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O1l Spill Detection Based on Multiscale
Multidimensional Residual CNN for Optical Remote
Sensing Imagery

Seyd Teymoor Seydi, Mahdi Hasanlou
and Weimin Huang

Abstract—Oil spill (OS), as one of the main pollutions in the
ocean, is a serious threat to the marine environment. Thus, timely
and accurate OS detection (OSD) is necessary for ocean manage-
ment. In this regard, remote sensing (RS) plays a key role due to
multiple advantages over large and remote ocean environments.
In this study, a new OSD framework based on a deep learning
algorithm was developed for optical RS imagery. The proposed
method was based on a multiscale multidimensional residual kernel
convolution neural network. The proposed method investigated the
deep features by the two-dimensional multiscale residual blocks
and, then, utilized them at one-dimensional multiscale residual
blocks. In this study, Landsat-5 satellite imagery acquired over
the Gulf of Mexico was applied to evaluate the performance of the
proposed method. The overall accuracy of the proposed method
was more than 95%, and the miss detection and false alarm rates
were less than 5%, indicating its high potential for OSD. Moreover,
it was observed that the proposed method had better performance
compared to other OSD algorithms that were investigated in this
study.

Index Terms—Convolution neural network (CNN), deep
learning, Landsat-5, multiscale kernel convolution, ocean oil spill
detection, remote sensing (RS), residual block.

1. INTRODUCTION

XPLORATION and transportation of oil in the ocean have

been considerably increased over the past three decades
due to the high oil consumption by different sectors. Oil spill
(OS), as one of the main factors polluting the ocean, has neg-
ative impacts on coastal and deep-ocean environments [1]. For
example, OS results in the contamination of the seafood and the
death of marine fauna [2]. Thus, developing accurate and timely
OS detection (OSD) algorithms is necessary for preventing the
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spread of OS and minimizing its negative effects on the ocean
and the ecological ecosystem [3]. In this regard, remote sensing
(RS) systems provide valuable datasets [4]. For example, satel-
lites collect data with a minimum cost and in a timely manner
over large and remote ocean areas [5]. Moreover, the availability
of different RS datasets, especially the open-access RS imagery,
has considerably facilitated real-time and frequent OSD.

Optical and radar RS datasets are the two resources for OSD,
each has its advantages and disadvantages. Optical RS data have
usually better spatial and temporal resolutions and contain low
noise compared to radar data. On the other hand, radar systems
can operate during both daytime and nighttime and in almost
any weather condition [6].

Satellite image processing and classification are required in
OSD methods. Various machine learning algorithms have so
far been developed for image classification using RS data (e.g.,
[7]-[9]). In this regard, deep learning methods have recently
gained more attention due to their multiple advantages over
the traditional machine learning algorithms [4]. For example,
deep learning algorithms can automatically extract deep features
using convolution layers. Moreover, they usually provide higher
accuracies compared to other machine learning algorithms
[10]-[13].

Like other applications, it was argued that deep learning meth-
ods provide high accuracies in OSD [14]. For example, Yekeen
et al. developed a deep learning framework for OSD using
radar imagery. They used the mask-region-based convolutional
neural network (Mask R-CNN) for instance segmentation of OS
[15]. Moreover, Jiao et al. proposed an OSD algorithm based
on unmanned aerial vehicles (UAVs) images. First, the high
potential OS areas were detected using a deep convolutional
neural network (DCNN). Then, the Otsu thresholding algorithm
was applied to improve the result of the detection. Finally,
the maximally stable extremal regions (MSER) algorithm was
utilized for determining the detailed polygon region from the
detection box [16]. Additionally, Bianchi et al. developed a
deep learning architecture called an oil fully convolution net-
work for OSD using radar data. Their proposed algorithm was
based on the U-Net, encoder, and decoder [17]. Furthermore,
Zhang et al. proposed an OSD method based on CNN and the
simple linear iterative clustering (SLIC) superpixel method for
radar data. They initially extracted several polarimetric features.
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Three channels (HH, HV, and VV) were used for calculat-
ing SLIC superpixels. The extracted features and superpix-
els were then considered as inputs of the CNN algorithm.
Finally, the result of OS was obtained by the semantic seg-
mentation algorithm using CNN [18]. Krestenitis et al. also
investigated the performance of different types of deep learn-
ing architectures (i.e., U-Net, Link-Net, PSP-Net, DeepLabV2,
and DeepLabV3+) for OSD using radar imagery. They con-
cluded that the DeepLabV3+ had the best performance for
OSD [19]. Finally, Liu et al. proposed a framework for OSD
based on a spectral index-based feature selection method and
one-dimensional (1-D) CNN using hyperspectral imagery. They
compared the efficiency of the proposed method with those of
the support vector machine (SVM) and RF classifiers. The result
of OSD based on 1-D CNN had a higher accuracy compared to
the other two mentioned machine learning methods [20].

As discussed, various OSD methods based on deep learning
algorithms have so far been developed for RS data. However, the
current algorithms usually have several limitations as discussed
below.

1) Most methods have only focused on radar data. These
datasets usually contain more noises and have poor tem-
poral resolutions compared to optical imagery. They are
also highly dependent on the ocean wind and usually high
wind speed causes false alarm (FA) rate or miss detection
(MD) in OSD methods.

2) The deep learning methods which are based on encoder
and decoder (e.g., U-NET and DeepLabV3+) need a large
amount of training dataset and more time for training the
network. However, collecting field data over large and
remote ocean environments is challenging and expensive.

3) There are several deep learning methods for OSD based
on optical UAV imagery. However, these images are not
suitable for large ocean areas. They also have limitations
in moderate to high wind speeds.

4) Some of the deep learning methods require a feature
extraction (i.e., texture and spectral features) step before
OSD. The quality of these features is also important
and plays a key role in the accuracy of OSD. Thus,
an automatic method is required to extract informative
features.

Based on the above explanation, optical RS datasets have

a high potential of OSD mainly due to their suitable spatial
and temporal resolutions, large coverage, and simplicity for
interpretation. They also provide more opportunities for OSD
due to increasing the availability of different types of optical
RS datasets. In this study, a new OSD framework based on a
deep learning algorithm was proposed. The proposed method
was based on multiscale multidimensional residual CNN archi-
tecture. The main objective of this study was to develop a novel
OSD framework with the following properties.

1) The proposed framework was an end-to-end system and
does not require an additional process for OSD (e.g.,
feature extraction or feature selection). Additionally, the
proposed framework employed multiscale kernel convolu-
tion to increase the efficiency of the network in extracting
deep features.
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2) The proposed framework utilized multidimensional kernel
convolution (1-D and 2-D). A combination of these kernels
improved the speed of the network and reduced the param-
eters of the network compared to using only 2-D kernel
convolution. Moreover, the proposed method utilized the
residual block to provide the accuracy corresponding to
architecture with a high number of convolution blocks.

In summary, the main novelty of the network compared to

other state-of-the-art deep learning frameworks are as follows:
1) utilizing multidimensional convolution blocks and combining
them with residual blocks to reduce computational complexity
and number of the network hyperparameters, residual block
allows the gradient to be directly back-propagated to earlier
layers to prevent from vanishing or exploding gradient problems;
2) increasing the robustness of the network against the variations
of scale by utilizing multiscale blocks. These advantages of the
proposed method resulted in better accuracy for OSD compared
to other algorithms

II. CASE STUDY AND DATA
A. Oil Spill Case Study

The largest marine OS in history occurred in the Gulf of
Mexico on April 20, 2010 [21]. The oil leaked from the Ma-
condo well for nearly three months and continued to flow until
mid-July, 2010. This OS was used as a case study to investigate
the potential of the proposed method.

B. Satellite Data

In this study, Landsat-5 imagery was employed to produce OS
maps using the proposed method. Landsat-5 carries the thematic
mapper (TM) sensor and was launched in March 1984. TM
contains seven spectral bands of blue, green, red, near-infrared,
shortwave infrared 1, shortwave infrared 2, and thermal.

Two multispectral Landsat-5 images acquired on May 9, 2010
(Dataset #1) and June 26, 2010 (Dataset #2) were utilized in this
study [see Fig. 1(a) and (b)]. As clear, Dataset #2 includes clouds
to investigate the potential of the proposed method for OSD in
more complicated cases.

C. Reference Data

The reference data were generated based on visual interpreta-
tion and different reports about the OS in the study area. Figs. 5(f)
and 6(f) respectively illustrate the extent of the OS and Non-OS
(NOS) areas for Dataset #1 and Dataset #2. Table I also provides
the number of generated reference samples for the OS and NOS
classes from these two datasets. The generated samples were
divided into three groups of training, test, and validation. It
should be noted that the clouds were also selected as NOS areas
(see Fig. 1).

1II. METHOD

The proposed OSD framework in this study was based on
multiscale multidimensional residual CNN (see Fig. 2). Af-
ter preprocessing satellite imagery, the training and validation
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Study area: the true-color composites of (a) Dataset #1 and (b) Dataset #2, which were acquired on May 9, 2010, and June 26, 2010, respectively.

TABLE I

NUMBER OF REFERENCE SAMPLES FOR THE OS AND NOS CLASSES

Datasets Class Number of Samples (%) Training Validation Test
Dataset #1 NOS 25,339 16,470 3,802 5,067
(0N 24,954 16,220 3,743 4,990

Dataset #2 NOS 25,126 16,331 3,770 5,025
OS 24,499 15,924 3,676 4,899
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Fig. 2. Overview of the proposed oil spill detection (OSD) framework.

datasets were utilized for training the proposed CNN network
and tuning the hyperparameter of CNN, respectively. The test
data was also used for the evaluation of the model. CNN’s pa-
rameters were set by initial values and, then, they were iteratively
updated to obtain the optimum values. The training process of
the proposed CNN-based framework was repeated until reaching
the stop condition (number of iterations). The parameters, which
provided the best performance on loss function, were considered
as the optimum value of CNN. Thus, the optimum model was
obtained based on the optimum values of the hyperparameters.
The OS map was finally obtained by predicting the Landsat-5
dataset using the obtained optimum model. More detail about
the proposed method is provided in the following subsections.

A. Preprocessing

Preprocessing was the first step and played a key role in the
result of OSD. The preprocessing of the reflective spectral bands
(i.e., blue, green, red, near-infrared, shortwave infrared 1, and
shortwave infrared 2 bands) was started by converting digital
number (DN) values to radiance values using (1)

I - (Lmaxx — Lmin,

Ocal > Qcal + Lmin,, (D

where is spectral radiance at the sensor’s aperture; Qcal is the
quantized calibrated pixel value in DN; Qcal,i, and Qcalyax
are the minimum and maximum quantized calibrated pixel
values corresponding to Lmin, and Lmax;, respectively; and
Lmin; and Lmax; are the spectral at-sensor radiance that were
scaled to Qcalyi, and i Qcalyay, respectively. Finally, the

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

atmospheric correction was applied using the fast line-of-sight
atmospheric analysis of spectral hypercubes (FLAASH) module
in the ENVI software.

For the thermal band, the DN values were converted to bright-
ness temperature (BT). To this end, the spectral radiance was
converted to brightness temperature based on (2) [22]

T =

K
In (50 2+ ) ?

where T'is the effective at-satellite temperature in Kelvin; K; and
K5 are the calibration constants; and L, is the spectral radiance
at the sensor’s aperture. Finally, the spatial resolution of the
thermal band, which was originally 120 m, was resampled to
30 m to conform to the reflective spectral bands.

B. Proposed Architecture

The proposed CNN architecture was based on the multiscale
multidimensional residual kernel convolution. Fig. 3 illustrates
the type of convolutional blocks utilized in the proposed CNN
architecture. These blocks had two main differences which were
related to the existence of the residual block and the dimensions
of the convolution layers (i.e., 2-D or 1-D).

First, the proposed architecture extracted shallow deep fea-
tures based on the 2-D-multiscale convolution block. This block
contained three convolution layers with different kernel sizes
of 5 x 5,3 x 3,and 1 x 1. The extracted deep features were
concatenated and, then, were transformed into another block.
The second block was a 2-D-multiscale residual block that had
four convolution layers. In this block, the deep features were
extracted using three convolution layers with different kernel
sizes, which were later concatenated. Subsequently, the output
of the convolution block was added to the input deep features of
this layer. The proposed architecture extracted the deep features
using five 2-D-convolution blocks. In fact, this process was
repeated using five 2-D-multiscale residual blocks to extract
deeper features.

Then, the deep features were extracted using three 1-D convo-
lution blocks. The main advantages of 1-D convolution blocks
were increasing the speed of the training and extracting the deep
features [4].

The last layer was a discriminative and prediction layer that
had a fully connected layer and a soft-max layer. The fully
connected layer investigated the extracted deep features from the
previous layer and changed them into a single vector layer [12],
[23]. Then, the dropout layer was utilized to randomly remove
multiple neurons. This process helped to prevent overfitting [24].
Finally, the output of the dropout layer was transformed to decide
the label of the input layer (i.e., OS or NOS).

Fig. 4(a) demonstrates the structure of the shallow deep
feature extraction block. In this block, the residual block was
not used. Fig. 4(b) and (c) also present the mechanism of the
2-D-multiscale residual convolution block and the structure of
the 1-D-multiscale residual convolution block, respectively.
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Fig. 3. Overview of the proposed multiscale multidimensional residual CNN architecture for OSD.
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Fig. 4.  Structure of the multiscale convolution block. (a) 2-D multiscale deep feature extractor convolution block, (b) 2-D multiscale residual convolution block,

and (c) 1-D multiscale residual convolution block.

For a convolutional layer in the I/th layer, the computation is
expressed according to (3) [25]

= g(wlml—l) Ly 3)

where x is the neuron input from the previous layer, / — 1; g is
the activation function; w is the weighted template; and b is the
bias vector of the current layer, /. In 2-D convolution, the output
of the jth feature map (v) in the ith layer at the spatial location
of (x, y) can be computed using (4) [25]

R;—15;—-1

b,j+zz > Wit

m r=0s=0

(z+r)(y+s)

zlm

Ty _
Vijg =9

“)
where m is the feature cube connected to the current feature
cube in the (i — 1)th layer; W is the (7 s)th value of the kernel
connected to the mth feature cube in the preceding layer; and R
and § are the length and width of the convolution kernel size,
respectively. In 1-D convolution, the activation value at spatial
position x in the jth feature map of the ith layer is generated

using (5) [4]
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Although some of the CNN architectures are based on only 2-
D kernel convolution, the multidimensional convolution kernels
were employed in this study to improve the efficiency of CNN.
The convolution layer contained the batch normalization and
activation function. The activation function was Sigmoid [(6)]
in this study

ex

f@)=1m

The Adam optimizer [26], which is an adaptive learning rate
optimization algorithm, was used as the optimization algorithm
of the proposed CNN’s hyperparameter in this study [26].
Moreover, the Kullback-Leibler (KL) divergence was used as
a cost function to measure the relative distance between two
probability distributions [y and p(y)] [10]. This cost function is

(6)
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TABLE II
CONFUSION MATRIX FOR THE OS AND NOS CLASSES

Predicted

0S NOS
E 0S TP FN
g
< NOS FP ™

defined as follows:

N
Dis (| () = Y vlog (pfy) ) @

where y is related to the probability distribution of the original
output; p(y) is the predicted probability observation, and N is the
number of classes.

C. Accuracy Assessment and Model Comparison

In this study, the confusion matrix was used for statistical ac-
curacy assessment of the OS maps produced using the proposed
method. As illustrated in Table II, a confusion matrix has four
components of the true positive (TP), which was related to OS
pixels, true negative (TN), which was related to NOS pixels,
false positive (FP), and false negative (FN). Various accuracy
matrices were generated based on these four components and
were used to report the accuracy levels. As demonstrated in
Table III, these matrices were overall accuracy (OA), Fl-score
(FS), FA, kappa coefficient (KC), precision (PCC), recall, MD,
and specificity.

(See Table II for the components of each equation)

Besides the statistical accuracy assessment of the proposed
CNN algorithm, it was also compared with two nondeep-
learning methods of the RF [27] and XGboost [32]. Furthermore,
the results were compared with those of the two advanced deep
learning methods, including 2-D CNN and 2-D Residual-CNN
(2D-Res-CNN).

IV. RESULTS

A. Optimum Tuning Parameters Selection

The proposed method and other classification methods have
several tuning parameters, the optimum values of which should
be determined to obtain the highest possible classification accu-
racies. In this study, a grid search (GS) algorithm was employed
for this purpose [22]. Table IV provides the required tuning
parameters for each classifier along with their optimum values
obtained using the GS algorithm.

B. OS Map for Dataset #1

The results of OSD using the proposed method and other
machine learning algorithms for Dataset #1 are illustrated in
Fig. 5. Most of the OS pixels were correctly detected by all
classifiers. However, the main difference was in areas where OS
was mixed with water. As clear, more errors in the OS maps are
related to the FP pixels that are indicated by the red color.
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The results of the statistical accuracy assessments of different
methods for Dataset #1 are also provided in Table VI. Based
on the results, all methods had OAs of more than 98%. Most
algorithms had high Recall rates compared to the specificity,
PCC, and Fl-core rates. Therefore, the performance of most
methods in detecting OS pixels was better than detecting NOS
pixels. Additionally, the incorrectly classified pixels were related
to FP pixels, where the FA rates were high (more than 1.83%).
Although the 2D-CNN had a better performance in terms of
PCC, FA, and specificity indices compared to the proposed
method, it had a high MD rate and a low performance regard-
ing the other accuracy indices, such as OA, and KC. Overall,
the proposed method had better accuracy compared to other
methods.

C. OS Map for Dataset #2

Fig. 6 shows the results of the OSD for Dataset #2 using
different machine learning algorithms. As clear, the results
were significantly different than those of Dataset #1. The main
challenge was related to the clouds in this data. The spectral
signature of clouds is similar to that of the OS class and, thus,
the OSD algorithms had considerable errors. For example, there
are many FN pixels in the results of all methods. However, this
error was minimum in the proposed CNN method [Fig. 6(e)].

The results of statistical accuracy assessments for Dataset
#2 are provided in Table VI. The proposed method had the
best performance considering most of the accuracy indices. The
MD rates of all methods were considerably high except for the
proposed method. The BA for all methods was around 91%,
however, it was very high (95%) for the proposed CNN method.
Although the 2-D Res-CNN provided better performance in the
detection of the TN pixels, it had lower accuracy in the detection
of the TP pixels.

V. DISCUSSION
A. Sensitivity Analysis of the Parameters

The CNN methods have hyperparameters that need to be
optimized. Among these parameters, the patch-size has a key
role in the performance of the CNN method [34]. To this end,
the performance of the proposed CNN method was investigated
using different patch-sizes. As an example, Table VII shows the
effects of the patch-size (11 x 11, 13 x 13, 15 x 15, and 17 x
17) in the result of OSD for Dataset #2. Based on the results,
increasing the patch-size generally improved the result of OSD
and reduced the MD and FA rates. However, after the patch-size
of 15 x 15, the performance of the CNN algorithm decreased.
Based on the results, the patch-size affected the performance of
CNN by 1.18% in OA.

The initializer of the hyperparameters also plays a key role
in the speed of convergence of the network. In this study, two
methods of random and Xavir Initializers were investigated. It
was observed that the Xavir Initializer had a better performance
in increasing the speed of the training of the network.
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TABLE III
METRICS THAT WERE USED FOR THE ACCURACY ASSESSMENT OF THE OS MAPS

Accuracy index Equation
Overall A (0A) (TN + TP)
verall Accuracy (TN + TP + FP + FN)
F1-S FS 2x TP
-Score (FS) (Zx TP + FP + FN)
False Al FA (FP)
alse Alarm (FA) (TN + FP)
Precision (PCC ()
recision ( ) (TN + FP)
PCC — (TP + FP) X (TP +FN)+ (FN+TN) x (FP+TN)
. (TN + TP + FP + FN)?
Kappa Coefficient (KC) | _ (TP +FP)X (TP + FN) + (FN + TN) X (FP + TN)
(TN + TP + FP + FN)?
(TP)
Recall _~ 7
(TP + FN)
Miss-Detection (MD) (FN)
iss-Detection ( (TP 1 FN)
Specificit ()
pecificity (TN + FP)
TABLE IV
OPTIMUM VALUES OF THE TUNING PARAMETERS OF DIFFERENT CLASSIFIERS
Classifier Optimum Value
RF Number Of Trees=105, Number of Features to Split Each Node=3
Nrounds = 500, Max-Depth = 5, Eta = 0.03, Gamma = 0, Min-Child-Weight = 1, Subsample = 0.8, Colsample-
XGBoost Bytree = 0.8
Patch-Size= 15x15x7, Epochs= 10%, Weight Initializer= Xavir Initializer [33], Dropout-Rate=0.4, Number of
Proposed CNN Neurons At Full Connected Layer=1500, Initial Learning= 10'4, Epsilon-Value =1O'9, Mini-Batch-Size=550, Loss-

Function= Kullback-Leibler Divergence, and Optimizers= Adam.

TABLE V
ACCURACY MEASURES OF DIFFERENT METHODS FOR OSD IN DATASET #1

Metric RF XGB 2D-CNN 2D- Res-CNN Proposed CNN
OA (%) 96.37 96.61 97.78 98.07 98.23
PCC (%) 77.95 79.04 98.92 87.19 88.12
MD (%) 2.40 2.03 17.42 1.46 1.32
FA (%) 3.80 3.58 0.12 1.99 1.83
FS (%) 86.67 87.49 90.02 92.52 93.10
BA (%) 96.90 97.20 91.23 98.27 98.43

Recall (%) 97.60 97.97 82.58 98.54 98.68
Specificity (%) 96.20 96.42 99.88 98.01 98.17
KC (%) 0.846 0.855 0.892 0.910 92.10

(OA: overall accuracy, PCC: precision, MD: miss-detection, FA: False Alarm, FS: F1-Score, BA: balanced accuracy, KC: kappa coefficient, RF: random forest, XGB: XGBOOST,
CNN: convolution neural network, RES: residual, 2-D: two-dimensional)

TABLE VI
ACCURACY MEASURES OF DIFFERENT METHODS FOR OSD IN DATASET #2

Metric RF XGB 2D-CNN 2D-Res-CNN Proposed CNN

OA (%) 85.16 88.08 94.39 94.68 95.12
PCC (%) 58.27 64.38 82.10 87.03 82.99
MD (%) 14.50 12.30 8.71 14.39 5.55
FA (%) 14.93 11.83 4.85 3.11 4.72
F1-Score (%) 69.30 74.25 86.45 86.31 88.35
BA (%) 85.28 87.94 93.22 91.25 94.87
Recall (%) 85.50 87.70 91.29 85.61 94.45
Specificity (%) 85.07 88.17 95.15 96.89 95.28
KC (%) 0.599 0.667 0.829 0.831 0.852

(OA: overall accuracy, PCC: precision, MD: miss-detection, FA: False Alarm, FS: F1-Score, BA: balanced accuracy, KC: kappa coefficient, KNN: K-Nearest Neighbors, MLP:
Multilayer Perceptron, RF: random forest, SVM: support vector machine, XGB: XGBOOST, CNN: convolution neural network).
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TABLE VII
EFFECTS OF INCREASING THE PATCH-SIZE ON THE RESULT OF OSD USING THE
PROPOSED METHOD APPLIED TO DATASET #2

Patch-Size OA (%) KC (%)

Patch-Size 11x11 93.93 0.819

Patch-Size 13x13 94.43 0.833

Patch-Size 15x15 95.11 0.852

Patch-Size 17x17 94.89 0.846
TABLE VIII

EFFECTS OF INCREASING THE NUMBER OF SPECTRAL BANDS ON THE RESULT
OF THE PROPOSED OSD METHOD APPLIED TO DATASET #2

Spectral Band OA KC

R,G,B 92.71 0.786
R,G, B, NIR 93.95 0.820
R,G, B, NIR,SWIR-1 9439  0.830
R,G, B, NIR,SWIR-1, SWIR-2 94.58 0.838
R,G, B, NIR,SWIR-1, SWIR-2,Thermal 95.12 0.852

It was also observed that including more convolution layers
in the proposed network increased the performance of the net-
work and, consequently, the MD and FA rates were decreased.
However, it also increased training time due to increasing the
number of hyperparameters.

B. Spectral Bands

The number of spectral bands was another factor that could
affect the result of OSD using the proposed method. As an
example, Table VIII presents the accuracy levels using different
patch-sizes and the effects of increasing the spectral bands on the
accuracy obtained for Dataset #2. It was observed that increasing
the spectral bands improved the performance of the proposed
method using different patch-sizes. The lowest accuracy was
obtained using three spectral bands (red, blue, and green) in
the patch-size of 11 x 11 (OA = 92.28%), while the highest
accuracy was obtained for the patch-size of 15 x 15 with all
spectral bands.

C. Cloud Cover and Noise Condition

Clouds and their shadows are one of the main challenges
in OSD using optical RS datasets. Dataset #1 contained fewer
cloudy regions compared to Dataset #2. Thus, most classifiers
had difficulties in correctly delineating clouds from OS areas in
Dataset #2. Although the thermal band played a key role in the
detection of clouds, many OS pixels were wrongly identified
due to the spectral similarity of these two targets. However,
as demonstrated in Fig. 6 and Table VI, the proposed CNN
algorithm was relatively robust in delineating clouds from OS
areas.

Based on the results presented in Figs. 5 and 6, there were
many noisy pixels in the results of the XGB and RF classifiers.
This was less serious for the deep learning-based methods espe-
cially the proposed algorithm. Therefore, it was concluded that
the proposed method was more robust to noise and environmen-
tal conditions.
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D. Deep Feature Extraction

Designing suitable architecture in deep learning-based meth-
ods is of great importance. The results of OSD from two deep
learning methods (2-D CNN, and 2D Res-CNN) were inves-
tigated in this study. Although these methods resulted in high
FA, PCC, and specificity values, they had a low performance
regarding other accuracy measures. For example, these methods
provided the FA values under 1% for Dataset#1; however, the
MD rate was more than 17%. Itis also worth noting that although
the sizes of the sample data for both OS and NOS classes were
similar (25 000 pixels), the two deep learning methods provided
different results. However, it was expected that they had low
errors in terms of MD and FA. In contrast, the proposed deep
learning method had a higher accuracy in this regard, where it
provided low MD and FA rates for both datasets.

The proposed CNN method was able to extract the deep fea-
tures in the multiscale convolution filters using multidimensional
kernel convolution. This method took the advantage of deep
features into account to investigate both spatial and spectral
features using different convolution kernels. It is worth noting
that there are many other feature extraction methods, such as tex-
ture features or spectral attribute profiles that manually extract
features. However, one of the main challenges of manual feature
extraction methods is the fact that feature extraction/selection is
a time-consuming process. However, the deep learning methods
automatically extract spatial/spectral features in a time-efficient
approach.

Additionally, there are many other state-of-the-art deep
learning-based architectures, such as U-Net, Deep-LabV3—+,
and Seg-Net, which need a large amount of training data, the
collection of which is expensive and time-consuming for OSD
applications. Moreover, the training of these deep learning ar-
chitectures is time-consuming. However, one of the advantages
of the proposed method was no need for a large number of
samples, and its training required a lower time compared to the
above-mentioned architectures.

Finally, although it took more time to train the proposed
network compared to other deep learning methods (i.e., one
more hour), the proposed method was selected as the preferred
algorithm for OSD due to providing the highest accuracy and
more robust results

VI. CONCLUSION

In this study, a new deep learning method was proposed to
produce accurate OS maps using optical RS imagery. The main
limitations of the current deep learning methods for OSD were
initially discussed. Then, a new OSD method was developed
to address those issues. Additionally, this research investigated
the effect of increasing the number of spectral bands and patch
size on accuracy. It was observed that increasing the number
of spectral bands reduced FA rates. In summary, the proposed
method improved the quality of OSD results in two different
datasets. Overall, it was concluded that the proposed deep learn-
ing method had the following advantages over the currently
available methods: 1) higher accuracy and lower errors for
OSD, 2) higher efficiency in delineating OS from clouds in
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optical images, 3) lower MD and FA rates, 4) ability to provide
excellent performance even using three spectral bands, and 5)
taking the advantages of the residual block, multiscale, and
multidimensional kernel convolutions.
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