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Patch-Free Bilateral Network for Hyperspectral
Image Classification Using Limited Samples

Bing Liu and Xuchu Yu

Abstract—Recently, data-driven methods represented by deep
learning have been widely used in hyperspectral image (HSI) clas-
sification and achieved the promising success. However, using less
labeled samples to obtain higher classification accuracy is still a
challenging task. In this study, we propose a patch-free bilateral
network (PBiNet) for HSI classification. In order to make better use
of the features with different scales, PBiNet uses the spatial path and
the semantic path to obtain different level features for classification.
The spatial path with small stride is used to retain the spatial
detail information. The semantic path with fast down sampling
rate is used to retain high-level semantic information. Using fast
downsampling rates is to expand the scope of receptive field, so
that semantic branch can better focus on global information. Then
we design a feature fusion module to fuse the features obtained by
the two paths. Finally, we use the classification maps produced by
different scale features to calculate the loss function to optimize the
whole model. Due to the better use of different levels of features, the
proposed method could achieve higher classification accuracy with
limited labeled samples. More importantly, because the whole HSI
is used as the input, the proposed method has higher computational
efficiency. To verify the effectiveness of the proposed method, we
carried out classification experiments on four popular HSI datasets.
Quantitative and qualitative experimental results show that the
accuracy of the proposed method exceeds the compared methods.

Index Terms—Bilateral network, deep learning (DL),
hyperspectral image (HSI) classification.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) composed of hundreds
of bands contain plentiful spectral and spatial information,

which offer great potentials for land-cover mapping [1]–[5].
However, using these plentiful information to achieve accurate
classification of HSIs has always been one of the research
hotspots in the field of remote sensing [6]. HSI classification task
usually faces two problems: lack of labeled training samples and
high data dimension. Early HSI classification methods mainly
rely on feature extraction to deal with the above two problems.
For example, support vector machine (SVM) combined with
extended morphological profiles (EMP) features could effec-
tively improve the classification accuracy [7]. Meanwhile, the
researchers also explored using local binary pattern (LBP) [8],
Gabor features [9], slow features [10], salient features [11],
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invariant attribute profiles (IAPs) [12], joint and progressive
subspace analysis (JPSA) [13], and other features to improve
the accuracy of HSI classification. Although feature extraction
methods could improve HSI classification accuracy, there is an
irreparable deficiency, that is, they need to manually design
feature extraction rules [14]. More importantly, these feature
extraction methods need to set different hyperparameters for
different HSIs to ensure high classification accuracy.

The deep learning (DL) method, which can automatically
learn and extract features from data for classification tasks,
could make up for the deficiency of manually designing feature
extraction rules [15], [16]. Therefore, DL method is widely used
to improve the classification accuracy of HSIs. At present, HSI
classification based on DL can be grouped into subpixel, pixel,
patch, and scene level. The pixel level method takes the spectral
vector or the extracted 1-D feature of the selected sample as
the input of the DL model. Typical pixel level DL classifiers
include 1-D convolutional neural network (1-D-CNN) [17], re-
current neural network (RNN) [18], deep belief network (DBN)
[19], etc.

The pixel level method could not use the neighborhood spatial
information for HSI classification. To deal with this deficiency,
the patch level DL classifiers take the local cube within a
certain neighborhood of the central pixel as the input of the
DL model, so that the DL method could better mine the features
suitable for classification tasks. To this end, the patch level DL
classifiers received extensive attention in HSI classification. For
example, 3-D-CNN [20], 2-D-RNN [21], capsule network [22]
are used to improve HSI classification accuracy, respectively.
Meanwhile, the latest deep network architectures such as cas-
caded recurrent neural networks [23], attention mechanism [24],
[25], graph convolutional networks [26], residual learning [27],
and densely connected network [28] are used to improve the
results of HSI classification. In order to further improve the
classification accuracy, D-CNN designs a new discriminative
objective function [29]. Meanwhile, Liu et al. [30] combined the
superpixel method and DL method to obtain better classification
accuracy. Generally, training DL model usually requires a large
number of labeled samples to optimize thousands of parameters
in the model. However, different from natural images, it is more
difficult to obtain artificial label information in HSIs. Therefore,
the number of labeled samples that could be used to train
the deep models in HSI classification is usually limited [31].
Although the patch level DL classifier has achieved good results,
it still faces the problem of lacking enough labeled training
samples.
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Semisupervised learning methods could solve the problem
of limited labeled samples in supervised learning method and
insufficient feature learning in unsupervised learning method at
the same time, and have become one of the research hotspots
in HSI classification. Traditional semisupervised algorithms
for HSI classification usually include semisupervised SVM,
graph-based algorithms, label propagation, and self-learning.
For example, Wang et al. [32] proposed a label propagation
algorithm combining spectral and spatial information, achieving
higher classification accuracy than SVM and semisupervised
SVM. Tan et al. [33] conducted a comprehensive study on
the utilization of spatial information in HSIs semisupervised
classification, further improving the classification accuracy with
limited training samples. The traditional semisupervised classi-
fication algorithm can improve the accuracy of HSI classification
to a certain extent, but still can not achieve satisfactory results.
As for DL-based method, semisupervised learning methods such
as self-training [34] and cotraining [35] have been applied to the
training process of deep model. In addition, advanced semisu-
pervised deep models such as generative adversarial network
(GAN) [36], [37] have also been widely used in HSI classifi-
cation. The core idea of transfer learning is to extract effective
information from interrelated tasks to assist in solving target
tasks. Most of the existing transfer learning-based methods
usually adopt the mechanism of “pretraining + fine-tuning.” For
example, Yang et al. [38] proposed an active transfer learning
network, in which hierarchical stack autoencoder was first used
to extract the sptial-spectral features, and then active transfer
learning strategy was used to carry out knowledge transfer and
fine-tuning. In addition, domain adaptation technology has also
been applied to HSI classification to reduce the distribution
difference between training sets and test sets, further improving
the transfer learning performance and the classification accuracy
of target HSIs [39]. Another way to deal with the lack of
training samples is to train the DL model to learn and extract the
discriminant features. For example, we can train the stacked au-
toencoder to extract discriminative features [40], or we can also
explore the power of off-the-shelf CNN models [41]. Moreover,
the latest machine learning research results such as contrastive
learning [42], meta learning [43], active learning [44] are used to
improve the classification accuracy of HSI with a small number
of labeled samples.

The patch level DL classifier only uses the local data cube in
a certain neighborhood around the sample points to determine
the class attribution, but the context information of the whole
image is equally important for identifying different classes of
ground objects. In order to make better use of the global context
information in HSI, the image level HSI classification method
is proposed. The image level DL classifier takes the whole HSI
as the input directly, and then uses several convolution layers
to output the classification results of the whole image. In this
way, there is no need to crop the data in advance, which not
only improves the calculation efficiency, but also improves the
classification accuracy. Nevertheless, HSI classification task is
very different from semantic segmentation task. The training
samples of semantic segmentation task are a group of labeled
images. In contrast, the training samples of HSIs is highly sparse

and only contains a set of discrete labeled pixels. This leads to
the poor effect of directly using semantic segmentation models
such as U-Net [45], DeepLab [46], PSPnet [47], and SegNet [48]
in HSI classification. FreeNet [49] is the first successful image
level HSI DL classifier, which shows the great potential of the
image level HSI classification method. Then SSFCN-CRF [50]
proposes a novel mask matrix to assist the training of global
fully convolutional network for HSI classification. DSSNet [51]
is specially designed for HSI classification. FCN-Pyramid [52]
introduces attention mechanism in the framework of fully con-
volution network (FCN) to improve the classification accuracy
of HSI. FCSN [53] is designed to simultaneously identify land-
cover labels of all pixels in an HSI cube.

Generally, the deeper the layers in the DL model, the more
abstract the extracted features are. However, due to the limitation
of receptive field, the deep abstract features could not retain
enough spatial detail information. This requires us to make a
direct balance between preserving high-resolution spatial detail
information and abstract semantic information. The above image
level DL classifiers could not well choose between high-level
semantic information and spatial detail information. Different
from the above existing works, we propose to use bilateral
networks to preserve high-resolution spatial detail information
and high-level semantic information of the HSIs at the same
time. The proposed method is simple but efficient, and could
greatly improve the classification accuracy of HSIs.

The main contributions of this article can be summarized as
follows.

1) From the perspective of comprehensive utilization of
global and local information of HSIs, we propose an image
level classification method with bilateral network archi-
tecture. The proposed bilateral network could preserve
spatial details and semantic information at the same time.
By fusing the features of the two paths, the classification
accuracy of the model could be greatly improved.

2) Considering that the classification map output from dif-
ferent scale features should be consistent, we fuse the loss
function of different levels of feature output. Ablation
experiments on four HSIs show that the fusion of loss
functions with different scales could further improve the
classification accuracy.

The rest of this article is organized as follows. Section II
describes the proposed classification method. The classification
results and corresponding analysis are presented in Section III.
Section IV concludes this article.

II. PROPOSED METHOD

As shown in Fig. 1, the proposed method takes the HSI cube
as the input, which is composed of four parts: spatial branch,
semantic branch, feature fusion module and segmentation head.
The size of the input cube isH ×W × C, whereH andW is the
height and width of an HSI, respectively, and C is the number
of bands. Spatial branch is mainly used to retain high-resolution
spatial detail information, and semantic branch is mainly used
to obtain high-level semantic information. The feature fusion
model is responsible for fusing the features output by spatial
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Fig. 1. Pipeline of the proposed method. ⊗ represents element-wise product. ⊕ represents element-wise plus. DWConv represents depthwise convolution.
BN+Relu means to perform batch normalization operation first and then apply the Relu activation function. (a) Multiscale training strategy. (b) Stem block.
(c) Context embedding block (CE). (d) Gather-and-expansion block (GE1). (e) Gather-and-expansion block (GE2). (f) Feature fusion module (FFM). (g) Seg
head1. (h) Seg head2. (i) Seg head3. (j) Seg head4.
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TABLE I
DETAILS OF THE SPATIAL BRANCH

Conv2−D Represents the Convolutional
Layers, k Represents the Convolutional Ker-
nel Size, c Represents the Output Channels, s
Represents the Stride of Convolutional Layers

TABLE II
DETAILS OF THE SPATIAL BRANCH

kRepresents the Convolutional Kernel Size,cRepre-
sents the Output Channels, e is the Expansion Factor
of GE, sRepresents the Stride of Convolution.GE is
the Gather-and-Expansion Layer. CE is the Context
Embedding Block

TABLE III
DETAILS OF FOUR TESTING DATASETS

University of Pavia (UP), Indian Pines (IP), Salinas (SA),Ground Sample Distance
(GSD)(m), Spatial Size (pixel), Spectral Range (nm), Reflective Optics System Imaging
Spectrometer (ROSIS), Airborne Visible Infrared Imaging Spectrometer (AVIRIS)

branch and semantic branch. The fused features are input into
the segmentation head to output the classification results of the
whole HSI scene.

A. Spatial Branch

Spatial branch is mainly used to extract low-level features
with high resolution. Therefore, we use convolution layer to
achieve this purpose. Spatial branch can be divided into three
stages. As shown in Table I, the stride of the first convolution
layer is set to 2, the stride of the other convolution layers are
set to 1. This setting can ensure that the spatial size of the
feature map output in each stage is reduced to one fourth of the
original size, so as to retain enough spatial detail information.

TABLE IV
ABLATION EXPERIMENTS

University of Pavia (UP), Indian Pines (IP), Salinas (SA), Houston2013 (H)

In order to train the model more stably, a batch normalization
(BN) layer [54] is connected after each convolution layer, and
the rectified linear units (Relu) [55] activation function is also
applied.

1) Convolutional Layer: The core idea of convolution layer
is parameter sharing and local connection. GivenC feature maps
with size of H ×W and C1 convolution kernels with size of
k × k, the convolution layer can be formally expressed as

Yi = f

⎛
⎝

C∑
j=0

(wiXj) + bi

⎞
⎠ (1)

where wi is the ith convolution kernel, Xj is the jth feature
map of the input, bi is the bias term for the ith feature map,
f(·) is an activation function. Given C1 convolution kernels, the
convolution layer will output C1 feature maps. The number of
feature maps output in the first two stages is set to 64, and the
number of feature maps output in the third stage is set to 128.

2) Batch Normalization (BN) Layer: The BN layer is helpful
for the training of deep network, thus we apply BN layer and
Relu activation function after convolution layer. The BN layer
requires data normalization, scaling, and shifting. Because we
only have one HSI during training, the BN layer in this article
only needs to be scaled and shifted. The scale and shift operations
are as follows:

Ŷi = γiYi + βi (2)

where γi and βi are the parameters to be learned, Yi is the ith
output feature map of the convolution layer. After the BN layer,
we apply the Relu activation function (f(x) = max(0, x)).

B. Semantic Branch

Semantic branch is mainly used to obtain high-level semantic
information. Inspired by Xception [56], MobileNet [57], and
BiSeNet [58], [59], we use Stem block, gather-and-expansion
(GE) block, and context embedding (CE) block to construct
semantic branches. The specific parameter configuration of
semantic branch is shown in Table II. In the first stage, Stem
block is used to extract abstract features from the HSI cube, and
then six GE blocks and one CE are used to aggregate features,
while reducing the spatial size of feature map. Because the
spatial branch could provide spatial details, semantic branches
use fewer channels, so that semantic branches can pay more
attention to semantic information.

1) Stem Block: As shown in Fig. 1(b), the Stem block [60]
first uses a convolution layer with a stride of 2 and a convolution
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TABLE V
CLASS-SPECIFIC ACCURACY, OA, AA, AND κ OF DIFFERENT METHODS FOR THE UNIVERSITY OF PAVIA DATASET

TABLE VI
CLASS-SPECIFIC ACCURACY, OA, AA, AND κ OF DIFFERENT METHODS FOR THE INDIANA PINES DATASET

TABLE VII
CLASS-SPECIFIC ACCURACY, OA, AA AND κ OF DIFFERENT METHODS FOR THE SALINAS DATASET

kernel size of 3× 3 to extract features, and then uses convolution
and pooling to further reduce the spatial dimension of the feature
map. 1× 1 convolution is mainly used to increase the nonlin-
earity of the module. The parallel structure and asymmetric con-
volution kernel structure in Stem block can reduce the amount
of computation while ensuring that the loss of information is

small enough. Therefore, the Stem block is first used to extract
features in the semantic branch.

2) Gather-and-Expansion Block: A large number of stud-
ies in semantic segmentation tasks show that the gather-and-
expansion structure helps to improve the accuracy of the
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TABLE VIII
CLASS-SPECIFIC ACCURACY, OA, AA, AND κ OF DIFFERENT METHODS FOR THE HOUSTON DATASET

TABLE IX
EXECUTION TIMES OF TRAINING AND TESTING PROCEDURES

model [60]. In order to better extract semantic features, as
shown in Fig. 1(c) and (d), we designed two GE structures with
1× 1 convolution kernel and 3× 3 convolution. We used 3× 3
Max-pooling (MPooling) operation on the residual connection
path shown in Fig. 3(c) to ensure that the feature dimensions
are the same. This structure is to reduce the spatial dimension
of the feature map while aggregating features. The structure
of Fig. 3(d) is relatively simple, it is mainly used to enhance
the nonlinearity of the model. As shown in Table II, the use
of GE block is still divided into three stages. In each stage,
the structure shown in Fig. 3(c) is first used to reduce the
spatial dimension of the feature map, and then the GE structure
shown in Fig. 3(d) is used to enhance the nonlinearity of the
feature.

3) Context Embedding Block: In order to obtain high-level
semantic information, we designed a context embedding (CE)
block as shown in Fig. 1(e). Specifically, we first use the global
average pooling (MAPooling) operation to aggregate features,
then use two 1× 1 convolutions to enhance the nonlinearity
of features, and finally expand the features to the input feature
dimension and connect with the input. In the last stage of
semantic branch, we apply this CE block.

C. Feature Fusion Module

The spatial branch mainly focuses on the low-level spatial
details of HSI, and the semantic branch mainly focuses on
the high-level semantic information of HSI. In fact, there is
a semantic gap between the two features, which leads to the
poor effect of adding and fusing the features output by the
two branches directly. Therefore, we design a feature fusion
model (FFM) as shown in Fig. 1(f). The FFM first transforms
and upsamples semantic features, and then multiplies them ele-
ment by element with spatial features; then, the spatial features
are downsampled by convolution operation with a stride of 2,
multiplied by semantic features element by element, and then
the features of this fusion path are upsampled to maintain the
consistency of the feature dimensions of the two fusion paths.
Finally, the fused features of the two paths are added.

D. Training Strategy and Segmentation Head

In order to train the model more stably, we adopt a multi-scale
training strategy. It is notable that the multiscale refers to that
features have different receptive fields. The larger the recep-
tive field is, the more global information is concerned, on the
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Fig. 2. Context embedding block.

Fig. 3. Classification accuracy of models with different network depths on
four HSIs.

contrary, more local information is concerned. Spatial branch
have smaller receptive fields, so it pay more attention to local
detail information, while semantic branch has a wider receptive
field, mainly focusing on global information. Specifically, we
output the classification results of HSI through a segmentation
head model. Intuitively, the classification results output by these
different resolution features should be consistent, so we use
these results and the ground truth to calculate the loss function,
and finally sum these loss functions as the final loss function.
The segmentation head specifically uses three 1× 1 convolution
layers combined with the up sampling operation to complete
the operation of outputting classification results from feature
maps with different resolutions. As shown in Fig. 1(g)–(j), each
segmentation head uses three 1× 1 convolutions, and the up
sampling rate is set according to the different resolution of the

input feature map. The training of the model adopts the SGD
optimizer integrated in PyTorch. During training, an HSI is
repeatedly input into the network to calculate the corresponding
loss function and update the network parameters. It is worth
noting that if all pixels participate in the calculation of the loss
function, the network will output the background, so only the
labeled pixels participate in the calculation of the loss function.
After training, the model only needs to calculate the classifica-
tion results of the fused feature for testing.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, classification experiments are carried out
on three widely used HSIs to verify the effectiveness of the
proposed method. The hardware environment of the experiment
is a personal notebook computer equipped with a Rtx2070 m
graphics card, the video memory of the graphics card is 8 G,
the memory of the computer is 16 G, and the CPU is Intel(R)
Core(TM) i7-9750H. And the proposed method is implemented
by the PyTorch library.

A. Datasets

The four HSIs used for classification are the University of
Pavia, Indian Pines, Salinas, and Houston2013 dataset. In or-
der to quantitatively evaluate the classification algorithm, the
researchers carefully labeled these HSIs. The detail information
of the three HSIs is shown in Table III.

The University of Pavia dataset is acquired by the reflective
optics spectrographic imaging system (ROSIS) sensor during
a flight campaign over Pavia, Northern Italy. The number of



LIU AND YU: PATCH-FREE BILATERAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION USING LIMITED SAMPLES 10801

spectral bands is 103. The image size is 610× 340 pixels. The
geometric resolution is 1.3 meters.

The Indian Pines and Salinas datasets are acquired by the
airborne visible infrared imaging spectrometer (AVIRIS) sensor.
The number of spectral bands is 200 for Indian Pines and 204 for
Salinas. The Indian Pines dataset is a 145× 145 pixels image,
and the Salinas dataset is 512× 271 pixels. The geometric
resolution of the Indian Pines and Salinas datasets are 20 and
3.7 m, respectively.

The Houston2013 dataset is obtained by ITRES CASI-1500
sensor and provided by 2013 IEEE GRSS data fusion compe-
tition. The data size is 349× 1905 pixels, and it includes 144
bands ranging from 380 to 1050 nm. The dataset was acquired
over the University of Houston campus and the neighboring
urban area. The geometric resolution is 2.5 m.

In order to evaluate the classification performance of the
proposed method, for each HSI, we randomly select 100 la-
beled samples from each class as the training samples and the
remaining labeled samples as test samples. When the number of
samples of a certain class is less than 100, we randomly select
half of the samples as training samples.

B. Parameters Setting and Ablation Experiment

The stochastic gradient descent (SGD) optimizer is used to
optimize the patch-free bilateral network (PBiNet). Since there
is only one HSI for training, the batch size is 1. We tested
different learning rates, and their results are shown in Fig. 2.
According to the experimental results, we found that for the SGD
optimizer, a large learning rate will make the network better fit
the training data. Therefore, we set the learning rate 0.1. The
number of epochs is set to 150. Since only one HSI is available
in each dataset, the batch size is 1. The weight decay of the SGD
optimizer is set to 0.99, the momentum of the SGD optimizer is
set to 0.9.

In order to prove the effectiveness of each module in the
proposed method, we performed ablation experiments on four
HSIs. In Table IV, SpB denotes spatial branch, SeB denotes
semantic branch, FFM indicates whether to use the feature fusion
module, and Mloss indicates whether to apply the middle layer
output to calculate the loss function. We use spatial branch
alone as a benchmark and observe the experimental results in
Table IV. We find that adding semantic branch to spatial branch
could effectively improve the classification accuracy, because
the bilateral branch architecture could make more comprehen-
sive use of the local detail information and global semantic
information. The further introduction of FFM in the bilateral
branch network could slightly improve the classification accu-
racy, because FFM could better integrate the features learned
by the spatial branch and semantic branch. When the Mloss
is further introduced, higher classification accuracy could be
obtained, because the classification maps output by different
scale features should be consistent, which is equivalent to adding
a regularization term to the loss function. Overall, SpB+SeB,
FFM, and Mloss are helpful to improve the classification ac-
curacy of HSI. However, the improvement of SpB+SeB and

Mloss is more obvious, FFM could only slightly improve the
classification accuracy.

Fig. 3 shows the classification accuracy of models with dif-
ferent network depths on four HSIs. The numbers in the legend
represent the number of repetitions of stage. According to the
experimental results in Fig. 3, increasing the network depth will
not improve the classification accuracy, but will greatly increase
the model complexity. Therefore, we only repeat each stage in
the spatial branch and semantic branch once.

C. Comparison Results With the State-of-the-Art Methods

In this section, we use class-specific accuracy, overall ac-
curacy (OA), average accuracy (AA), and κ to quantitatively
evaluate the proposed method (PBiNet) and compare it with the
pixel level classifier and the patch level classifier. OA refers to
the percentage of the number of correctly classified samples in
the total number of samples, which is used to evaluate the overall
performance of the classification results. Its calculation method
is shown in the following:

OA =

∑k
i=1 Ci

N
(3)

where N is the total number of samples, k denotes the number
of classes, and Ci is the number of correctly classified samples
in class i. AA is the average value of classification accuracy per
class, which can effectively measure the effectiveness of classi-
fication algorithm in the case of uneven sample distribution. Its
calculation method is shown as follows:

AA =

∑k
i=1 acci
k

(4)

where acci denotes the classification accuracy of class i. Kappa
coefficient (κ) is calculated based on the confusion matrix, which
can overcome the problem that overall accuracy depends on the
number of classes and the number of samples, and make a fairer
evaluation. Its calculation method is shown as follows:

κ =
OA− pe
1− pe

pe =

∑k
i sum(rowi) · sum(columni)

N2
(5)

where sum(rowi) and sum(columni) denote the sum of el-
ements on the ith row and the ith column in the confusion
matrix, respectively. As for the pixel level classifier, we take the
classification result of SVM as the benchmark, further extract the
extended morphological profiles (EMP) [7] and discriminative
low-rank Gabor filtering (DLRGF) [61] features, and then use
SVM for classification. As for EMP, three principal components
are extracted from the original hyperspectral image to build a
morphological profile using PCA. Four opening and four closing
based on circular structural elements with R = 3, 5, 7, 9 are
computed for each PC. Therefore, the dimension of the EMPs
is 27 for all datasets. SVM and EMP use the SVM classifier
with radial basis function (RBF) and the optimal hyperplane
parameters C (parameter that controls the amount of penalty
during the SVM optimization) and γ (spread of the RBF kernel)
have been traced in the range of C = 2−2, 2−1, . . ., 25 and
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Fig. 4. Classification maps resulting from different methods for the University of Pavia dataset. (a) Ground-truth map. (b) SVM. (c) EMP. (d) DLRGF.
(e) 3-D-CNN. (f) S-DMM. (g) U-Net. (h) SSFCN. (i) PBiNet.

Fig. 5. Classification maps resulting from different methods for the Indiana Pines dataset. (a) Ground-truth map. (b) SVM. (c) EMP. (d) DLRGF. (e) 3-D-CNN.
(f) S-DMM. (g) U-Net. (h) SSFCN. (i) PBiNet.

γ = 2−2, 2−1, . . ., 25 using fourfold cross validation [62]. The
parameter setting of DLRGF is consistent with that of [61], and
we use the author’s open source code to implement DLRGF. As
for the patch level classifier we selected the most popular 3-D-
CNN [63], similarity-based deep metric model (S-DMM) [64],
and graph convolution network (GCN) [26]. In addition, we
also implement U-Net, SSFCN [50], and FContNet [52] for
classification experiments, in which SSFCN is a model specially
designed for hyperspectral. The training samples used by the
proposed method and the compared methods are the same.

Tables V–VII show the classification accuracy of different
methods on four HSIs. In terms of classification accuracy, both

the manually designed feature extraction methods (EMP, DL-
RGF) and the patch level classification methods based on DL
(3-D-CNN, S-DMM) are better than SVM using only spectral
features. More importantly, the image level classification meth-
ods (U-Net, SSFCN) could effectively improve the classification
accuracy, and the improvement range is large. Compared with
U-Net and SSFCN, the proposed method (PBiNet) could achieve
higher classification accuracy. Figs. 4– 7 show the classification
maps obtained by different methods. From these classification
maps, we could find that the distribution of misclassified samples
of the pixel level and patch level classifiers is relatively discrete,
while the classification results of the image level classification
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Fig. 6. Classification maps resulting from different methods for the Salinas dataset. (a) Ground-truth map. (b) SVM. (c) EMP. (d) DLRGF. (e) 3-D-CNN.
(f) S-DMM. (g) U-Net. (h) SSFCN. (i) PBiNet.

Fig. 7. Classification maps resulting from different methods for the Houston dataset. (a) Ground-truth map. (b) SVM. (c) EMP. (d) DLRGF. (e) 3-D-CNN.
(f) S-DMM. (g) U-Net. (h) SSFCN. (i) PBiNet.
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Fig. 8. Classification accuracy for the four HSI datasets with different sample number. (a) University of Pavia dataset. (b) Indiana Pines. (c) Salinas.
(d) Houston2013.

methods are more in line with the human visual system, but
the misclassified samples are often clustered into blocks. The
proposed method (PBiNet) has the least misclassified samples,
which is consistent with the quantitative evaluation results in Ta-
bles V–VII. The above comparative experiments fully illustrate
the effectiveness of the proposed method.

In order to prove the effectiveness of the proposed method for
limited samples, we further reduce the number of training sam-
ples. We select three representative methods from all compared
methods for analysis. The experimental results on four HSIs are
given in Fig. 8. The abscissa in Fig. 8 represents the number
of randomly selected labeled samples for each class, and the
ordinate is the overall classification accuracy. By observing the
results in Fig. 8, we can see that the accuracy obtained by the
proposed method is much higher than that of SVM, GCN, and
FContNet on the Indiana Pines and Salinas dataset, which shows
the effectiveness of the proposed method for limited samples.
As for the University of Pavia and Houston2013 dataset, the
proposed method needs a certain number of samples to ensure
the advantages.

D. Efficiency Analysis

DL methods usually require a lot of iterations to optimize
thousands of parameters in the model, while the classical shallow
classification methods (such as SVM) require relatively less
computation. The training and testing time of the compared
methods and the proposed method are given in Table IX. Note
that the DL models (3-D-CNN, S-DMM, GCN, U-Net, SSFCN,

FContNet) run on a RTX2070 graphics card, and the shallow
model (SVM, EMP, DLRGF) runs on the i7-9750 h CPU. The
training time of SVM, EMP and DLRGF includes the time of
feature extraction and selection of optimal parameters. It could
be seen from Table VIII that the training time of the DL method
(e.g., 3-D-CNN, S-DMM, GCN) with local image patch as
input is long, while the training time of the image level DL
method is close to that of shallow models such as SVM. The
high computational efficiency of the proposed method is mainly
due to taking the whole HSI as the input without cutting the
image into overlapping patches, which avoids a large number of
repeated calculations. In terms of the testing time, the advantage
of the proposed method is very obvious. The testing time on three
HSIs is less than 0.1 s, which is much less than that of SVM,
EMP, 3-D-CNN.

E. Feature Visualization and Discussion

In order to better understand the motivation of the proposed
method, we take the Indian Pines dataset as an example to
visualize the output features of the semantic branch and the
spatial branch. As shown in Fig. 9, the first row is four fea-
ture channels randomly selected from the spatial branch. The
brighter the color in the figure, the greater the feature value.
The second row is four feature channels randomly selected from
the semantic branch. From the results of feature visualization,
the spatial branch pay more attention to local details, while
the semantic branch pays more attention to the global abstract
information in the whole HSI scene. Thanks to this dual branch
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Fig. 9. Feature visualization of the Indian Pines dataset.

network architecture which could comprehensively utilize local
and global information, the proposed method can use a shal-
low network architecture to obtain competitive classification
results.

IV. CONCLUSION

This study presents an image level HSI classification method.
The bilateral network architecture make the model effectively
use global semantic information and local spatial information,
and the feature fusion module can integrate global semantic
information and local spatial information well. To better train
the model, we proposes a booster training strategy. The classifi-
cation experiments on three HSIs show that the proposed method
could achieve higher classification accuracy than the comparison
method. In addition, the proposed method takes the HSI of the
whole scene as the input without any preprocessing, so it has
higher classification efficiency.
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