q2, . . . , qn)Ṽ

T
F (40)

where qi = Qαε(σi), and ŨF diag(q1, q2, . . . , qn)ṼT
F is the sin-

gular value decomposition of C<2> − Mc2

η . The closed-form
solutions of the other variables can be obtained directly via
ADMM, which are then updated iteratively in the following
order:

cj+1 = (BT
1 B1 + ηI)−1(B1

Ty + ηcj1 +mc1

+ ηvec(Fj+1
<2>) + ηMj

c2) (41a)

cj+1
1 = (BT

2 B2 + ηI)−1(ηcj+1 −mj
c1 +BT

2 x) (41b)

mj+1
c1 = mj

c1 + η(cj+1 − cj+1
1 ) (41c)

Mj+1
c2 = Mj

c2 + η(Cj+1
<2> − Fj+1

<2>). (41d)

To sum up, the solving process of the proposed fusion method
in this article is summarized in Algorithm 1. First of all, W,
H, and C are initialized separately by 0 with proper sizes, and
the initial value of A can be evaluated by VCA [44]. Then, all
the factor matrices and the core tensor are iterated alternatively



MA et al.: GRAPH-BASED LOGARITHMIC LOW-RANK TENSOR DECOMPOSITION FOR THE FUSION OF REMOTELY-SENSED IMAGES 11277

until convergence. Finally, the super-resolution image is recon-
structed after each subproblem is solved.

E. Convergence Rules

In this article, the fusion method decomposes the optimization
problem with low-rank and graph regularization into alternat-
ing iterations of three factor matrices and a core tensor, i.e.,
(21a)–(21d). The stopping rule satisfies the relative difference
threshold between the successive updates of the objective func-
tion f(W,H,A, C) is less than 0.001. The experiments show
that changing the number of iterations in the ADMM-based
algorithms has little effect on the convergence of the whole
algorithm [20], [21]. That is, the variables ofW,H,A, and C do
not run exhaustively for convergence. Therefore, the iterations
in outer and inner loops are set to 50 and 10, respectively.

IV. EXPERIMENTS

We evaluate the quality of hyperspectral super-resolution
images from two perspectives of reconstruction performance
and classification accuracy. Three widely used real datasets are
adopted to simulate and test the proposed low-rank tensor fusion
algorithm using Wald’s protocol [45]–[47]. This flowchart can
not only achieve the coregistration of two observed images, but

also provide the reference image for performance comparison.
According to the hyperspectral observation model, the hyper-
spectral and multispectral data in the same scene, i.e., Y and X ,
can be regarded as the degraded versions of the reference image
Z in the spatial and spectral subspaces, respectively. The fusion
method aims at integrating Y and X to yield the high-resolution
image Ẑ , and measure the similarity between Ẑ andZ in quality
metrics [48]–[50], including peak signal to noise ratio (PSNR),
root-mean-square error (rmse), relative dimensionless global
error in synthesis (ERGAS), spectral angle mapper (SAM),
degree of distortion (DD), and structural similarity (SSIM).
Moreover, we evaluate the classification performance of the
super-resolution images reconstructed by the fusion methods
in several metrics, including average accuracy (AA), overall
accuracy (OA), Kappa coefficient (K), and per-class accuracy.

A. Experimental Datasets

This section presents three real datasets, including Pavia
University,1 Chikusei,2 and Columbia Computer Vision Lab-
oratory (CAVE).3 Then, we evaluate the performance of fusion
methods from the perspectives of reconstruction quality and
classification accuracy.

1) Pavia University: The first dataset was captured at Pavia
University [51] in northern Italy using the hyperspectral sensor
ROSIS, with 115 bands and a spatial resolution of 1.3 m. After
removing the pollution by water vapor absorption and strong
noise, 103 spectral bands covering the wavelength of 430–860
nm were retained. Simultaneously, a 600× 300 region in Pavia
University dataset is selected as the original reference image
Z . Thus, the multispectral data with four spectral bands in
the same area were collected by the sensor IKONOS, covering
445–516, 516–595, 632–698, and 757–853 nm. The spectral
downsampling operator was computed as P3 ∈ R4×103.

2) Chikusei: The second dataset was taken by a Headwall
Hyperspec-VNIR-C image sensor on July 29, 2014, in the
rural and urban areas of Chikusei[52], Japan. In the spectral
dimension, this dataset retains 128 bands ranging from 363 to
1018 nm. In the spatial dimension, a subscene of 300× 300
pixels was selected as the region of interest (RoI) with a ground
sampling resolution of 2.5 m. The MSI was obtained by the
spectral degradation operator P3 ∈ R4×128.

3) CAVE: The third dataset was CAVE dataset [53], which
was collected widely for hyperspectral image super-resolution
including 32 indoor images, which were captured by a camera.
This original image had 31 bands covering the spectrum range
from 400 to 700 nm, with the target region of 400× 400 pixels,
which was graded to get the observed MSI by the spectral
downsampling matrix P3 ∈ R3×31.

To verify the local similarity, each target image is divided into
several 100× 100 nonoverlapping subblocks to test the perfor-
mance. With degradation ratio of 4, the spatial downsampling
matrix P1 ∈ R25×100 and P2 ∈ R25×100 can be constructed to

1[Online]. Available: http://www.ehu.eus/ccwintco/index.php/Hyperspect
ral_Remote_Sensing_Scenes

2[Online]. Available: https://www.sal.t.u-tokyo.ac.jp/hyperdata/
3[Online]. Available: https://www.cs.columbia.edu/CAVE/databases/

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www.sal.t.u-tokyo.ac.jp/hyperdata/
https://www.cs.columbia.edu/CAVE/databases/
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Fig. 3. Estimation of core tensor dimensions for two datasets (a) rw , (b) rh, and (c) ra, with two datasets distributed as Pavia University (green line); Chikusei
(blue line) and Balloon (red line).

Fig. 4. RMSE curves w.r.t regularization parameters including (a) α, (b) β, and (c) γ.

degrade the reference images for the observed hyperspectral data
with 25× 25 pixels in each subblock.

B. Experimental Settings

1) Dimension Setting of Core Tensor: The hyperspectral im-
age data is decomposed into two spatial factor matrices W,
H, a spectral factor matrix A, and a core tensor C by Tucker
decomposition. The factor matrices can be regarded as principal
components in each dimension, and the core tensor contains the
corresponding coefficients of each factor matrix, which indicates
the degree of intercorrelation between different modes. To drop
the computational complexity, the proposed G-LRTF segments
the original dataset into several pieces, so the dimension setting
of the core tensor is discussed in each subblock [36]. In this
article, we set appropriate dimensions for the subscenes and
leverage the low-rank prior to suppress noise corruption and
redundant information. The dimensions of core tensor are rw,
rh, and ra, which denote two spatial dimensions and the spectral
dimension, respectively. The performance rmse is taken to test
the effect of tensor dimensions on reconstruction error. The
curves of rmse with respect to each dimension separately by
fixing the other two dimensions, as shown in Fig. 3. Considering
the stability of performance, the spatial dimensions rw and rh
are set to 100, and the spectral dimension is set to 9.

2) Setting of SNRs: To evaluate the antinoise performance of
the proposed fusion method, we set three groups of SNRs for
the observed hyperspectral and multispectral images to simulate
different noise environments, including (20, 25 dB), (25, 25
dB), and (25, 30 dB), and then discuss the performance of the
proposed G-LRTF under the different noise conditions.

3) Setting of Regularization Coefficients: Based on the
Tucker tensor decomposition, this article incorporates the loga-
rithmic sum function and spatial-spectral graphs to regularize the
core tensor and factor matrices with the corresponding weights
α, β, and γ. In general, the regularization coefficient is set to
balance the relationship between the data fitting terms and the
regularization term in the objective function, and the weights
have strong correlations with the noise power of the observed
images [20], [34]. The variation curves of rmse with respect
to the regularization weights are illustrated in Fig. 4. Thus,
the regularization weights are set to α = 1, β = 0.001, and
γ = 0.001.

4) Comparison of Low-Rank Regularizers: Generally, the
nuclear norm is often a convex surrogate of the rank function
in low-rank minimization problems. As a convex relaxation,
logarithmic sum function is imposed on core tensor to promote
the property of low rank in this article. We conducted the
experiments to compare the nuclear norm with the logarithmic
sum function on three datasets, where the other regularization
terms and settings remained the same. From the experimental
results in Table I, one can see that logarithmic sum function
achieves slightly better performance than nuclear norm, except
that the performance of SAM and SSIM is almost the same.

C. Experimental Results

To make full use of the local spatial information and drop
the computational complexity, each dataset was segmented by a
fixed-size window of 100× 100 pixels into several nonoverlap-
ping blocks, which were handled separately and then stitched
together after fusion. Using the downsampling matrix, the
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TABLE I
PERFORMANCE COMPARISON BETWEEN NUCLEAR NORM (NN) AND LOGARITHM SUM FUNCTION (LOGSUM) (THE BEST VALUE IS IN BOLD)

TABLE II
QUANTITATIVE RESULTS ON PAVIA UNIVERSITY (THE BEST VALUE IS IN BOLD)

reference image was degraded in the spectral dimension to obtain
the observed MSI X . In the same way, the spatial degradation
operators P1 and P2 were designed to generate the observed
hyperspectral data Y . For performance comparison, five state-
of-the-art fusion methods were selected as the benchmarks, in-
cluding the original CNMF (coupled nonnegative matrix factor-
ization) [46], BSR (Bayesian sparse representation) [6], CSTF
(coupled sparse tensor factorization) [29], NLSTF (nonlocal
sparse tensor factorization) [54], and STEREO (super-resolution
tensor-reconstruction) [22].

1) Reconstruction Quality: This section conducts experi-
mental simulations on three datasets and analyzes the perfor-
mance of the proposed G-LRTF with the benchmark algorithms.
First of all, the overall performance of the algorithms are tested
under three different noise conditions, as shown in Tables II– IV
for Pavia University, Chikusei, and Balloon, respectively. On
the whole, the performance of each algorithm drops as the
SNRs decrease. For three datasets, the performance of the pro-
posed G-LRTF performs significantly better than the benchmark

algorithms. For example, the proposed G-LRTF achieves great
performance improvement on the CAVE dataset in low-SNR
environments, where the rmse and DD are reduced by more
than 27% and 40%, respectively. Meanwhile, the performance
on Chikusei and Pavia University datasets is improved substan-
tially, i.e., the PSNR is raised by 2 and 1 dB, respectively.

The reconstruction and difference images for three datasets
are provided in this experiment, as shown in Figs. 5–7. We
can observe that the fused data by the proposed G-LRTF is
closer to the corresponding reference image, although these
reconstructed images are visually indistinguishable. Especially,
STEREO, CSTF and G-LRTF are all based on tensor decom-
position methods and they have comparable performance. The
STEREO algorithm achieves good performance because CPD
is more suitable for linear features such as roads and building
edges. Both CSTF and G-LRTF are based on Tucker decompo-
sition, so their difference images are very similar and close to the
noise image. However, local feature-based processing methods
often lead to the nonsmoothness of difference images, especially



11280 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 5. Reference/reconstruction images (top row) and the corresponding difference images (bottom row) on Pavia University dataset by the different algorithms,
including (a) reference image, (b) STERRO, (c) BSR, (d) CSTF, (e) NLSTF, (f) CNMF, and (g) proposed G-LRTF.

Fig. 6. Reference/reconstruction images (top row) and the corresponding difference images (bottom row) on Chikusei dataset by the different algorithms, including
(a) reference image, (b) STERRO, (c) BSR, (d) CSTF, (e) NLSTF, (f) CNMF, and (g) proposed G-LRTF. Second row, difference images corresponding to different
algorithms.

Fig. 7. Reference/reconstruction images (top row) and the corresponding difference images (bottom row) on Balloon dataset by the different algorithms, including
(a) reference image, (b) STERRO, (c) BSR, (d) CSTF, (e) NLSTF, (f) CNMF, and (g) proposed G-LRTF.
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TABLE III
QUANTITATIVE RESULTS ON CHIKUSEI DATASET (THE BEST VALUE IS IN BOLD)

TABLE IV
QUANTITATIVE RESULTS ON BALLOON DATASET (THE BEST VALUE IS IN BOLD)

Fig. 8. Performance comparison curve for Pavia University. (a) RMSE, (b) PSNR, and (c) ERGAS.

as shown in Balloon dataset, but it does not affect the overall
performance.

To evaluate the fusion performance of the algorithms with re-
spect to spectral bands, the performance curves of rmse, PSNR,
and ERGAS are given in this experiment, as shown in Figs. 8– 10.
From these figures, the proposed G-LRTF outperforms the

benchmarks on three datasets in most cases. In addition, in terms
of the curve fluctuation, the proposed G-LRTF yields better
smoothness than the baseline algorithms.

Since both the proposed G-LRTF and the CSTF are handled
by tensor decomposition, the third factor matrices represent the
spectral signatures, which are similar in matrix factorization.
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Fig. 9. Performance comparison curve for Chikusei. (a) RMSE, (b) PSNR, and (c) ERGAS.

Fig. 10. Performance comparison curve for Balloon. (a) RMSE, (b) PSNR, and (c) ERGAS.

Fig. 11. Signature curves of the fifth block via CSTF (thin blue line) and the proposed G-LRTF (bold red line).

The proposed G-LRTF takes advantage of the gradual variability
of spectral signature, and adopts graph regularization to remove
the effect of spectral variability for smoothing. The curves of
spectral signatures by CSTF and G-LRTF are shown in Fig. 11
for Pavia University dataset. On the whole, one can see that the

signature curves of the proposed G-LRTF are much smoother
than that of CSTF, as depicted in subfigures (a) and (c). The
proposed G-LRTF achieves obvious advantages in the lower
and higher reflectance parts in subfigures (b) and (f), while
CSTF and G-LRTF algorithms have similar performance at the
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Fig. 12. Visualization of (a) false-color images, (b) training and (c) test sample distribution, and classification maps by using different algorithms on
Pavia University dataset, including (d) reference image, (e) STEREO, (f) BSR, (g) CSTF, (h) NLSTF, (i) CNMF, and (j) proposed G-LRTF.

TABLE V
CLASSIFICATION PERFORMANCE OF SUPER-RESOLUTION IMAGES BY DIFFERENT METHODS ON PAVIA UNIVERSITY (THE BEST VALUE IS IN BOLD)

reflectance between 0.2 and 0.4. It is evident that the spectral
graph regularization significantly improves the smoothness of
endmember signature.

2) Classification Accuracy: As mentioned above, the quality
of hyperspectral images has a critical impact on classification
accuracy, which often serves as the performance metric. Further-
more, the widely-used K-neighborhood classifier [55] is adopted
to evaluate the quality of reconstructed images. The classifica-
tion maps of super-resolution images fused by the benchmarks
and the proposed G-LRTF are drawn in Fig. 12 for Pavia Univer-
sity dataset. One can observe that the classification performance
of the proposed G-LRTF is much better than that of the baseline
algorithms in some continuous regions, and it is much closer
to the reference image. By incorporating graph regularizers,
the proposed G-LRTF can preserve the spectral signatures of

local regions. More specifically, the classification results of
each class of substances are shown in Table V. The proposed
G-LRTF achieves higher accuracy than the benchmarks in most
independent classes, and has significant advantages especially
in three metrics including AA, OA andK [18]. The experimental
results demonstrate that the fusion image reconstructed by the
proposed G-LRTF has very high quality, and can greatly improve
the classification accuracy.

D. Complexity Analysis

The computation burden of the proposed G-LRTF includes the
construction of spatial graph, factor matrices and core tensor.
The complexity of graph construction is O(NwNh), and the
iteration part mainly includes the estimation of four variables,
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TABLE VI
RUNNING TIME COMPARISON OF FUSION ALGORITHMS (THE BEST VALUE IS IN BOLD)

i.e., W, H, A, and C. First, the Sylvester equations of the factor
matrices W, H, and A are computed by the conjugate gradi-
ent, and their computational complexity consumes O(n2

wN
2
w),

O(n2
hN

2
h), and O(n2

aN
2
a ), respectively. After complexity re-

duction via vector-matrix operators, the computational cost can
be reduced to O(n2

wNw + nwN
2
w), O(n2

hNh + nhN
2
h), and

O(n2
aNa + naN

2
a ). For the computation of Laplacian matrix in

factor matrices, the Cholesky decomposition requires O(N3
w).

Furthermore, in the iteration of core tensor C, the computational
burden occupies O(n2

wnhna + nwn
2
hna + nwnhn

2
a). Accord-

ing to the above analysis, the bottleneck of the proposed G-LRTF
in this article lies in the graph regularization terms, which involve
high complexity. The running time is also a metric to evaluate the
complexity of an algorithm, and Table VI lists the running times
of different algorithms on the three datasets. From these results,
we can observe that STEREO consumes the least time due to
the rank-1 property of CPD, which is a special case of Tucker
decomposition. Compared with CSTF, the G-LRTF proposed
takes longer running time than CSTF, but has obvious advantages
over BSR. Although the local segmentation can decrease the
computational burden to some extent, it increases the number
of iterations. Complexity reduction will be the focus of further
research in the future.

V. CONCLUSION

This article proposes a low-rank tensor decomposition ap-
proach, termed as G-LRTF, by incorporating spatial-spectral
graph regularization for hyperspectral image super-resolution.
To capture the correlation of different dimensions in hyper-
spectral data, we focus on the local manifold information in
hyperspectral and multispectral data to build the spatial-spectral
graph Laplacian matrices, and reconstruct the images based on
coupled Tucker decomposition. In the simulation, three widely
used real datasets are taken to conduct the experimental tests.
For performance evaluation, we discuss the setting of parameters
and noise conditions, and then test the fusion performance in
visual and quantitative forms including the reconstructed and
difference images, spectral curves, performance metrics, and
classification accuracy. The proposed G-LRTF achieves much
better than the state-of-the-art methods in performance metrics,
and especially yields the higher classification accuracy in AA,
OA, and K. The experimental results illustrate that the pro-
posed fusion method can significantly enhance the quality of
reconstructed super-resolution images, which also verifies the
validation of regularization terms. In future work, we will focus
on the fusion method in several aspects including the following:
1) further studying the complexity reduction for high efficiency;
2) further exploring the stopping rules for convergence; 3) fur-
ther investigating nonlocal similarity to reduce spatial distortion.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: Assume that the tensor-train rank of a tensorM isRn,
the tensor M can be expressed as

Mi1,i2,...,iN =

Rn∑
rn=1

Fi1,i2,...,in,rnNrn,in+1,in+2,...,iN (42)

where the elements of tensor factors F ∈ RI1×I2,...,×In×Rn and
N ∈ RRn×In+1,In+2...,×IN are represented as

Fi1,i2,...,in,rn =

R1,...,Rn−1∑
r1,...,rn−1=1

G(1)
1,i1,r1

G(2)
r1,i2,r2

, . . . ,G(n)
rn−1,in,rn

Nrn,in+1,...,iN =

Rn+1,...,RN−1∑
rn+1,...,rN−1=1

G(n+1)
rn,in+1,rn+1

, . . . ,G(N)
rN−1,iN ,1.

(43)
Thus, (42) can be reformulated as

M〈n〉 = F〈n〉N〈1〉 (44)

where F〈n〉 ∈ RI1I2,...,In×Rn and N〈1〉 ∈ RRn×In+1,...,IN are
the mode-n canonical matrix unfolding [56] of the tensor F
and the mode-1 canonical matrix unfolding of the tensor N ,
respectively. Finally, we can obtain rank(M<n>) ≤ Rn. �

APPENDIX B
PROOF OF W1 UPDATE

Proof: The optimization problem (45) of W1 is obtained
from the augmented Lagrangian function in (24) as follows:

Wk+1
1 ∈ arg min

W1∈RN
w×rw

βtr
(
(H⊗W1)

T L̃W (H⊗W1)
)

+
η

2
||Wk

1 −Wk+1 +
Mw1

η
||2F . (45)

Considering the symmetry and semipositive characterization of
the Laplacian matrix L̃W , we perform the Cholesky decom-
position of L̃W to obtain L̃W = UTU, where U is the upper
triangular matrix. Therefore, tr((H1 ⊗W1)

T L̃W (H1 ⊗W1))
is reformulated as ‖U(H1 ⊗W1)‖2F , and then it can be further
simplified as ||WT

1 Nw||2F , where Nw is the unfolding form of
U ×2 H

T
1 along mode-1. Thus, (45) can be rewritten as

min
β

2

∥∥WT
1 NW

∥∥2
F
+

η

2

∥∥∥∥W1 −W +
Mw1

η

∥∥∥∥2
F

. (46)

The closed-form solution of W1 can be obtained as

W1 = (βNNT + ηI)−1(ηW −Mw1). (47)

�
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