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Combining 3D Radiative Transfer Model and
Convolutional Neural Network to Accurately

Estimate Forest Canopy Cover From Very
High-Resolution Satellite Images

Decai Jin, Jianbo Qi , Huaguo Huang, and Linyuan Li

Abstract—Forest canopy cover (FCC) plays an important role
in many ecological, hydrological and forestry applications. For
large-scale applications, FCC is usually estimated from remotely
sensed data by inverting radiative transfer models (RTMs) or
using data-driven regressions. In this article, we proposed a hybrid
model, which combines a 3-D RTM and transfer learning-based
convolutional neural network (T-CNN), to estimate FCC from
very high-resolution satellite images (e.g., Chinese GaoFen-2, 1
m resolution with 4 bands). Unlike common hybrid models that
are purely trained with simulation data, T-CNN combines sim-
ulation data-based pre-training and actual data-based transfer
learning, which is a widely used technique in artificial intelligence
for fine-tuning models. The performance of T-CNN was compared
with a random forest (RF) model and two general CNN models,
including CNN trained with actual dataset only (data-CNN) and
CNN trained with RTM simulation data only (RTM-CNN). Results
on the independent validation dataset (not used in training stage)
showed that T-CNN had higher accuracy (RMSE = 0.121, R2 =
0.83), compared with RF (RMSE = 0.26, R2 = 0.61), Data-CNN
(RMSE= 0.142, R2 = 0.81), and RTM-CNN (RMSE= 0.144, R2 =
0.73), which indicates that T-CNN has a strong transferability. Tests
on different training sizes showed that T-CNN (0.084 < RMSE
< 0.108) provided constantly better performances than RF (0.116
< RMSE < 0.122) and data-CNN (0.103 < RMSE < 0.128),
which demonstrates the potential of T-CNN as an alternative to
RTM-based inversion and data-driven regressions to estimate FCC,
especially when training data is imbalanced and inadequate.

Index Terms—Three-dimensional (3-D) radiative transfer
model, convolutional neural network (CNN), forest canopy cover
(FCC), transfer learning.

I. INTRODUCTION

FORESTS, covering nearly 30–40% of land surface across
the globe, play an essential role in both the carbon cycle and
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water cycle. Hence, the healthy and sustainable management of
forests is causing concerns, especially with climate anomalies
and the increasing greenhouse effect [1], [2]. Forest canopy
cover (FCC), which refers to the percentage of the ground
covered by a vertical projection of the outermost perimeter of
tree crowns [3], is widely used to assess the quality of forest
and describe forest changes. It is also a relevant factor in cli-
mate changes, energy transfer, transpiration and photosynthesis
[4]–[6]. According to the definition of forest given by the food
and agriculture organization of the United Nations [7], FCC is
the key indicator to define forest, which refers to an area with a
tree canopy cover of more than 10% and with an extent of more
than 0.5 hectare. This indicates that the accurate estimation of
FCC in low coverage areas, where the distinguishment between
understory and overstory should be considered, is substantially
important [8]. However, traditional field measurements tend to
be too laborious or inaccurate for large areas. Remote sensing,
which provides the ability to observe the canopy from the near
nadir view, currently, is the only technology that allows one to
monitor land surfaces globally.

To retrieve FCC from remotely sensed data, parametric regres-
sion methods that establish an empirical relationship between
field survey data and spectral data such as vegetation indices are
usually used [9]–[11]. Alternatively, machine learning methods,
such as random forest (RF), support vector machine (SVM),
and artificial neural network (ANN), tend to outperform the
commonly used parametric equations because of their nonlinear
fitting ability [12], [13]. However, these methods are depen-
dent on spectral data quality which is affected by the training
sample size and the pre-processing approaches such as data
normalization. Besides, some studies also attempt to estimate
FCC using radiative transfer models (RTMs), such as PROSAIL,
SCOPE on the basis of physical laws [14]. POLDER, MERIS
and CYCLOPES products also combined different RTMs with
machine learning methods to estimate fractional vegetation
cover on large scales [15]–[17]. However, RTMs always simplify
the 3-D structures and radiative transfer processes to a certain
degree, which may reduce the estimation accuracy. Also, based
on a physical assumption that pixel spectrum is a mixture of
spectra from different components, spectral mixture analysis
and pixel dichotomy model can be used [5], [8], [18], [72].
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However, the drawback is that it is difficult to obtain pure
vegetation and background pixels that are required in these
models. Thus, these methods are very limited in the area of
dense understory vegetation due to difficulty in distinguishing
between understory vegetation spectra and canopy spectra.

In the past decades, airborne light detection and ranging
(LiDAR) sensors have been increasingly used in forestry surveys
to estimate forest parameters [19], [20]. And the accuracy of
estimating FCC using airborne LiDAR data is quite high [21].
However, regionally or globally mapping FCC by using LiDAR
is still a challenge due to the limitation of flight time and distance,
as well as the high costs. Therefore, many studies often treat
LiDAR as reference data to validate other methods or combine
them with other remotely sensed data to estimate FCC in a large
area [1], [22].

Convolutional neural network (CNN) that is a special ma-
chine learning algorithm is designed to learn spatial features by
introducing receptive field through convolutional kernels. Some
studies have demonstrated that CNN outperforms traditional
machine learning algorithms (RF, ANN, SVM), especially for
tasks, such as image classification and regression [23], [24].
Another advantage of CNN is the ability to extract features auto-
matically, thus avoiding the feature engineering part [25], which
reduces the loss of information that may be induced by manual
feature selection in traditional machine learning algorithms. As
a result, CNN has gained great success in many remote sensing
applications, including land cover classification and inversion
of forest parameters [19], [26], [27]. For instance, combining
unmanned aerial vehicle (UAV) data and CNN, i.e., data-CNN,
Kattenborn et al. [28] estimated the FCC of different vegetation
types and gained pretty good estimation accuracy. However,
a drawback is that CNN usually requires a large number of
training datasets, which is not always fulfilled in tasks that field
measurements are not easy to perform or be accessible.

Typically, the dataset covering different canopy types and
growth conditions is almost impossible to be obtained com-
pletely [14]. Hence, data-driven regression methods, such as RF
and SVM are vulnerable, which are less likely to be extended
to a larger area [29], [30]. Instead, transfer learning that can
fine-tune pre-trained models (fitted with a big dataset) to achieve
high prediction accuracy on a new dataset by introducing a
small number of new data, is becoming a popular research
in both artificial intelligence and computer vision. Besides, it
can also effectively solve the problem of data imbalance and
inadequacy [31], [32]. However, there are fewer studies using
transfer learning in remote sensing, which is mainly limited by
the fact that big remote sensing datasets with labels are rarely
published and shared [27].

As an alternative to manually labeling training datasets, RTMs
can efficiently provide a large amount of labeled training data
that covers different conditions. It has been a faithful method to
train CNN, i.e., RTM-CNN. For instance, Annala et al. [33] used
simulation spectral data from RTM SLOP to train 1-D CNN,
which demonstrates the great potential of RTM-driven CNN.
However, commonly used 1-D RTMs abstract canopies into
homogeneous horizontal layers, which can not explicitly rep-
resent the canopy spatial heterogeneity. More precisely, the

overstory, which is the major indicator of forest, cannot be distin-
guished from the understory vegetation from a single spectrum,
which may lead to estimation errors. These limitations indicate
that 3-D RTMs have the potential to replace 1-D RTMs in inver-
sion models, since 3D RTMs, such as DART [34], RAPID [35],
and LESS [36], can simulate canopy reflectance spectra as well
as images based on explicitly described structures. Compared
to 1-D RTMs, images simulated by 3-D RTMs not only provide
spectral information but also texture information. In fact, the
possibility to use 3-D RTMs to estimate canopy parameters has
already been explored by some researchers [37]–[40]. Therefore,
3-D RTMs may be an alternative for hybrid models, especially
within the current scenario of increasing computation power and
model acceleration [41], [42].

In this article, we proposed a hybrid model [transfer learning-
based convolutional neural network (T-CNN)] to estimate FCC
based on the combination of a 3-D RTM and transfer learning-
based CNN. There are three main advantages as follows: a large
number of simulation images that cover various FCC situations
are generated by the 3-D RTM; the application of transfer learn-
ing effectively reduces the requirement for a large actual dataset,
which is a must for most data-driven models; and the CNN
architecture without complex feature engineering intelligently
selects the optimal combination of features to reduce manual
workload.

In Section II, study areas, field measurements, satellite and
LiDAR data, as well as the processing of data will be introduced.
Section III describes the simulation process of a 3-D RTM, the
realization of the proposed T-CNN method and the inversion of
FCC using other machine learning methods. In Section IV, the
results of T-CNN are compared with other methods. We also
assess the transferability of the proposed T-CNN and compare
performances with different training sizes. Section V and VI are
the discussion and conclusion remarks.

II. MATERIALS

A. Study Area and Field Measurements

Two study areas, which respectively represent natural forest
and planted forest, were selected in this article. The first area
is located in the north region (50 ° 55 ‘ N, 121 ° 30 ’E) of
Genhe Forest Reserve in Inner Mongolia, China [see Fig. 1(a)].
It has a cold continental monsoon climate with an average
temperature of around −5.3°C, annual precipitation from 450
to 500 millimeters, and an average elevation of 1000 m. The
average temperature of the growing season ranges from 8°C in
May to 16°C in July. Precipitation is concentrated in August
and September. The growing season is generally from early
May to late September. The forest coverage rate is around 75%.
Dominant species are conifers, including Dahurian Larch (Larix
gmelinii), White Birch (Betula platyphylla Suk). The under-
story vegetation of Dahurian Larch is mainly Rhododendron
(Rhododendron simsii Planch.) or Ledum (Ledum palustre L).
The height of Rhododendron is around 1.5 m, while Ledum is
less than 0.3 m. The other study area is located in Chengde (42 °
23 ’ N, 117 ° 19 ’ E), China [see Fig. 1(a)]. The average elevation
is around 1500 m and the forest coverage rate is close to 80%.
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Fig. 1. Overview of the study area. (a) The Geographical location of Genhe
(red point) and Chengde (blue point) in China. (b) Satellite image of Genhe area,
including the distribution of field plots. (c) Original digital photographs (left)
and the corresponding FCC images (right) after morphology operation based on
the threshold segmentation.

The tree species mainly consist of Larix principis-rupprechtii
(Larix principis-rupprechtii Mayr) and spruce [Picea abies (L.)
H.Karst]. The understory vegetation mainly includes honey-
suckle (Lonicera japonica Thunb), Wild Rose (R. multiflora).

FCCs were measured in 18 plots [45 m × 45 m, Fig. 1(b)] in
the Genhe area by using upward photography [see Fig. 1(c)].
Upward photography provided a near-vertical direction ob-
servation, similar to the definition of FCC, which is also a
conventional measurement of canopy cover. Approximately 50
upward photographs were taken using a Nikon D3000 along two
diagonals across the plot in each plot. The size of the photograph
is 2592 × 3872 pixels and the field of view is about 66.4°×
47.9°. The algorithm of Korhonen and Heikkinen [43] was
employed to separate the crown pixels from the sky pixels, which
uses a threshold to classify photographs into binary images and
then use the morphology method to remove within-crown gaps.
Finally, the FCC of each photograph is the fraction of crown
pixels.

B. GaoFen-2 Data

The GaoFen-2 (GF-2) is a multispectral (514, 546, 656, and
822 nm), very-high-resolution (panchromatic band: 1 m; mul-
tispectral band: 4 m) and wide-swath (about 45 km) imaging
mission, which supports the monitoring of vegetation, water
bodies and soil covers. The GF-2 satellite was launched in 2014,
which enables a revisit time of five days. However, GF-2 is
only available from 2014, thus the image used in Genhe was
obtained in June 2015. In addition, due to the weather with many
clouds in Chengde, the other GF-2 imagery was obtained in June
2017. The preprocessing of GF-2 image was conducted in ENVI.
First, the radiometric calibration coefficient of GaoFen-2 was
used to calibrate digital numbers into radiance value. Second,
the Gram-Schmidt Pan Sharpening method was used to fuse
panchromatic imagery with 1 m resolution and multispectral
imagery with 4 m resolution. And then, the quick atmosphere
correction (QUAC) was used to correct the atmosphere effect to

Fig. 2. Workflow of estimating FCC on the basis of T-CNN model.

obtain a reflectance image. In addition, previous studies showed
that there is a significant relationship between normalized differ-
ence vegetable index (NDVI) and canopy cover [8], [14], [18],
therefore, NDVI was computed and added as the fifth channel
of GF-2 images.

C. Airborne LiDAR Data

The airborne LiDAR with a small footprint was obtained
from August 16 to September 25, 2012, in Genhe area. The
airborne platform, which is equipped with a Leica ALS60,
flies at an altitude of nearly 1800 m above ground. The scan
angle is less than 35° and the point cloud density is around 8
points/m2. In Chengde, the LiDAR data was obtained with the
same instrument of Genhe. The flight height is also around 1800
m above ground, which produces a point cloud density around
8 points/m2.

To obtain the canopy height model (CHM), the noise points
were first removed manually, and cloth simulation filtering
algorithm [44] was then used to separate ground points from
nonground points. Finally, the CHM was generated using a
pit-free algorithm embed in lidR package with a resolution of
0.5 m [45], [46].

III. METHODS

The retrieving process mainly consists of three parts: data
preparation; model development; and model validation, as
shown in Fig. 2. All the methods including hybrid inversion
model (T-CNN), CNN fitted with actual dataset only (data-
CNN), CNN fitted with RTM simulated dataset only (RTM-
CNN), and RF were implemented with Python. In addition, for
testing the overall performance of these methods, the actual
remote sensing data (Genhe) was split into training dataset
(TR-dataset) and testing dataset (TE-dataset). Further, from one
site to another site is challenging [47], [73], [74], thus the devel-
oped models were further validated on the independent dataset
(IN-dataset). The IN-dataset was collected in a geographically
different site, Chengde and never used to train the model.
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Fig. 3. Reflectance of the five soils used to represent the possible range of soil
spectral.

A. Data Preparation

1) Actual Dataset: TR-dataset and TE-dataset are from GF-2
and the corresponding FCC that is derived from CHM in Genhe.
GF-2 images were first georeferenced with CHM through manu-
ally selected control points. In addition, since the higher height of
understory vegetation is around 1.5 m to 2 m, CHM derived FCC
was computed as the percentage of pixels with an appropriate
height value that larger than 2.5 m within a certain extent

Canopy Cover =
CHMvalue>2.5

CHMtotal
(1)

Where CHMvalue>2.5 means the pixels that CHM is higher than
2.5 belong to the canopy. CHMtotal represents all pixels of
CHM.

To match the resolution of estimated FCC with field-measured
FCC, the GF-2 images and CHM were clipped into small tiles,
each of which has the same size of 48 m× 48 m, which produced
5700 tiles in Genhe area. As mentioned in the introduction,
LiDAR is a relatively expensive measurement, thus reducing
data volume would effectively decrease costs. Therefore, we
focus more on whether the proposed model could generate a
well accuracy with a small dataset. In order to test the model
performance over a small dataset, we set aside 10% of all the
tiles for TR-dataset and 90% for TE-dataset, which is different
from common machine learning where the training dataset is
usually much larger than the testing dataset.

IN-dataset was mainly set to test the transferability of a ma-
chine learning model and was not used in the training process. In
this article, it has the same processing protocol as TR-dataset and
TE-dataset, the only difference is that the GF-2 and CHM data
used in IN-dataset are from a different location, i.e., Chengde
area, where canopy spatial arrangement has apparent difference
with Genhe area. IN-dataset has 11 020 tiles.

2) Simulation Dataset: In this article, a Radiosity Applica-
ble to Porous IndiviDual Objects for directional reflectance over
complex vegetated scenes (RAPID) model is used to simulate
GF-2 imagery. RAPID is a 3-D RTM by using the concept of
porous individual thin objects, which was proposed in 2013 by
Huang et al. [35]. With consisting development, the RAPID
model can simulate optical, LiDAR, thermal, and microwave
signals with a unified 3D scene and input parameters [48]–[50].
RAPID reasonably simplifies the 3-D structure of vegetation,
thus improving the efficiency of radiative transfer simulation

TABLE I
INPUT PARAMETERS OF RAPID SIMULATIONS

in large scenes. In other words, it is characterized by batch
simulating images efficiently, which is more suitable for training
CNN that requires a larger number of images. Thus, the newest
version of RAPID (downloaded from1) was used to simulate
multispectral images.

A prerequisite to simulate images using 3-D RTM is to build
virtual scenes. In order to make the virtual forest scene more
reasonable, we used physiological processes predicting growth
model (3-PG) to simulate the input parameters of RAPID. 3-PG
is a forest growth model based on simple plant physiological
principles [51], which has been used to estimate forest produc-
tivity in many countries and regions. As a result, with the use
of the 3-PG, the number of parameter combinations for RAPID
was effectively reduced. For example, the input parameters of
RAPID, such as mean diameter at breast height, leaf area index,
stem density was generated by 3-PG. The locations of trunks
were randomly distributed within the plot. The leaf spectra were
obtained from the PROSPECT model by inputting different
combinations of leaf parameters to cover various land surface
conditions. In fact, in the case of just using red, green, blue,
and near-infrared band, the variation of chlorophyll content and
structure parameter N has covered possible distribution range
of common leaf spectra. After testing, fixing brown pigment,
dry matter content and equivalent water thickness does not lose
accuracy, thus we only modified chlorophyll content and N for
the sake of simplicity, as given in Table I. For illumination and
observation geometries, nadir view was always guaranteed, but
the solar zenith and azimuth ranged from 0° to 60° and from 125°
to 250°, respectively. The varying solar angles can also emulate
the local solar angle change induced by rugged terrains, since
previous studies showed that solar position and terrain both have
a certain degree of influence on the inversion of forest parameters
[52].

The soil spectra data used in this article was downloaded from
the International Soil Reference and Information Centre.2 These
soil data contained a wide range of soil types with different soil
brightness in the world [53], including 253 Chinese soil profiles.
To remove redundant soil data and decrease calculation volume,

1[Online]. Available: http://www.3dforest.cn/
2[Online]. Available: http://www.isric.org

http://www.3dforest.cn/
http://www.isric.org
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Fig. 4. Density scatter plots of near infrared (band 4) and red band (band 3)
reflectance. On the left, the scatter distribution for simulation dataset. On the
right, the distribution of real dataset from GF-2 in study area.

Fig. 5. Distribution of the mismatch values (RMSE) as computed by (2) over
a database of 1000 actual spectra.

we employed mean values of similar profiles. The spectral
angle mapper [14] was used to filter similar soil profiles with
a spectral angle smaller than 0.1. In the end, five representative
soil reflectance (see Fig. 3) were determined from original soil
data. Based on the parameter combinations in Table I, a total of
65318 images were finally simulated.

First evaluation of the simulations was performed by simply
comparing the red (band 3) and near infrared (band 4) reflectance
values (see Fig. 4). As expected, the soil points are more con-
centrated in the bottom and right part of the scatter plot. Further
evaluating was executed by comparing real dataset, which was
composed of 150 000 random sampling pixels from GF-2 data
in study area. Results shows that the differences exist mainly
on the right side of the scatter plot, which is due to the real soil
pixels have small percentage in study area (the average FCC was
both larger than 0.6). The distribution of simulation pixels has
completely covered the real dataset distribution.

However, more important is the realism with which simulated
spectra follow the actual pixels. The mismatch, ϕ, between each
randomly selected pixels (Ω) and the nearest simulated spectra
(γ̂) was computed according to (2) over the 150 000 actual
spectra (γ) for the four bands (b) considered here

ϕ = minΩ

⎛⎝√∑4
b = 1 (γb − γ̂b)

2

4

⎞⎠ . (2)

Fig. 5 shows that most of RMSEs calculated by (2) and
residuals of each band are concentrated around zero, which
indicates that simulated reflectance is very close to an actual
case.

Fig. 6. Workflow of the proposed method. First, the simulation datasets
from RAPID are learned by CNN. Then, the learned model is fine-tuned with
remotely sensed data, achieving a transferred inversion of FCC. Finally, the field
measurements and CHM-derived FCC are used to validate the model.

B. Transfer Learning-Based Convolutional Neural Network

CNN is a multilayer stacked network, which mainly includes
input layer, hidden layer (convolutional, pooling, fully con-
nected), and output layer. Compared with general CNN training,
the proposed T-CNN mainly has two stages (see Fig. 6), includ-
ing model pretraining and transfer learning. In model pretrain-
ing, we used the simulation dataset (SI-dataset) to pre-train the
CNN. The purpose of this step is to initialize the neural network
weights. Usually, CNN is composed of several blocks and fully
connected layers at the end. The block generally consists of
one or two convolution layers and a special pooling layer. The
convolution layer is responsible for extracting data feature maps
and the pooling layer focuses on reducing the dimensionality of
feature maps and presenting redundant information. The fully
connected layer is used to implement regression or classification
tasks. A linear activation function was applied before the output
of the fully connected layer. Where the linear activation function
stands for regression function with the mathematical formulation

yi =
∑
i

(wixi) + bi (3)

where yi is the output of the model, wi is the weight between ith
feature and output, xi is the ith feature value and bi is the bias. In
addition, the mean absolute percentage error function was used
as the loss function

L (Y, f (x)) =
1

m

m∑
i = 1

|Y − f (x)

Y
| (4)

where Y and f(x) represent the reference and prediction FCC,
respectively, and m is the number of samples.

The study employed a gradient descent algorithm called
Adam optimizer, which can dynamically adjust the gradient
descent process and accelerate model convergence. In this ar-
ticle, we used a dropout layer, which randomly samples the
connections between neurons of different fully connected layers
in a certain ratio, and early stopped the training process to avoid
overfitting.

At the transfer learning stage, only TR-dataset was used to
fine-tune the model. In particular, the first three layers of CNN
were frozen and the rest layers were retrained with the TR-
dataset. Other settings, such as activation function, were the
same as those in the previous stage.
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TABLE II
DATASETS USED FOR DIFFERENT INVERSION MODELS

C. Comparison With Other Machine Learning Algorithms

RF introduced by Breiman [54] is a machine learning algo-
rithm commonly used for FCC regression [22], [55]. RF, which
is composed of many decision trees, obtains classification or
regression results by voting or calculating the average value.
Therefore, RF is more robust than general decision trees. Be-
sides, RF uses the bootstrap method to carry out random sam-
pling of the training samples, which prevents the overfitting of
the model. However, it would lead to a certain percentage (about
36.8%) of samples (out-of-bag error data) not being sampled.
Hence, out-of-bag error data can be used to verify robustness
with cross-validation. One of the cores of RF is feature selection.
In this article, we chose all bands (B1–B4), vegetable indexes
(NDVI, Ratio Vegetation Index, Difference Vegetation Index),
and texture (mean, variance, contrast, dissimilarity, homogene-
ity, energy, correlation, angular second moment), to build feature
dataset. Besides, to remove the collinearities among features,
recursive feature elimination was used to filter features. In
addition, we also tested the number of estimators and depth of
RF by a large number of trials.

Data-CNN employed the same CNN architecture as the one
used in the pre-training stage of T-CNN. The only difference
between them was the input data. Specifically, Data-CNN used
the TR-dataset, while T-CNN, in the pre-training stage, used the
SI-dataset.

RTM-CNN also has exactly the same architecture as T-CNN
and Data-CNN. Compared with T-CNN, it only has the pre-
training stage. This model is mainly for assessing the inversion
performance based purely on SI-dataset, which is a very widely
used approach in remote sensing inversion studies. The applica-
tion details of dataset are given in Table II.

D. Accuracy Assessment

To evaluate the accuracy of the model, we used the coefficient
of determination (R2), root-mean-squared error (RMSE) and
bias as assessment indicators

RMSE =

√∑n
i = 1 (xi − yi)

2

n
(5)

Bias =

∑n
i = 1 (xi− yi)

n
(6)

where xi and yi are the cover and the predicted cover of the
forest. n means the quantity of validation data.

Fig. 7. Validation of the CHM-derived FCC using field photography.

IV. RESULTS

A. Reliability of CHM-Derived FCC

Fig. 7 shows the comparison between CHM-derived FCC
and photograph-derived FCC. The result shows that there is a
correlation with an RMSE of 0.074 and a Bias of −0.041, which
indicated that CHM-derived FCC employed by the study can be
considered as an accurate FCC estimation.

B. Performance of Data-Driven Models

For RF, Data-CNN and T-CNN, TR-dataset, TE-dataset and
IN-dataset were used to validate the estimation accuracy and the
results were given in Table III. Considering the CHM-derived
FCC (including TR-dataset and TE-dataset) at Genhe, the T-
CNN model (R2 = 0.80, RMSE = 0.109) outperformed RF (R2

= 0.75, RMSE = 0.122) and Data-CNN (R2 = 0.74, RMSE
= 0.126) models on the TE-dataset. But the performance of
Data-CNN was better than RF at TR-dataset.

A similar goodness-of-fit validation was implemented on the
IN-dataset. Fig. 8 shows that the relationship between CHM-
derived FCC and the corresponding prediction of different mod-
els. In terms of RMSE and R2, results showed that accuracy of
T-CNN (R2 = 0.83, RMSE = 0.121) was higher than RF (R2

= 0.61, RMSE = 0.26) and Data-CNN (R2 = 0.81, RMSE =
0.142). In addition, noticed that the transfer performance of RF
was quite poor. For example, FCC was overestimated at low
canopy cover and was underestimated at high canopy cover.

The validation results (see Table III) from the ground FCC at
Genhe showed that T-CNN (R2 = 0.06) did not always perform
well based on R2, which may be due to the small validation
sample size and imbalanced ground FCCs that are generally
greater than 0.6 in Genhe. Even so, the accuracy of T-CNN
(RMSE = 0.105 and bias = -0.045) has already been closed to
that of RF (RMSE = 0.079 and Bias = 0.019).

C. RTM-CNN Performance

FCC can also be inverted by RTM-CNN trained with SI-
dataset. Unlike data-driven models, RTM-CNN did not use any
actual measurements, i.e., GF-2 images and the corresponding
CHM-derived FCC. We compared its estimation accuracy with
IN-dataset and the full of the dataset from Genhe, i.e., the total of
TR-dataset and TE-dataset. As shown in Fig. 9, RTM-CNN has
better performance on the IN-dataset than on the Genhe dataset
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TABLE III
RANDOM FOREST, DATA-DRIVEN DEEP LEARNING (DATA-CNN) AND DEEP TRANSFER LEARNING (T-CNN) ACCURACY STATISTICS ON TRANSFER DATASET,

TEST DATASET, GROUND MEASUREMENTS (GROUND), AND INDEPENDENT DATASET

Fig. 8. Performance of different models on the IN-dataset.

in terms of RMSE or R2, but we also found more discrete points
on the IN-dataset.

D. Influences of Training Dataset Size

Fig. 10 showed the accuracies (RMSE) of RF, Data-CNN
and T-CNN under different training size. Please noted that the

Fig. 9. Performance of RTM-CNN on the different datasets.

Fig. 10. Prediction performance of RF, Data-CNN and T-CNN models with
respective samples size.

training dataset and validation dataset here refer to GF-2 images
and the corresponding CHM-derived FCC from Genhe. Con-
sidering the performance of T-CNN model, higher prediction
accuracy was obtained for any training sample size and RMSE
decreased significantly from 0.108 to 0.084 with increasing
sample size. For RF model, RMSE was insensitive to training
size, but had a larger error (between 0.116 and 0.122) than
T-CNN. For Data-CNN model, RMSE decreased from 0.128
to 0.103 with the increase of training size. In addition, the
performance of Data-CNN model was worse than RF when the
sample size was small. Subsequently, it surpassed the accuracy
of RF and approached T-CNN, as the number of training data
size increased.

V. DISCUSSION

Accurate estimate of FCC is of great importance for policy
makers and practical applications. The transferable prediction
of the FCC is at the core of this article. The fundamental
assumption underlying our method is that deep transfer learning
can be trained with simulation data generated by RTMs, and be
transferred to specific regions through a small number of real
samples.
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A. T-CNN Model Performance on FCC Estimation

FCC prediction accuracy was higher when CNN was em-
ployed than other machine learning methods (see Table III).
This finding was also consistent with Kattenborn et al. [28] who
used CNN to regress the canopy cover based on images from
UAV. Similarly, Pullanagari et al. [47] confirmed that 1-D-CNN
has a higher accuracy of nitrogen content estimation based on a
large number of multiposition and multitime hyperspectral data.
But these studies often require large amounts of data to support
model development, which is a challenge in forestry due to the
complexity and difficulty of forest surveys. The application of
hybrid models can help to reduce the need for actual datasets
[27]. For instance, Annala et al. [33] presented a promising test to
successfully invert Cab using a hyperspectral simulation dataset
from RTM SLOP instead of hyperspectral measurement data
from UAV. Previous studies have focused more on hyperspectral
data and 1-D-CNN, and rarely ventured into the application of
multi-spectral images. As a further succession and extension of
previous studies, this research successfully inverts FCC based
on simulation dataset from RAPID combined with CNN (here
refers to RTM-CNN) as shown in Fig. 9. The prediction accu-
racy was further improved by using transfer learning which is
hot topic in the computer vision. It was worth noting that we
only used a small amount of data (TR-dataset) for transfer but
obtained better accuracy than Data-CNN.

More complex models, e.g., CNN, are more likely to overfit-
ting that model performs well in training dataset while performs
badly in the testing dataset. Compared to RF, T-CNN and Data-
CNN had significant overfitting problems (see Table III), where
R2 on TR-dataset was 0.99, while R2 on TE-dataset was much
lower. Thus, the performance of models on the independent
dataset was quite important for evaluating the robustness. As
shown in Fig. 8, T-CNN model has the best performance with
an RMSE of 12.1% on IN-dataset, which is also the highest ac-
curacy within the previously published studies (RMSE 12-18%)
on optically-based FCC estimation in the boreal forest [8], [56],
[57] or conifer forest sites [12], [58]. In addition, we obviously
observed RF has an overestimation of low cover and underesti-
mation of high cover, which was consistent with Sexton et al.
[59], Hadi et al. [8] and DiMiceli et al. [60]. The overestimation
may be caused by the understory, which usually has 20–45%
contribution in the canopy reflectance [61], especially in low and
middle areas where the understory is incorrectly recognized as
overstory since only reflectance information, instead of height,
is used. But this phenomenon was not observed in T-CNN
and Data-CNN, which may be attributed to simulation dataset
providing priors and realistic constraints in model training [62]
and the more effective feature extraction of CNN than manual
feature selection of RF [23], [63].

B. Evaluating the Predictive Performance of RTM-CNN

Although, RTMs have been successfully inverted for many
forest parameters, e.g., leaf area index, canopy cover, nitrogen
content, etc., what has been a source of criticism is its ill-posed
inversion. This research evaluated the performance of RTM-
CNN on two different datasets and found that its estimation
accuracy was lower than that of the data-driven models (see

Fig. 11. Distribution of estimation error in IN-dataset using RF, RTM-CNN,
Data-CNN, and T-CNN model. Negative values mean that the cover is underes-
timated.

Table III). In particular, there were significantly more discrete
predictions on IN-dataset (see Fig. 9), which may be due to
the differences between simulation data and real remote sensing
data. And the reason for these differences is often because of
the complexity of canopy and uncertainties related to measure-
ments, which may lead to ill-posed inversion [64]. Just as RTM’s
simplification of the canopy shape might be not consistent with
the real canopy and the distribution of trees did not correspond
to the distribution under real nature conditions in this research.
Koetz et al. [65] used LiDAR to reconstruct the 3-D structure
of the single tree and inverted LAI, Cab, canopy cover through
RTM. They found that canopy cover estimates based on the real
3-D structure of a single tree resulted in a 22.2% lower RMSE
and a 17% increase in terms of R2. In summary, inversion of
RTM does not use any measurements, but its ill-posed problem
still affects the estimation accuracy of FCC.

C. Spatial Distribution of Estimation Errors

The prediction of FCC is often disturbed by many factors
(understory, terrain, illumination, and zenith angles). Hence,
accurately predicting FCC is still a very difficult task. As shown
in Figs. 8 and 9, some scatters that are away from the 1:1 line
have significant errors. To further illustrate the error distribution,
the error map of different models on IN-dataset was shown
in Fig. 11. The result shows that the error maps of different
inversion models have similar spatial distribution. Compared
with CHM, we found overestimation often occurs in bare ground
with grass and underestimation is more likely to occur at the edge
of the forest, which is clearly reflected in the error maps of all
models. Apparently, the grass has similar reflectance with tree
crown, thus grassland may be wrongly recognized as tree crown.
For the underestimation around the border between forest and
grassland, it is may be caused by the mixture pixel that contains
both grassland and tree crowns, which dramatically changes the
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spectra and texture information. Nevertheless, compared with
RT, T-CNN and Data-CNN still reduce the impact of these
factors.

D. Influence of Training Size for Model Development

Machine learning algorithms are particularly appealing in the
remote sensing field due to the powerful nonlinear fitting ability
[66], [67]. However, the imbalance and scarce training data is
common in large area natural resource applications using remote
sensing, such as forest classification [29], which affects the
prediction accuracy. At present, most studies take more attention
to how the machine learning algorithm itself overcomes this
problem. But the algorithm itself is still troubled by the amount
of input information. This article provides new thinking from the
perspective of data enhancement and data simulation. As shown
in Fig. 10, T-CNN has the best performance against the different
training sizes. Please noted that the accuracy of Data-CNN may
be close to T-CNN in the case of sufficient training samples.
However, labeling a large amount of training data is extremely
expensive for Data-CNN. T-CNN is thus also a good alternative
to Data-CNN. Similarly, Ma et al. [68] have used simulation
data to expand the training dataset for Data-CNN implementing
image segmentation, and achieved the aim of reducing the real
labeled samples at the same level of accuracy.

E. Model Transferability

Typically, many regression methods are accustomed to split-
ting the dataset into training and test dataset. The fact that the
test dataset is randomly sampled and validates the accuracy of
the model from the same data source is not a good representation
of the robustness of the model. This approach may cause high
accuracy at the test dataset while it is less likely to extend on an
independent dataset. Thus, some studies used the datasets from
different locations or times to validate model transferability.
Thus, in the article, an IN-dataset from Chengde, which was not
included in the TR-dataset and TE-dataset, was used to validate
model transferability.

We observed that both Data-CNN and T-CNN with CNN ar-
chitecture have better transferability than RF (see Fig. 8), which
may be attributed to the powerful feature extraction capability
of CNN that helps to identify and extract the key features. For
instance, Pullanagari et al. [47] transferred 1-D-CNN model to
other sites and gained highest estimation accuracy for nitrogen
content compared to other machine learning methods. In addi-
tion, T-CNN performed better than Data-CNN, which is due to
the richness of simulation dataset achieved by samples from dif-
ferent parameter combinations. Just like Siegmann and Jarmer
[69] improved prediction accuracy for LAI through incorpo-
rating a large range of LAI data. Even though independent site
was geographically and temporally different, the performance of
T-CNN still was best, which indicates powerful transferability
and reliability.

F. Effects of Different Resolutions for T-CNN

In recent years, there has been an increasing number of high-
resolution FCC mapping studies [70], which is beneficial for

Fig. 12. Relationships between 10 m and 20 m, 30 m of FCC for T-CNN
are shown (upper). The FCCs of different resolutions are aggregated to 60 m
resolution for comparison. The FCC mappings with different resolutions are
shown (bottom).

our quantitative management of forests. High-resolution FCC
mapping as the input parameters for some physical and statistical
models helps to improve model accuracy. For instance, Gastón
et al. [71] evaluated the influences of the different vegetation
resolutions for multiscale habitat selection models and found
that high-resolution FCC helps to estimate species’ habitat. Al-
though this article mainly studied the FCC at a coarser resolution
(48 m), the FCC of different resolutions can also be estimated
by modifying the input size of T-CNN. As shown in Fig. 12,
the estimation results of different resolutions (10, 20, 30 m)
are compared under 60 m resolution. It can be seen that FCC
predictions under different resolutions are generally consistent
with average differences of all pixels less than 5%. This indicates
that the proposed T-CNN can be used to estimate FCC under
different resolutions without considering scale effect.

VI. CONCLUSION

This article proposed T-CNN method to estimate FCC, which
combines 3-D RTM RAPID and transfer learning based on
CNN. The significance of this method is threefold. First, transfer
learning provides an effective approach to fill the gap between
simulated dataset and actual dataset, which makes the inversion
algorithm more adaptive to different areas. Second, T-CNN
achieved relatively high accuracy by using only a small amount
(10%) of the actual dataset. It also mitigates the data imbalance
problem, since the simulation dataset used to train the model has
already covered a wide range of conditions. Finally, overestima-
tion of low cover and underestimation of high cover, which is
common in many empirical models, have been optimized. Com-
pared with RF, Data-CNN and RTM-CNN, T-CNN achieved the
highest prediction accuracy.

Despite its effectiveness, T-CNN still needs actual measure-
ments, which may be not always fulfilled, especially when
mapping forest parameters on large scales. Future work may
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focus on how to narrow the gap between remote sensing images
and simulated images by using GAN network, such as cycle-
GAN, which may completely remove the requirement for actual
measurements.
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