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Multilayer Feature Extraction Network for Military
Ship Detection From High-Resolution Optical

Remote Sensing Images
Peng Qin , Yulin Cai , Jia Liu, Puran Fan, and Menghao Sun

Abstract—Rapid and accurate detection of maritime military
targets is of great significance for maintaining national defense
security. Few studies have used high-resolution optical images for
the detailed classification of maritime military targets. This article,
inspired by EfficientDet trackers, presents a method to classify
military targets on the sea from high-resolution optical remote
sensing images. In the first stage, a multilayer feature extraction
network is constructed to extract various features. At the same
time, residual connection and dilation convolution are introduced
to prevent the deep network features from disappearing. Moreover,
we use multilevel attention mechanism approaches to make more
effective use of multilayer features. ReLU is introduced to replace
the original swish activation function to reduce the computational
cost in the pretreatment stage. After this, deep feature fusion
networks and prediction networks are constructed to locate and
distinguish different types of ships. Different types of ships use
different degrees of data expansion methods to solve the problem of
sample shortage and imbalance. The multiclassification method is
used to solve low classification accuracy caused by little difference
between civil and military ships. Experimental results suggested
that the proposed method can accurately identify multiple types of
military ships.

Index Terms—Attention mechanism, data enhancement,
efficientdet network, feature extraction, feature fusion, military
target detection, multiclassification.

I. INTRODUCTION

THE RAPID and accurate identification of maritime military
targets is crucial for understanding enemy naval vessels

and military equipment on the sea. This helps the military with
early warning and rapid response, thereby maintaining national
defense security [1], [2]. Remote sensing imaging of ships at sea
is easily affected by cloud, wave, light, etc., and if boats dock
at coastal ports, their imaging will also be influenced by the
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background of coastal factors [3], [4]. Therefore, it is important
but challenging to detect and classify maritime military targets
on the sea quickly and accurately in a large range and multiple
scenes.

Various types of remote sensing data are widely used to
identify vessels on the sea due to their characteristics of economy
and timeliness [5]–[7]. However, the resolution of some data is
relatively low and vulnerable to noise [8], which brings diffi-
culties to coastal ship identification [9]. Optical remote sensing
image, with its high spatial resolution, makes up for the shortage
of other remote sensing data to a great extent and, thus, is widely
used [10], [11]. Still, the traditional ship classification algorithm
of optical remote sensing images mostly uses manually designed
features [9], [12]–[14], these features are easily affected by some
clouds and waves, and the robustness is poor [15], which is not
suitable for large-scale and multiscene ship target recognition
[16].

In recent years, with the development of deep learning tech-
nology, in terms of scene recognition [17], image segmentation
[18], or target detection [19], deep learning methods show some
obvious advantages compared with traditional image recogni-
tion methods. Especially in the aspect of image target detection,
some neural networks have a great improvement in accuracy
and efficiency [20]. All kinds of target detection networks can
be divided into one-stage and two-stage networks according to
whether candidate regions are generated [21]. The one-stage
network represented by single shot multibox detector (SSD) [22]
and you only look once (YOLO) [23] can quickly and directly
detect the entire image, but there are great limitations in accuracy
[24]. To improve the accuracy, scholars tried to divide the whole
image into different candidate regions and then classify and
locate them. This greatly reduces the interference of negative
samples, and the final model accuracy will be improved [25].

Recent studies have shown that the application of deep learn-
ing to remote sensing detection of ships at sea has achieved
promising results. Networks such as R-CNN (Region proposals
with CNN) network and improved Fast R-CNN can rapidly
detect vessels [26], [27]. The latest research found that using a
multiscale feature extraction network to extract multiscale fea-
tures, the capacity to enhance model accuracies in ship extraction
[28]. However, most networks only distinguish between ships
and nonships, with high intraclass variation causing misclassifi-
cation [16]. Multiclass methods [12], [16], [29] provide a viable
solution because the results have more categories, and more
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Fig. 1. Various ships with similar characteristics: (a) (b) supply and landing
ship; (c) medical ship and passenger ship; (d) amphibious assault ship and port;
(e) general warship and supply ship; (f) cargo ship and supply ship.

detailed ship information can be extracted. In order to improve
the accuracy of these methods, some specially designed features
have been created. For example, before the ship detection, the
water land separation is carried out, or some other information
is used to extract the hull [16]. These non-end-to-end [28]
measures increase the complexity of the model, and the quality
of feature extraction will also affect the final accuracy. What’s
more, most of the studies on ship identification are aimed at
ordinary ships and the military ships are directly classified as
general ships or a single category without detailed division [30],
[31]. At the same time, the differences between some types of
military ships are small and difficult to distinguish. As shown in
Fig. 1, the characteristics of general warships, landing ships, and
supply ships are very close, medical ships have similar features
to passenger ships, amphibious assault ships are to be mistakenly
be classified as port terminals. At the same time, supply ships are
very similar to cargo ships in terms of functions and features. All
of these similarities bring great difficulties to the classification
of specific military ships. This is another reason why there is
little research on warship classification.

Considering the abovementioned situation, this article pro-
poses a novel method of warship recognition based on deep
learning. The network can extract richer features while ensuring
efficiency and accuracy, which is conducive to the detailed
classification of military ships. High-resolution remote sensing
images can be directly input into the network to obtain high-
precision ship classification results without manually extracting
other features of the image. Our contributions are as follows.

1) To accurately extract different sizes of warships, especially
some large warships, in the first stage, we construct a
multilayer feature extraction network based on a multi-
level attention mechanism to increase feature values and
enrich semantic information [4]. Additionally, residual
connection [32] and dilation convolution module [33]
are introduced into the deep network to avoid vanishing
gradients. These features are input into the feature fusion
network in the next stage [34].

2) The ReLU activation function is used to replace the swish
activation function with a high computational cost at the
beginning to cooperate with the use of a deep network.

3) Imbalance of the number of different samples will lead
to low recognition accuracy [35]. In order to solve this
problem, different degrees of data expansion are used to
reduce the difference in the number of different samples.

4) We made a more detailed classification to highlight intra-
class differences to avoid misclassification [16]. In addi-
tion to dividing military ships into seven classes, civilian
ships are also divided into two categories.

II. DATA PREPARATION

A. Data Acquisition

The data used in the experiment is the “2016 High Resolution
Ship Collections” ship dataset [36], which contains 1072 Google
Earth images with a resolution ranging from 0.4 m to 2 m,
and most of the images are about 1200 × 800 pixels in size.
Some of the images that do not contain military ships and the
types of ships that cannot be visually identified are removed.
After screening, a total of 777 images were selected, with 472
for training and 305 for testing. These images include about
3000 ships of various types, of which 450 are civilian ships,
and the rest are military ships. The dataset contains a variety of
recognition backgrounds of different times, places, sea states,
and weather, which is in line with the actual classification scene.

B. Data Enhancement

In order to detect specific types of military ships, it is nec-
essary to distinguish different types of ships in the training
data set. Due to the limited image resolution and the slightly
different rules for naming ships in different countries. Referring
to the naming rules of the world’s mainstream warships [37], we
rename the vessel according to the purpose, shape, size, bridge,
deck, naval gun, and apron. As illustrated in Fig. 2, military
ships are divided into seven categories, including aircraft carriers
(AC), amphibious assault ships (AAS), general warships (GW),
landing ships (LS), submarines (berthed in ports, SM), medical
ships (MS), and supply ships (SS). The civilian ships are divided
into two categories, including cargo ships (CS), and passenger
ships (PS).

To obtain sufficient training samples, the traditional data
expansion method performs translation, rotation, and random
noise addition of all data [38]. In this article, we have performed
different degrees of data expansion on different samples because
the number of military ships in the image is small and unevenly
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Fig. 2. Specific characteristics of various ships.

Fig. 3. Number of statistics before and after data expansion.

distributed. The original training data set contains 56 images
of aircraft carriers, 47 amphibious assault ships, 142 general
warships, 63 landing ships, 24 supply ships, 14 submarines,
15 medical ships, 81 cargo ships, and 30 passenger ships. The
number of images containing different ships varies greatly. In
addition, the orientation of different ships is also different. These
factors will affect the accuracy of the classification results [35],
[39]. Hence, we chose to expand the dataset by rotating the
original images at different angles. The images of aircraft carrier,
amphibious attack ship, general warship, landing ship, supply
ship, submarine, medical ship, cargo ship, and passenger ship
have been expanded by six times, six times, four times, six times,
eight times, twelve times, twelve times, five times, and six times.
Where the expansion of six times means the original image will
be rotated by 60°, 120°, 180°, 240°, 300°. Finally, the resulting
training data set contains 2689 images. Fig. 3 shows the changes

in the samples of different categories of vessels before and after
the expansion. The change curve of the expanded samples is
flatter than that before the expansion, which means that the
difference in the number of different kinds of samples is reduced
to a certain extent.

Finally, different types of ships in the training dataset and the
test set data are marked with rectangular boxes and labelled with
text. Since warships are generally large in size, we only marked
ships with a length of about 50 m or more, with other ships as
background.

III. METHOD

EfficientDet is a two-stage new target detection network [40].
When proposed in 2020, it achieved a score of 51.0 mAP (mean
Average Precision) on the common object in context dataset,
which was the highest level at the time. Unlike the previous
neural network methods that only change one dimension, the
backbone feature extraction network of EfficientDet is a three-
dimensional model scaling method, including network depth,
network width, and image resolution. At the same time, the fea-
ture fusion network used in the second stage of the network uses
different weights for fusion according to different scale features
extracted in different stages. This not only ensures efficiency
but also integrates multiscale information to extract multifeature
military ships. In this article, we refer to the structure of this
network to build a multilayer feature extraction network to
achieve ship detection.

A. Multilayer Feature Extraction Network

In general, shallow networks extract more generalized in-
formation, such as the general structure of a ship, while deep
networks extract more detailed information, such as the char-
acteristics of specific different kinds of military ships [41].
But the deep network is sometimes unable to perform gradient
updates. By constructing residual neural networks, the features
can be extracted from deep networks [32]. Therefore, we build
a residual unit based on the structure of the residual network
(as shown in Fig. 4) to extract multilayer features. First, a 1×1
convolution is performed on the input features to increase the
image dimension. The second step is to carry out a depthwise
separable convolution [42], which has fewer convolution pa-
rameters and is beneficial to deepening the network. The third
step is an attentional mechanism model, which will be described
later, the output of this step, after the convolution operation, will
be fused with the initial input features to form the final output.
With the above operation, we construct a large residual unit,
the backbone feature extraction network is to repeatedly stack
these residual units into seven layers, each layer repeats these
residual units 1, 2, 2, 3, 3, 4, 1 times, respectively. At the same
time, the dimension of the image gradually rises from 3 to 320
dimensions.

In the process of constructing the residual unit, the number
of channels of the feature map is changing, after visualized
the outputs of different channels, we find that the response is
different for different targets on different channels (as shown in
Fig. 5, a general warship shows different responses in different
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Fig. 4. Residual unit structure.

Fig. 5. Channel visualization: the original image in the middle, the rest are
the results of different channel feature map visualization.

channels: some channels show a clear response to shape, some
channels show a clear response to warship feature points, while
some channels show little or no response). Since the accuracy
of the subsequent prediction network extraction results depends
on the quality of these feature mapping, we improve the accuracy
of the model by increasing the focus on the high response chan-
nels. Specifically, in the backbone feature extraction network,
the extracted feature maps are fed into the attention mechanism
model. As shown in Fig. 6, in different attention mechanism
models, firstly, feature maps with length, width and number of
channels n, n, c, respectively, are converted to 1×1×c feature
map after a global averaging pooling. Two convolutional layers
follow these features to change the size and dimension. In the
meantime, the activation function of the first operation is ReLU,
and the activation function of the second operation is sigmoid.
As shown in (1), after the sigmoid function processing, the input
values will be mapped to the interval of 0-1. Therefore, the
feature map is processed by the attention mechanism model and
transformed into a c-dimensional vector with each value between
0 and 1, where c corresponds to the number of channels of the
input feature map. Finally, the vector is multiplied with the initial
input feature map to give different weights to the channels with

different responses. It also means that give different attention
to different channels to strengthen the primary information and
weaken the secondary information.

sigmoid : f(x) =
1

1 + e−x
. (1)

We transformed the input remote sensing images into some
features from shallow to deep layers through the feature extrac-
tion network. Since these features are large in number and vary
in quality, we processed them using an attention mechanism to
select some useful information in every residual unit. Finally, a
multilayer feature extraction network with multilevel attention
mechanism models is formed.

B. Feature Fusion Network

Since the size of various ships is not fixed, it is necessary
to extract small target features based on shallow networks and
large target features based on deep networks [4]. Therefore,
the extracted feature information needs to be integrated. For
this reason, we build a top-down feature fusion network, in
which five layers of features are input from bottom to top,
as shown in Fig. 4. First, the upper layer features extracted
by the backbone network are up-sampling and merged with
those of the low layers. The specific steps are: the top-layer
(P5) features are up-sampling and merged with the fourth-layer
features (P4) to obtain A4; A4 is up-sampling and fused with P3
to get A3, and A2 is obtained in the same way. Second, A2 is
up-sampling and is fused with P1 to obtain B1. Third, the lower
layer features are down-sampling and merged with the upper
layer ones. Specifically, B1 is downsampled and merged with
A2 and P2 to obtain B2, B2 is downsampled and merged with
A3 and P3 features to obtain B3, and so on to obtain B4 and
B5. Thus, a total of 5 layers of features, B1–B5, are output, and
a complete feature fusion unit is formed, as shown in Fig. 7.
The output of the previous feature fusion unit will be used as
the input of the next unit. The feature fusion network is finally
formed by repeating the feature fusion unit four times.

C. Category Prediction and Box Prediction Network

The category and position of each target in the image can
be obtained by inputting the fused features into the category
prediction network and the box prediction network.
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Fig. 6. Attention mechanism model.

Fig. 7. Feature fusion unit.

In the category prediction network, three depthwise separable
convolutions are first carried out to adjust the number of image
channels to 88. Then, another depthwise separable convolution
with a filter depth of 9 × 9 is performed, where the two 9 s,
respectively, represent the number of preset prediction boxes and
prediction categories in each candidate region. The loss function
used in this network is Focal, in order to further reduce the
imbalance between different samples, a balancing factor is added
to the loss function [43]. The Loss function Focal is defined as

L(Focal) =
{−α(1− y′)γ logy′ y = 1
−(1− α)y′γ log(1− y′) y = 0

(2)

where α andγrepresent adjustment parameters, which are con-
stants 0.25 and 2, respectively, and y′ is the predicted probability
value of output.

In the box prediction network, six depthwise separable con-
volutions are performed first with a filter depth of 88, and then
another depthwise separable convolution is used to adjust the
number of channels to 9×4. Here, nine represents the number of
predicted boxes and four represents four adjustment parameters
of each prediction box. Smooth_L1 [25] is set as the loss function
in this process, which is formulated by

L(Smooth_L1) =

{
0.5x2 |x| < 1
|x| − 0.5 |x| ≥ 1

(3)

wherex is the difference between the real value and the predicted
value.

Fig. 8. Comparison of two different activation functions: (a) original function;
(b) derivative function.

D. Other Detail Improvements

In addition to the adoption of multicomponent model and the
change of data expansion method in the data preparation stage.
We also made some modifications to the original EfficientDet
network to improve the accuracy and efficiency of the ship
information extraction, including replacing activation functions
and changing network structure.

In order to extract more semantic information, it is generally
necessary to continuously deepen the network by boosting the
number of layers [44]. In the model pre-processing stage original
EfficientDet network uses swish [40] as the activation function
(4), but the calculation cost of swish is relatively high. Therefore,
the ReLU activation function is selected here (5), which has
less calculation and faster calculation speed. Without the influ-
ence of exponential function, the calculation process is greatly
simplified. Additionally, from Fig. 8, we can see that ReLU
activation function transforms the original complex features into
more discrete and simpler features [45], the simpler derivative
function allows the gradient to be updated more quickly. It is
more conducive to distinguish the subsequent features in the
preprocessing stage of the model, and the actual performance is
also better.

The swish and ReLU activation function is formulated by

f(swish) = x · 1

1 + e−βx
(4)

f(ReLU) =

{
0 x ≤ 0
x x > 0

(5)

where is β a constant (1.0) and x is the input.
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Fig. 9. Network structure of the model in this article.

The original network directly uses the backbone feature ex-
traction network’s 3–7 layer features for feature fusion. How-
ever, due to the large changes in the size of various ships and
the high resolution of remote sensing images, the extracted
features of different types of ships are not obvious, which is
not conducive to the classification of specific types of ships.
Especially for the larger size of the vessels, the deep features
extracted are insufficient, so we choose to extract third, fifth,
seventh layer features and input them into the fusion network
of the next stage. This avoids the reuse of information, makes
the extracted features more discrete, and is more conducive
to the differentiation of ships of different sizes, and properly
adjusts the size of each layer feature map. At the same time, on
the basis of layer 7, an expansion convolution, normalization,
and maximum pooling are carried out to obtain a new layer of
feature P8. The purpose of using expansion convolution here is
to avoid the disappearance of deep network features, improve
the resolution of feature maps [46]. When we continue to use
dilation convolution on this new feature, the shallow features
become very limited with the deepening of the convolution layer,
which is not conducive to the extraction of small-size vessels.
Therefore, residual connection [32] is introduced and P8 is fused
with the fifth layer feature after expansion convolution to obtain
the last feature layer P9.

Prediction results will be obtained after inputting these fused
features into the final category prediction and boxes prediction
network. The final network structure is shown in Fig. 9, and the
leftmost label is the change in the size and dimension of the
feature map.

E. Accuracy Evaluation

To evaluate the integrity rate and false alarm rate of ship recog-
nition, we take recall and precision as the accuracy evaluation

criteria. The calculation formula for recall and precision is as
follows:

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
. (7)

The higher the recall, the more ships that are correctly identi-
fied, and the higher the precision, the higher probability that the
identified ship is a real ship. When counting the number of ships,
if more than 90% of the area of a ship is correctly identified, it
is considered as a positive sample (TP), otherwise, it is regarded
as an incorrect negative sample (FN). If it is not a ship but is
identified as a ship, this is a false positive sample (FP).

IV. RESULTS

A. Model Results

After the model is trained, the test data are imported into the
model to get the predicted value. Fig. 10 shows loss function
curve and Precision-Recall curve for different categories in the
test set. Table I is the comparison result between the predicted
values with the labels of the test data, and the recall and precision
of each ship category are then calculated based on Table I, as
shown in Table II. After statistics, the overall recall for warships
is 0.935, and the precision is 0.970 (remove the two categories
of cargo ships and passenger ships). The specific identification
effects of all kinds of ships are shown in Fig. 11. Results
show that, in various complex scenes and multitarget scenes, the
method proposed in this article has high recognition accuracy for
all types of ships. It can be seen from Table II that the precision
of amphibious assault ships and passenger ships is lower than
that of other types of ships, possibly due to the influence of the
background of nearshore ports. In addition, as can be seen from
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Fig. 10. Left: loss function curve; right: Recall-Precision curve.

TABLE I
VARIOUS TYPES OF SHIP IDENTIFICATION STATISTICS

Horizontal axis is the true category, and the vertical axis is the predicted category.

TABLE II
ACCURACY OF VARIOUS SHIPS

Table I, supply ships are easily classified into other categories
because they are similar to cargo ships and landing ships, and
the number of samples is small. But the model still maintains a
fairly high accuracy overall.

B. Ablation Experiments

We compared the performance of ship extraction before and
after the model was improved. The comparison results are as
follows

1) In the traditional ship identification research, the target
ship is only labelled as a warship without specific clas-
sification. The data obtained in this way is input into the
network and trained to obtain a two-class model. Exper-
iment results show that the overall recall of the warship
identified by the model is 0.973, and the precision is 0.896.
Although the recall is very high, the precision is relatively
low. Moreover, although there are few civilian ships, they
are easily identified as warships, and the backgrounds such
as ports are also easily mistaken for warships. For this

reason, in the experiment, we chose a multiclassification
method to classify ships, rather than simply to divide the
dataset into two types: warships and nonwarships. Exper-
iment results show that this multiclassification strategy
can avoid misclassification caused by small differences
between classes. After adopting this strategy, the overall
recall of the warship is 0.935, and the precision is 0.970.
Although the recall is slightly lower, the precision is much
improved.

2) The traditional data expansion method expands the
datasets of different targets by the same multiple. Fol-
lowing this rule, we rotate all types of ships by the same
six times, and then input them into the network for model
training. The final recall and precision of various types
of ships are shown in Table III. Results show that the
recognition effect is poor for ships with fewer samples and
difficult to identify. This phenomenon is mainly caused by
an imbalance in the categories of the different samples, in
which the smaller number of samples (e.g., submarines
and supply ships) can easily be identified with the larger
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TABLE III
ACCURACY OF TRADITIONAL DATA EXPANSION METHOD

Fig. 11. Test results for different types of ships.

number of other samples (e.g., general warships and cargo
ships). For example, the recall of supply ships is as low
as 0.244, because most of them are recognized as general
warships and landing ships; the recall of submarines is
0.725, as some of them are also identified as general war-
ships. To bridge this gap, we changed the data expansion
method and carried out different times of data expansion
on different types of ships, the expansion strategy is as de-
scribed in Section II-B. After the expansion, the proportion
of submarine pictures has increased from 2.9% to 6.2%,
the proportion of supply ships has also increased some-
what, while the proportion of general warships, which are
more numerous, has decreased by 30% compared to the
pre-expansion period, and the proportion of cargo ships
has also decreased considerably. By this method, less
frequent classes were expanded more compare to more
common classes. The final results show that the recog-
nition accuracy of ships has been improved. As shown
in Table II, the recall of supply ships and submarines
increased to 0.822 and 0.980, respectively.

3) We chose to replace the original activation function swish
with ReLU in the preprocessing stage, and compared the
recognition effects of the two functions under the same
other conditions. Table IV (swish) and Table II (ReLU)
show the specific recognition effects of various ships using
different activation functions. Results show that the overall
recognition effect has been significantly improved, and the
recognition accuracy of most ships has been improved.
Before and after the activation function is modified, the
overall recall and precision for warships increase from
0.926 and 0.938 to 0.935 and 0.970, respectively.

4) In addition to the activation function introduced before, we
made many changes to the original EfficientDet network.
To compare the actual results, we compared the original
network with the network we used while keeping the rest
of the conditions the same, and after calculating the recall
of the original network for warship identification is 0.901,
precision is 0.873. After compiling, Fig. 12 compares the
identification results for warships under different ablation
experiments.

V. DISCUSSION

In this part, we compare our method with some current state-
of-the-art target detection networks, verify the portability of the
model on other data, and discuss areas for improvement.

A. Quantitative Evaluation

In addition to the original EfficientDet network, we also
compared our network with several other popular target
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TABLE IV
ACCURACY OF SWISH ACTIVATION FUNCTION

TABLE V
COMPARISON OF RECALL OF VARIOUS METHODS

All represents the overall recall of all ships.

TABLE VI
COMPARISON OF PRECISION OF VARIOUS METHODS

All represents the overall precision of all ships.

Fig. 12. Results of ablation experiments, corresponding to the methods de-
scribed in (1)–(4), respectively, since the focus of this article is on military
ships, the accuracy described here is only the overall accuracy after removing
passenger ships and cargo ships.

detection networks, including the one-stage target detection net-
work YOLO3, SSD, and the two-stage target detection network
Fast R-CNN. We used the same training data and the same
segmentation threshold to build the model, and the comparison
results are shown in Tables V and VI. It can be seen that our

method in this article is overall better than the original Effi-
cientDet network, and has certain advantages in both accuracy
and recognition integrity. Specifically, because the network has
a larger receptive field to extract deep features, the recognition
accuracy of large warships has been greatly improved. What is
more, the residual connection method ensures the extraction of
shallow features, so the overall recognition rate of small ships is
also relatively good. Additionally, as shown in Table VI, our
method also has obvious advantages compared with several
widely used target detection networks. The overall recall and
precision rates are generally higher than the current popular
detection networks. At the same time, compared with the similar
research of ship detection under the same complex conditions,
its recall is 0.926 and precision is 0.953 [28], which is close
to that of our proposed method, but ours can distinguish more
categories.

In addition to the dataset used in this article, we also col-
lected some ship images from “Dataset”, “DOTA”, and “Kaggle”
datasets. At the same time, we also ordered some more difficult
to identify maritime military targets from Google Maps images
of marine military bases worldwide in the last two years to
validate this model. A total of 196 warships were obtained. The
final result is that the overall recall of the warship is 0.86, and
the precision is 0.94. Specific recognition results are shown in
Fig. 13.
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Fig. 13. Identification results of different types of ships: (a)–(c) blurred or
noisy images; (d)–(f) different recognition scenarios from the original dataset
or scrapped ships.

Fig. 14. Difficult to recognize scene images.

B. Potential Future Works

In the experiments conducted with the new dataset, the recog-
nition rate of warships is relatively low. Still, in general, it
can meet the demand of quickly distinguishing ship categories,
which is mainly due to the large gap between the newly selected
dataset and the original dataset. The poor quality of some images
(as shown in Fig. 14), how to distinguish these ship categories
with large gaps from the training dataset is a direction to be
studied.

The following aspects of warship identification are worthy
of further research and improvement: in the testing process, it
is difficult to recognize features that have never appeared in

the training dataset or scenes that are quite different from the
training data. The domain adaptation [47] method may solve
this problem, while adding some unlabeled test set data for
self-training [48]. In addition, the imbalance of the training set
samples will affect the accuracy of the model. The method of
mixed loss function [49] may eliminate the influence of this
factor by assigning different weights to samples of different
orders of magnitude [50].

VI. CONCLUSION

This article constructed a target detection network based on a
multilayer feature extraction method and realized the detection
and classification of high-resolution remote sensing images of
maritime military ships. The specific contributions include: In
order to cooperate with the use of deep features, the resid-
ual connection, dilation convolution, and the ReLU activation
function are introduced. Meanwhile, a more useful feature is
extracted using the attention mechanism approach. In addition,
we adjusted the structure of the original EfficientDet network
to achieve the best recognition results. The recall of the overall
warship is 0.935, and the precision is 0.970.

The setup of ablation experiments allow us to draw the
following conclusions: the multiclassification approach used in
this article can greatly improve the precision, specifically, the
precision increased from the previous 0.896 to 0.970; While the
different degrees of data expansion improved the recognition
accuracy of less frequent samples, the recall of the supply ships
and submarines improved by 0.6 and 0.26, respectively; The use
of the ReLU activation function also led to some improvement
in overall recognition accuracy. In addition to which, compared
with the original EfficientDet network and other popular target
detection networks, the improved network has a great advantage.
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