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Cross-Bands Information Transfer to Offset
Ambiguities and Atmospheric Phenomena for

Multispectral Data Visualization
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Abstract—Visualization of multispectral images through band
selection methods determines an information loss that in utmost
cases proves to be critical for the adequate understanding of the
represented scene. The R–G–B representation obtained by map-
ping the visual bands to the R, G, and B channels is highly used
due to its great resemblance with the natural color one and aspects
perceivable by the human eye. However, despite the similarity in
terms of color code, ambiguities between classes such as water
and vegetation or atmospheric phenomena like fog, clouds, and
smoke that have been penetrated by other bands, remain visible and
hinder the process of visualization of the Earth surface. This article
presents a set of five different methods to offset the effects caused by
ambiguities, fog, light clouds, and smoke by transferring relevant
information between bands in order to visually reconstitute those
parts of the image affected by atmospheric phenomena. The general
concept shared by these methods implies a stacked autoencoder
that successfully encompasses the information from all spectral
bands into a latent representation used for visualization. Each
proposed method is defined by different combination of input and
error function formula. Spectral and polar coordinates features
represent the possible options for the input, while formulas based
on mean squared error or angular spectral distances determine the
potential choices in terms of error function definition. The property
of angular spectral distance and polar coordinates transformation
to obtain illuminant invariant features determined their use in three
out of five methods. We evaluate the methods through spectral
signature graphical comparison and visual comparison related to
the R–G–B representation. We conduct experiments on multiple
Sentinel 2 full images.

Index Terms—Autoencoder, data visualization, multispectral
Earth Observation (EO) images, remote sensing.

I. INTRODUCTION

MULTISPECTRAL Earth Observation (EO) images are
records of sunlight reflected by Earth surface made using

optical sensors. The result obtained from this process consists of
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Fig. 1. Visualization comparison between R–G–B representation (first col-
umn) and latent values representation (second column) obtained with one of
the methods proposed. First line shows an ambiguity reduction scenario and the
second line a smoke reduction scenario.

a multidimensional product defined by the number of spectral
bands of the sensor and the ground footprint. Spectral bands
represent radiance measurements of data acquired from different
regions of the electromagnetic spectrum. For example, Sentinel
2 satellite senses 13 wavelengths intervals from the visual, NIR,
and SWIR parts of the spectrum, resulting in 13 spectral bands.

As the display of an image is limited to three bands, the
visualization of a multispectral EO product is usually performed
by mapping the three bands of the visual part of the spectrum
to R–G–B channels. However, very often the captured images
contain different phenomena manifested in the form of clouds,
fog, or smoke. The wavelength of the bands in the visual spec-
trum is small, so they fail to penetrate the haziness to get to
the sensor and the information about terrestrial aspect is lost.
The visualization shows high pixel values generated by the
strong reflection of these atmospheric phenomena. In most of
the cases, the information about surface could be obtained from
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the SWIR bands because due to their longer wavelength they
could penetrate and be acquired by the sensor.

In addition to atmospheric phenomena, there is another aspect
that could interfere with a proper visualization of the scene: in the
absence of information contained by other spectral bands than
those mapped to the R–G–B channels, ambiguities may occur
between apparently similar or dissimilar regions, or some details
about the scene may be absent. For instance, a lake covered with
reed may reflect similarly in the visible portion of the spectrum
as the meadow nearby. However, the lower spectral response
of water in NIR can help the user differentiate better between
the two areas, if information in the NIR bands is considered for
visualization.

Remote sensing images visualization is of great importance
for a large number of applications including disaster manage-
ment, deforestation, or climate change management. Thus, the
need for improvement is extremely necessary, a good exam-
ple being given by the scenes in Fig. 1, where the enhanced
visualizations emphasize the amount of information lost by
transposing only three bands for analysis. The first line of
compared scenes highlights an example of usually encountered
ambiguity, vegetation, and water bodies, which with an im-
proved visualization, disappears. The second line represents a
scene of an ongoing fire where details about surface are hidden
in the R–G–B representation, but would be very useful for image
analysis.

Taking all these aspects into consideration, we propose a
set of methods to improve visual analysis through embedding
all the information contained by all the spectral bands into a
latent representation of three values using a stacked autoencoder
(SAE). These values are mapped to the R–G–B channels for
visualization. Our principal objective is to improve visualization
by reducing the ambiguities and obstructions generated by the
lack of information in the image displayed compared to all
spectral bands in the multispectral product. In order to reduce
obstruction, we apply transformations that generate illuminant
invariant features. We aim to accomplish these objectives with-
out affecting the spatial resolution.

Achieving the aforementioned objectives involves the use of
versatile datasets to demonstrate them. Thus, the following four
main scenarios are considered: clear, smoky, foggy, and cloudy
images.

II. PROPOSED CONCEPT

We based our concept on the following premises:
1) NIR, SWIR, and the other spectral bands not used for the

R–G–B visualization may contain information useful for
ambiguities and visual obstructions reduction.

2) Angular spectral distance and polar coordinates transfor-
mation obtain illuminant invariant features and are suitable
to reduce image contamination.

3) The autoencoder is a powerful network that successfully
learns in an unsupervised way to embed reflectance infor-
mation into a lower dimension.

Given these premises, we propose a set of methods based on a
general concept: the use of an autoencoder to embed information

from all bands on only three bands. These resulting bands are
subsequently mapped on the R–G–B channels and false color
visualization is thus obtained. The methods represent a variation
of the actors involved. The motivation behind this diversity is
given by the different utility of each of the proposed approaches.

Fig. 2 illustrates the general concept underlying the five
proposed methods. An autoencoder is the core and the common
part in defining these methods because it performs the opera-
tion of embedding information from several bands to a three-
dimensional latent representation. This obtained representation
is then used for mapping on RGB channels for visualization. The
actors that differentiate the five methods are the way the data
enters the network, the input, and the way the error function is
computed. The data can enter the network in the form of radiant
values or polar coordinates transformed values. Regarding the
error function, we start from a general computation that evaluates
the difference between input and output, and change it from
one method to another by including additional evaluations or
by transforming the compared values into polar coordinates
or angles. The use of polar coordinates and angular spectral
distance is due to the fact that they obtain illuminant invariant
features.

III. RELATED WORK

Until now, many scientific fields have addressed the visual
analysis problematic [1]–[4]. Being suitable for improved visual
perception, HSV is highly used to enhance the visualization by
transforming images data into hue, saturation, and value color
model [5], [6].

Chang et al. [7] define the MPEG-7 as a suite of image
descriptors for multimedia processing that has a great potential.

Multimedia image visualization enhancement has been and
still is a much debated issue, a number of research work being
invested in this matter [8]–[10], with good results. Nevertheless,
applying them for multispectral EO data visualization is not
possible without significant adjustments. Compared to multi-
media data, multispectral images have more than three bands
and they do not always represent information that is perceivable
by the human eye (i.e., NIR and SWIR bands). These differences
generate distinct approaches.

As Jacobson et al. [11] and Polder et al. [12] highlight,
a commonly used method to visualize high-dimensional data
is by using a three channel color representation, R–G–B to
obtain a quick overview of the scene. Several band selection
methods have been proposed over the years in order to provide
an enhanced solution to visualization [13]–[15].

Displaying multispectral data in any triplet of bands mapped
to R–G–B channels generates incomplete information due to
the fact that all the information contained by the other unused
bands is lost. However, Wang et al. [17] showed in their work
that visualization techniques can highlight the utmost relevant
information, enhancing the visual perception. Thus, an enhanced
method for visualization is needed.

Dey et al. [16] mention in their book that among the five
main visualization problems are noise and loss. Noise refers to
the ambiguity determined by the fact that objects are relative
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Fig. 2. General architecture of the proposed methods for visualization of multispectral images. This article proposes five different neural network based methods
to improve visualization of multispectral remote sensing images. All methods share the same general neural network: a stacked autoencoder which compresses the
input into a hidden representation, subsequently used for the result visualization. The difference between these approaches is represented by objective to be met and
distinctive combination of involved actors: input and error function. The main objectives consist of ambiguities and contamination reduction. Spectral and polar
features are the possible options for the input and the error function encounters variations in terms of augmentation (method II), transformation applied (methods
III, IV, and V).

to each other, while loss refers to contamination generated by
decreased visibility.

Sovdat et al. [18] define the natural color product and propose
two approaches to compute it. The approaches are not restricted
to Sentinel 2, but they could be used also for other optical sen-
sors. The methods efficacy depends on the imaging instruments
properties.

Remote sensing images represent a great source of informa-
tion for monitoring different aspects of the Earth surface. A
multitude of neural network based methods has been presented
and demonstrated to be very useful [19]–[21]. Also, convolu-
tional neural networks have proven their applicability regarding
spectral images analysis [22]–[24] through classification. Taking
into consideration the spatial mediation obtained through the
convolutional transformation, we will avoid using this type of
network in accomplishing our objectives.

Different methods to eliminate or detect clouds from Sentinel-
2 images have been developed. Luotamo et al. [25] propose a
method that uses CNN, Singh et al. [26] use a cyclic GAN to
accomplish the removal, and Homem Antunes et al. [27] use
6S model to perform atmospheric correction and cirrus cloud
removal.

One different approach of image inspection consists of using
neural networks for feature extraction, colorization, or classifi-
cation. Autoencoders are neural networks that have encountered
a lot of appreciation over the years due to their capability
of embedding data into a lower representation in an unsuper-
vised way [29]–[31]. These works purpose is mainly to obtain
the utmost classification of the obtained latent representations.
Usually, autoencoders realize a relevant transfer of information

between dimensions to be reduced. Vincenzi et al. [28] use
autoencoders to perform a colorization task and compare results
with R–G–B representation. Applications of autoencoders to
improve visualization have been presented by Neagoe et al. [33],
[34].

The visualization of multispectral EO images topic is still
remaining unresolved. Current methods address specific issues,
being limited to one particular atmospheric phenomena or type
of contamination that affect the visual analysis process and have
no ability to generalize for multiple situations.

After analyzing the existent methods, their data transforma-
tion approach, and the purpose of their application, we conclude
that, in order to improve visualization for visual inspection of a
human operator, we need to use a method that preserves spatial
information and resolution. We have to use a method capable of
learning from the spectral space and not from the spatial one.
The autoencoder learns to embed information in an unsupervised
way and does not perform any spatial mediation, thus proving
to be a suitable solution to our problem.

IV. MULTISPECTRAL DATA REPRESENTATION METHODS

Multispectral remote sensing images are conventionally rep-
resented as a plot of the image features into a multispectral vector
space having the space dimension equal to the number of spectral
components. The distance between two vectors, A and B, in this
space, may be computed using the Euclidean distance, d, or using
the angular distance, θ. While Euclidean distance is computed
through length measurement of the segment that connects the
endpoints of the involved vectors, the spectral angular distance
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is computed by angle measurement, θ, between the two vectors:

d =

√
(a1 − b1)

2 + (a2 − b2)
2 + · · ·+ (aN − bN )2

(1)

θA,B = arccos
�A ∗ �B

‖ �A‖‖ �B‖ (2)

where N represents the number of spectral features and ai and
bi are the features values for each band, i = 1 . . . N .

Sohn et al. [36] relied on spectral angular distance to measure
distances in feature space and perform image clustering and
classification. The invariance of this distance to linearly scaled
variations has been proved.

In order to obtain an improved analysis over multispectral
remote sensing images with large cloud coverage or shadows
Okamura et al. [35] developed an illuminant invariant feature
descriptor based on polar coordinate transformation of the re-
flectance values. Also, Georgescu et al. [37] proposed the use of
polar transformation to generate a polar feature space which
is used for the computation of the MPEG-7 scalable color
descriptor. These works have been encouraged by the property of
the spectral angular distance to be invariant to the linearly scaled
variations along with the preservation of spectral signatures.

Polar coordinate transformation represents a computation
with the help of which radiances values are transformed into
angles θ and distance ρ. Having a product with N spectral
bands, the obtained result consists of N-1 angles and one dis-
tance, making the dimensionality of the two objects equal.
The mathematical equations used to transform radiances values,
x ∈ {x1, x2, . . . , xN}, into polar coordinates are as follows:

ρ =
√
x2
N + x2

N−1 + · · ·+ x2
2 + x2

1 (3)

θ1 = arctan

√
x2
N + x2

N−1 + · · ·+ x2
2

x1
(4)

θ2 = arctan

√
x2
N + x2

N−1 + · · ·+ x2
3

x2
(5)

θN−2 = arctan

√
x2
N + x2

N−1

xN−2
(6)

θN−1 = 2arctan
xN

xN−1 +
√

x2
N + x2

N−1

. (7)

As the utility of the polar coordinates transformation has
been demonstrated through previous works, we include this
conversion in some of our visualization enhancing methods to
emphasize the obtained results.

V. MULTISPECTRAL IMAGE COMPRESSION IN THREE BANDS

During the past few years, multiple domains have been using
different solutions based on deep learning networks for diverse
purposes, proving their efficacy with great success. In remote
sensing, a multitude of such methods have been used for different

purposes: dimensional reduction, classification, visualization,
etc. In this article, we use a neural network to develop our
visualization improvement methods.

Deep learning neural networks perform a mapping process
between a certain set of inputs and a certain set of outputs from
the training data. The model of a neural network is defined as a
set of weights used to make predictions. The weights cannot be
computed perfectly, thus the learning process can be perceived
as an optimization problem. Usually, the stochastic gradient
descent optimization algorithm is the chosen option to update
the weights through backpropagation. The algorithm seeks to
adjust weights trying to reduce error for the next evaluation of
predictions by navigating down the gradient of error.

Autoencoders are neural networks that learn in an unsuper-
vised way to reconstruct an input, obtaining a latent representa-
tion of smaller dimension inside the network, at the bottleneck
layer. The autoencoders include two main structures: an encoder
and a decoder. The input of the encoder, X, represents the
object to be compressed, and its output is a latent embedded
representation of the input, H. The output of the encoder repre-
sents the input to the decoder which has the main assignment
to reconstruct X using H. The result of the decoder, Y, is a
representation that must be as similar as possible to X, having
the same dimensionality.

The encoding function, ϕ, maps input to a hidden represen-
tation by using

ϕ :X → H. (8)

Also, the decoder performs a mapping, this time transposing
the hidden representation to a reconstruction of input:

σ :H → Y. (9)

During training, the network uses an optimization process that
needs an error function to evaluate loss and update the model
weights. The error function of an autoencoder can be determined
by the general representation:

error (X,Y ) . (10)

The function error can be defined and modified such that it
evaluates the interest aspects as regards to the network purpose.
Also, the objects implied may be changed, transformed or dif-
ferent than X and Y.

SAE represents an enlarged version of a basic autoencoder.
The encoding and decoding operations are performed by se-
quences of layers and the symmetry relative to the bottleneck
layer is preserved.

VI. ENHANCED VISUALIZATION PROPOSED METHODS

This article proposes five different visualization improvement
methods for multispectral remote sensing images based on an
SAE neural network.

The proposed methods represent a diversity of combinations
of the previously defined actors, namely: X and error function.

Regarding the error, we derive the general defined function
and augment it with different variations of evaluation in or-
der to accomplish the desired objective of the neural network.
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As respects to the input, we use two different features: spectral
and polar. Spectral features are represented by the reflectance
values acquired at different wavelengths, mapped to the spectral
bands of the product. Polar features instead, are obtained through
polar coordinate transformation of the spectral values.

The naming algorithm comprises the involved actors. The
following subsections present the objectives, mathematical def-
initions, and utility of the five methods.

A. Spectral Input–Spectral Error (SI–SE)

The purpose of this method is to accomplish the first objective
of this article by revealing the hidden details from an apparently
accurately displayed scene. In this context, “apparently accu-
rately displayed” means that although the scene is not contami-
nated by clouds or other atmospheric phenomena, it could hide
important details due to the fact that only the reflectance values
from the visible part of the spectrum are displayed.

The combination of actors as respect to this method consists
of an input of reflectance values and a loss evaluation using the
error function defined by the following:

error (X,Y ) = MSE (X,Y ) (11)

MSE (X,Y ) =
1

N

N∑
i = 1

(Xi − Yi)
2. (12)

MSE stands for mean squared error and is very often used to
compute the error function in neural network models. This error
function evaluates the network capability to reconstruct the input
from the hidden representation. The amount of information from
the input contained in this dimensional reduced representation
should be as large as possible so that the error to get as small as
possible.

Apparently similar regions could represent different things
and apparently different regions could represent the same thing,
as shown in Fig. 3. Water bodies and vegetation generate con-
fusion between them because when watching to the R–G–B
representation they have the same color. But, the latent result
obtained by this method displayed for visualization reveals the
differences. The information contained by the bands which are
not involved into visualization representation may be different,
this observation being also depicted from Fig. 4, where the
spectral signatures show different patterns among the spectral
bands. The bands from the visible part of the spectrum share the
same pattern while, as close as they get to the NIR and SWIR part
of the spectrum, the pattern changes. The latent representation
signatures demonstrate the embedding ability of the network,
capturing all different patterns from all spectral signatures.

B. Spectral Input–Spectral Error With Color Correction
(SI–SECC)

The second method comes as an improvement to the first one,
meaning that besides fulfilling the first objective of eliminating
the ambiguities, this method aims to keep the visualization as
close as possible to that obtained using the bands from the visual
part of the spectrum mapped on the R–G–B channels.

Fig. 3. Comparison between spectral signatures and latent SI–SE signatures.
The first half of the image shows graphical representation of the spectral
signatures emphasizing the different patterns of reflectance between different
wavelengths. The second half of the image shows the compressed latent repre-
sentation signatures obtained using SI–SE method. Each color line represents a
band, x-axis illustrates the pixel number and y-axis the pixel values.

Fig. 4. R–G–B visualization (left) vs. SI–SE result representation (right).

The actors involved are the spectral values and the loss com-
puted over an augmented error function of the previous defined
one, (12). Augmentation consists in adding an evaluation in
terms of color difference between the latent values, H, obtained
by the encoder and the values of the bands from the visual part
of the spectrum, RGBX :

error = error (X,Y ) + colorDiff (H,RGBX) . (13)

Color difference is computed using the Euclidean distance:
Eq. (14) shown at the bottom of next page.

Fig. 5 shows the latent signatures pattern preservation along
with the tendency of being more similar with the visual spec-
tral signatures pattern. Although the spectral signatures SWIR
pattern from the input seem to not be observable, the third band
of the latent result shows some little peaks which seem to be
related with it. The comparison between R–G–B and SI–SECC
from Fig. 6 emphasizes the capability of the autoencoder to
embed information from NIR and SWIR bands because the
smaller water bodies from the left of the sea are not visible in
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Fig. 5. Comparison between spectral signatures and latent SI–SECC sig-
natures. The first half of the image shows graphical representation of the
spectral signatures emphasizing the different patterns of reflectance between
different wavelengths. The second half of the image shows the compressed
latent representation signatures obtained using SI–SECC method. Each color
line represents a band, x-axis illustrates the pixel number, and y-axis the pixel
values.

Fig. 6. R–G–B visualization (left) vs. SI-SECC result representation (right).

left representation, but are highlighted with a lighter blue shade
in the right one.

C. Spectral Input–Polar Coordinates Error (SI–PcE)

This method has been developed in order to satisfy both
objectives of this article, reduction of ambiguities and visual con-
tamination caused by clouds, smoke, or fog. Illuminant invariant
features were successfully used for tasks like dehazing, therefore
we chose to demonstrate their superiority when integrated within
a deep learning method.

The input is represented by the spectral features and the loss
function implies an error evaluation which computes the MSE
between the transformation of X to polar coordinates, polarX ,

Fig. 7. Comparison between spectral signatures and latent SI–PcE signatures.
The first half of the image shows graphical representation of the spectral
signatures emphasizing the different patterns of reflectance between different
wavelengths. The second half of the image shows the compressed latent repre-
sentation signatures obtained using SI–PcE method. Each color line represent a
band, x-axis illustrates the pixel number, and y-axis the pixel values.

Fig. 8. R–G–B visualization (left) vs. SI–PcE result representation (right).

and the transformation of Y to polar coordinates, polarY :

error = MSE (polarX , polarY ) . (15)

Watching the graphical representation of the spectral and
latent signatures from Fig. 7, it can be observed that the sig-
natures patterns of the input are preserved and embedded into a
three bands combination, each different pattern from the input
being dominant over one band in the latent. This fact proves the
capability of compression of the proposed method and also the
preservation of spectral signatures patterns, resulting in a more
complete visualization of the scene observed. Fig. 8 highlights
the better visualization result obtained with SI–PcE. Although
the left side of the figure shows a scene covered by clouds, the
right one succeeds to disclose the Earth surface.

colorDiff (H,RGBX) =

√
(H1 − RGBX1)

2 + (H2 − RGBX2)
2 + · · ·+ (HN − RGBXN )2 . (14)
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Fig. 9. Comparison between spectral signatures and latent PcI–SE signatures.
The first half of the image shows graphical representation of the spectral
signatures emphasizing the different patterns of reflectance between different
wavelengths. The second half of the image shows the compressed latent repre-
sentation obtained using the PcI–SE method. Each color line represent a band,
x-axis illustrates the pixel number, and y-axis the pixel values.

Fig. 10. R–G–B visualization (left) vs. PcI–SE result representation (right).

Regarding computation time and complexity, this method
stands as one of the most consuming because at each epoch,
before evaluating the loss, the algorithm has to perform a polar
transformation over Y.

D. Polar Coordinates Input–Spectral Error (PcI–SE)

This method aims to accomplish both of our objectives in
terms of visualization enhancement of multispectral remote
sensing images. Also, an additional objective of this method
would be to reduce as much as possible shadows. This supple-
mentary goal comes from the property of polar coordinates to
be illuminant invariant.

By using these polar transformed features as input to the net-
work and evaluating loss over an error computed using spectral
features, we address the goal of combining the preservation of
the spectral signatures and illumination invariance. This method
represents the inverse, in terms of actors implied, of the previous
method, so the error function is computed by

error = MSE (spectralX , spectralY ) . (16)

Fig. 11. Comparison between spectral signatures and latent SI–AE signatures.
The first half of the image shows graphical representation of the spectral
signatures emphasizing the different patterns of reflectance between different
wavelengths. The second half of the image shows the compressed latent repre-
sentation obtained using the SI–AE method. Each color line represent a band,
x-axis illustrates the pixel number, and y-axis the pixel values.

Fig. 12. R–G–B visualization (left) vs. SI–AE result representation (right).

Fig. 9 denotes the pattern merge effect that takes place in the
latent representation signature, showing that each band resulted
is influenced by all input spectral features patterns. The preser-
vation of spectral signatures is highly observable meaning that
the goals are successfully achieved. Fig. 10 represents a scene
of ongoing fire that has an emphasized visualization using our
proposed method. The smoke from the R–G–B representation
is predominantly removed, making smoked areas, remained
vegetation, and also the fire borderline visible.

E. Spectral Input–Angular Error (SI–AE)

Visible enhancement by means of ambiguities and atmo-
spheric phenomena reduction are the main objectives of this
method. Having as auxiliary purpose to verify the angular dis-
tance property of being invariant to linearly scaled variations
of spectral values, we developed a method that includes this
distance in the error function of the neural network:

error (X,Y ) = arccos
�X ∗ �Y

‖ �X‖‖�Y ‖ . (17)
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TABLE I
SENTINEL 2 PRODUCTS USED FOR EXPERIMENTAL RESULTS

The angular distance involves the input to the network, in
this case, spectral features and the decoder output. Latent repre-
sentation signatures show a mixed preservation of the spectral
ones, each band from the latent space consisting of multiple
patterns from the spectral space, Fig. 11. Thus, the objective of
embedding the information from all spectral bands is achieved.
Ambiguities are eliminated from the visualization, as Fig. 12
shows. Also, smoke and shadows present in the R–G–B repre-
sentation are reduced, demonstrating the illuminant invariance
character of angular distance. This representation proves the
utility and capability of information transfer obtained by the au-
toencoder by revealing not visible information from the R–G–B
representation.

VII. EXPERIMENTAL RESULTS AND DEMONSTRATION

To demonstrate how our proposed methods sharpen the data
visualization, we used Sentinel 2 images acquired at different
moments of time. The footprint of the analyzed scenes covers
multiple regions of the world. We present in Table I the products
used, city, and country. All the scenes were resampled before use
so that all bands shall have 10 m resolution. Thus, we performed
an upsampling on bands with 20 and 60 m resolutions by setting
each output pixel to the nearest input pixel value. The resulting
products have the same dimension, 10980 × 10980 × 12.

The processing level 2 of Sentinel 2 sensor does not contain
band 10, so the resulting product contains only 12 bands. The
reason behind the decision of removing this band is the fact that
is does not contain surface information.

The SAE architecture used by all methods contains four
autoencoders, as shown in Fig. 13. The encoder is defined
according to a topology that decreases from 12 inputs to 3
according to the following pattern “12-8-6-3,” and the decoder is
defined by an ascending topology following the same pattern. We
used Elu activation and Adam as optimizer. The hidden repre-
sentation consists of three values for visualization purposes, the
other values being chosen experimentally. The training dataset
for all methods consisted of a four concatenated subsets of clear,
smoky, foggy, and cloudy images, and had a dimensionality
of 10980 × 10980 × 12. Before starting the training process,
we performed a reshaping operation by transforming M×N×B
dimension into (M∗N)×B, resulting a matrix, T, with a pixel
definition per line, each line consisting reflectance values from
the spectral bands. M stands for the number of rows, N for
the number of columns, and B for the number of spectral
bands. Also, we performed a min–max scaling operation over

Fig. 13. SAE detailed architecture: four stacked fully connected AEs, having
as input the reflectance values for one pixel.

TABLE II
ARCHITECTURE PARAMETERS OF EACH METHOD

reflectance values:

xi,j =
xi,j −min (T )

max (T )−min (T )
. (18)

xi,j represents the radiance value from the ith line and jth band,
i = 1 . . .M ∗N , j = 1 . . . B . min and max are computed
over the entire matrix.

Parameters like batch size, learning rate, epochs number
change from method to method, as illustrated in Table II. The ta-
ble contains different parameter setups which were implemented
and tested, the thickened rows representing the final setup. The
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Fig. 14. Sentinel 2 clear scenes over Bucharest, Romania, respectively, Ravenna, Italy; Visualization improvement demonstration through comparison between
the conventionally used representation, R–G–B, and the proposed methods. On each row is emphasized a subset of a scene and each column represents a visualization
method as follows: first column—R–G–B representation, second column: SI–SE, third column: SI–SECC, fourth column: SI–PcE, fifth column: PcI–SE, sixth
column: Si–AE.

configurations were adjusted until the loss would not decrease in
the final five to seven epochs and its value would be the smaller.

We implemented the experimental code using Python 3.8.5
and TensorFlow 2.3.0 for GPU. To reduce model training time,
we used a distributed system and parallelized computation
across 8 PCIe-connected K80 GPUs.

All the visualization operations were performed using Sen-
tinel Application Platform.

In this article, we aim to demonstrate that the visualization of
multispectral remote sensing images can be emphasized using
the whole information from all spectral bands embedded in
a three latent band result. Our main objectives are to reduce
ambiguities that may occur and also reduce the atmospheric
phenomena that may obstruct the analysis of terrain surface.

We propose a set of visualization methods based on the
same general concept of SAEs which are differentiated by the
combination of actors involved in the learning process. Two of
them are oriented toward the fulfillment of the first objective,

the one to reduce the ambiguities, and the other three pursue the
achievement of both objectives. With the help of the experimen-
tal results, we highlight the benefit of visualizing a multispectral
image using one of the methods. We do not perform an evaluation
in terms of general performances of each method and do not
classify them because as it is observed from the experimental
results, depending on the scenario, it can be proved that any of
the methods can be considered the most suitable depending on
what the user searches.

The results are grouped into four scenarios: clear images,
foggy images, cloudy images, and smoky images and discussed
in the next subsections.

A. Clear Images

Visualization of multispectral remote sensing images repre-
sents the process of analysis and understanding of the scene so
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Fig. 15. Sentinel 2 entire smoky scenes over Chico, California, respectively, San Jose, California; Visualization improvement demonstration through comparison
between the conventionally used representation, R–G–B, and the proposed methods. On each row is emphasized a subset of the scene and each column represents
a visualization method as follows: first column—R–G–B representation, second column: SI–SE, third column: SI–SECC, fourth column: SI–PcE, fifth column:
PcI–SE, sixth column: SI–AE.

that after identifying the points of interest the user can make a
decision according to its purpose.

Usually, when visualizing a scene, the user has the desire
to understand the information about the analyzed surface, but
this is not always possible when the method of image rep-
resentation involves the use of a combination of three bands
mapped on R–G–B channels. Even if the scene does not
contain atmospheric phenomena that prevent the information
about the Earth’s surface, there can be many hidden details
in the spectral bands not included in the production of the
visualization.

Fig. 14 demonstrates the benefit of visualizing a represen-
tation that contains the information from all spectral bands,
making the differences between apparently similar regions to be
observable. All the five methods accomplish this discrimination

obtaining a contrast between dissimilar regions. The main reason
behind the achievement of this goal by all five methods is that
they include both vegetation information (bands 5, 6, and 7) and
information from bands acquired at wavelengths in the NIR or
SWIR range.

Both scenes present subsets containing examples of semantic
class separation between vegetation and water. For example, the
first subset of the scene in Fig. 13 includes a water body in the
right centered part of the image, which in R–G–B representa-
tion is not visible. The other five representations emphasize a
difference depicted from the strong contrast between the water
body and the surrounding regions.

The third subset of the second scene shows a more crowded
image, where the improved representations highlight the water
body from the left centered part.



COCA NEAGOE et al.: CROSS-BANDS INFORMATION TRANSFER TO OFFSET AMBIGUITIES AND ATMOSPHERIC PHENOMENA 11307

Fig. 16. Sentinel 2 scenes over Parma, Italy, Venice, Italy and, respectively, Kyiv, Ukraine; Visualization improvement demonstration through comparison between
the conventionally used representation, R–G–B, and the proposed methods. First scene represents a foggy image, while the last two, cloudy images. On each row
is emphasized a subset of the scene and each column represents a visualization method as follows: first column—R–G–B representation, second column: SI–SE,
third column: SI–SECC, fourth column: SI–PcE, fifth column: PcI–SE, sixth column: Si–AE.
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Fig. 17. Full Sentinel 2 scenes comparison between R–G–B representations
and proposed methods results. Proposed method result emphasizes in the first
scene the burned area (dark blue), while in the second one highlights the water
body.

Although the first two methods do not encompass any trans-
formation to polar coordinates or angles, their results show an
improved visualization. The second one even realizes a color
resemblance with the R–G–B representation.

As respects to the scenario of clear images, all methods prove
their visualization gain and demonstrate well preserved input in-
formation while transferring relevant knowledge between bands.

B. Smoky Images

Very often, in natural disaster monitoring applications, an
analysis of the Earth’s surface using satellite images is necessary.
Optical sensors acquire light reflected from the Earth’s surface,
but in the case of disasters such as fires, the recording values
on the wavelengths that cannot penetrate through the smoke
generated by the burning of various terrestrial objects cause
image obstruction. The bands in the visual part of spectrum
are often the ones affected by this process, and visualizing
such a scene using only these bands could cause a loss of
information about what is under the smoke. Therefore, enclosing
the information present in the NIR and SWIR bands can improve
visualization and bring additional information about the Earth’s
surface. However, it is possible that even SWIR bands to not be
able to penetrate through dense smoke, so the information about
the Earth’s surface could never be retrieved from the image.

When information about what is under the clouds of smoke is
available on at least one of the bands, a view that includes this in-
formation is very beneficial in the analysis process. Fig. 15 shows
two scenes of ongoing fires and demonstrates the advantage
brought by the visualization proposed methods for investigation
purposes. The subsets of the first scene demonstrate that the

methods extract available information about the appearance
of the Earth’s surface, and the subsets of the second scene
show situations where information about certain regions is not
available on any of the bands, so visualization of those areas
it is not possible. SI–SE and SI–SECC methods demonstrate
improved results in terms of visualization compared to R–G–B
representation, but the methods that include transformation into
polar coordinates or angular distance, due to the property of
illumination invariance, have better results. We mention that
SI–SE and SI–SECC methods did not have as main objective to
retrieve the information under the smoke, but their results proves
that they are also suitable for this task. Due to small dimensions
of the results, the improvement is not visible in the first two
subsets of the second scene, but at a higher resolution, hidden
details about the Earth surface are revealed. For this particular
two subsets, the fifth method, SI–AE, disclose most of the indis-
tinctly information compared with the R–G–B representation.

C. Foggy Images

Fog is one of the atmospheric phenomena that can intervene
in the visualization and analysis of the Earth’s surface. The
phenomenon of obstruction of visibility is similar to that en-
countered in smoke scenes, with the mention that due to the size
of the water droplets that make up the fog, their penetration by
the wavelengths available on optical sensors, like Sentinel 2,
is often impossible. Retrieving information about the terrestrial
aspect becomes impossible in case of a dense fog.

The subsets of first scene in Fig. 15 show two different cases of
retrieving the information contained in all spectral bands, so that
the first two lines demonstrate the improvement of the contrast
and regions distinction, even if the fog is visible. The second
line illustrates a reduction of the surface covered by fog besides
improving the contrast.

D. Cloudy Images

Although clouds are of several types, dense or less dense,
at a lower or higher altitude, there are certain situations in
which longer wavelengths manage to penetrate them. Most of
the time, not even the wavelengths in the SWIR range of the
spectrum manage to pass through to capture information about
the terrestrial aspect.

The last two images of Fig. 15 illustrate two scenes covered
by clouds, the first of which highlights the cases in which the
clouds may be less transparent, so that it can be seen below
them only in certain parts, where they are less dense. The second
represents an example of a semi-transparent cloud, which allows
the observation of scene details.

All of the subsets of the first cloudy scene highlight a good
information retrieval from the initial spectral bands. The most
impressive result is obtained by the third subset if the first cloudy
scene, where due to high cloud coverage, the Earth surface is not
visible in the R–G–B representation, while all proposed methods
reveal that under the cloud was a lake. But the other two are also
remarkable, the hidden details being also emphasized.

The second scene subsets show that even through a more dense
cloud some details are still perceivable using representations
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that make use of the information from the SWIR bands. The
difference between visualization of the visible bands and those
obtained with the proposed methods are fewer, but they exist.

VIII. CONCLUSION

This article presents a series of methods to improve the
visualization of multispectral remote sensing images following
two main objectives: reducing ambiguity and reducing visual
obstruction caused by atmospheric phenomena such as fog,
smoke, or clouds. We have developed a variety of methods to
obtain a complete visualization of the multispectral image. To
this aim, given that certain wavelengths manage to penetrate fog
or clouds, we computed the spectral angular distance and the
data transformation into polar coordinates in order to achieve il-
luminant invariance. The autoencoder successfully incorporates
this information.

Experimental results have demonstrated the capability of the
proposed methods to extract complementary information from
the spectral bands that are not typically used for visualiza-
tion. Also, through spectral and latent signatures evaluation we
demonstrated the autoencoder capability of pattern preservation
and relevant information transfer between spectral bands.

Details that are not visible in the R–G–B representation are
emphasized in the results of the proposed methods, a very
representative example being illustrated in Fig. 17. Two entire
Sentinel 2 scenes covered by smoke and, respectively, clouds are
compared. The visual improvement is obvious as the phenomena
effects are reduced. Also, these results prove the effectiveness
of the proposed methods over large datasets.

The visual improvement using the set of proposed methods
shows a very clear separation between semantic classes, like
water and vegetation. The first two methods, SI–SE and SI–
SECC, do not guarantee results regarding the second objective
of this article, but from the experimental results they show an
enhanced visualization relating to the RGB representation.

The proposed methods are not mutually exclusive as they
could represent different versions from which the user can
choose the one that fits best his purpose. Also, these visualization
methods could be an alternative to the quick looks used to choose
products on the Copernicus Open Access Hub platform. It would
also be useful in active learning applications.
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