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Abstract—Deep transfer-learning-based change detection meth-
ods are dependent on the availability of sensor-specific pretrained
feature extractors. Such feature extractors are not always available
due to lack of training data, especially for hyperspectral sensors and
other hyperdimensional images. Moreover models trained on easily
available multispectral (RGB/RGB-NIR) images cannot be reused
on such hyperdimensional images due to their irregular number
of bands. While hyperdimensional images show large number of
spectral bands, they generally show much less spatial complexity,
thus reducing the requirement of large receptive fields of convo-
lution filters. Recent works in the computer vision have shown
that even untrained deep models can yield remarkable result in
some tasks like super-resolution and surface reconstruction. This
motivates us to make a bold proposition that untrained lightweight
deep model, initialized with some weight initialization strategy,
can be used to extract useful semantic features from bi-temporal
hyperdimensional images. Based on this proposition, we design a
novel change detection framework for hyperdimensional images
by extracting bitemporal features using an untrained model and
further comparing the extracted features using deep change vector
analysis to distinguish changed pixels from the unchanged ones. We
further use the deep change hypervectors to cluster the changed
pixels into different semantic groups. We conduct experiments on
four change detection datasets: three hyperspectral datasets and a
hyperdimensional polarimetric synthetic aperture radar dataset.
The results clearly demonstrate that the proposed method is suit-
able for change detection in hyperdimensional remote sensing data.
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I. INTRODUCTION

R ECENTLY deep learning has attracted significant at-
tention in earth observation [1]. Following this trend,

deep-learning-based methods have been developed for change
detection (CD) [2], an important topic in earth observation.
CD plays pivotal role in several applications, including disas-
ter management [3], [4], urban monitoring [5], and precision
agriculture [6]. While CD methods can be supervised [7]–[9] or
semisupervised [5], unsupervised methods are preferred in the
literature [2], [10] as collecting labeled multitemporal data is
significantly challenging. Before the emergence of deep learn-
ing, change vector analysis (CVA) and its object-based vari-
ants [10], [11] were popularly used for unsupervised CD. Deep
CVA (DCVA) and other transfer-learning-based methods [2],
[3], [12] have embedded the concept of CVA in a transfer
learning framework. While the transfer-learning-based methods
do not use any training or fine-tuning of the deep model, they
depend on the availability of pretrained feature extractor that
can be used to capture the semantics of the input images. In
more details, such transfer-learning-based methods project the
bitemporal images in deep featurespace by using a pretrained
deep feature extractor and subsequently compares the images
in the projected domain. Thus they perform CD by reusing a
deep model that was previously trained for some unrelated task,
e.g., image classification. Most deep transfer learning based
CD methods are designed for synthetic aperture radar (SAR)
amplitude images and multispectral images with few bands.

Remote sensing deals with a plethora of sensors showing
different spatial, spectral, and temporal characteristics. In many
cases, large number of bands are required to efficiently represent
the information in remote sensing images. The most well-known
example for this are hyperspectral images that sample a broad
range of electromagnetic spectrum in hundreds of spectral
bands [13]–[17]. Some CD applications require rich spectral
information and hyperspectral images can be very useful for
such cases, e.g., monitoring of mining activity [18]. Inspite
of this, less attention has been paid to develop deep transfer
learning based CD methods for hyperspectral images [19], [20].
This can be attributed to the lack of labeled hyperspectral data
that impedes availability of any pretrained network. In more
details, a transfer-learning-based hyperspectral CD method can
be developed only if a pretrained model is available for the
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TABLE I
NUMBER OF BANDS AND GROUND SAMPLING DISTANCE (GSD) FOR

SOME SPACEBORN HYPERSPECTRAL SENSORS [13]

same data, which is often unavailable for hyperspectral im-
ages. Remarkably, due to the lack of training data, some of
the supervised hyperspectral image classification models are
trained and tested on pixels from the same image [21]. Even if
sufficient training data is collected for a particular hyperspectral
sensor and geography, this model will not be straightforward
applicable for another hyperspectral sensor. Currently there are
a large number of hyperspectral sensors with differences in
spectral coverage and number of bands, e.g., DLR earth sensing
imaging spectrometer (DESIS) have 180 bands while precur-
sore iperspettrale della missione applicativa (PRISMA) have
237 bands [13]. Please see Table I for comparison of number
of bands of different spaceborn hyperspectral sensors. Due to
such differences, a model trained for one hyperspectral sensor
cannot be used for transfer-learning-based CD on another hyper-
spectral sensor. Additionally, unmanned-aerial-vehicle (UAV)
based hyperspectral imaging has become increasingly popular in
various applications, such as agricultural monitoring [13]. Such
UAV-based hyperspectral sensors may exhibit spectral coverage
entirely different from the satellite-based ones.

In addition to hyperspectral data, another example of hyper-
dimensional data in remote sensing is polarimetric synthetic
aperture radar (PolSAR) image. Compared with the single-
polarimetric SAR data, PolSAR images contain more polarimet-
ric information about the targets and are useful to discriminate
double-bounce scatterers (such as buildings) from volume scat-
terers (such as forest) and surfaces using target decomposition
methods [22]. Thus, PolSAR data are beneficial for applications
such as land classification and building extraction [23]. In prac-
tical PolSAR applications, usually the decomposed results [23]–
[25] instead of the raw PolSAR data are used for further analysis,
which constitutes a hyper-dimensional (tens to over one hundred
channels) data cuboid.

Models trained for multispectral (RGB/RGB-NIR) or SAR
amplitude images cannot be effectively reused for feature extrac-
tion of hyperdimensional images due to their irregular number
of bands. To transfer RGB-trained models on hyperdimensional
images, we require to choose only three bands from hyperdimen-
sional images, thus losing a significant amount of information.
Another possible solution is to somehow modify the first layer
of the pretrained model.

Ulyanov et al. [26] showed that the structure of a network is
often sufficient to capture important low-level features from the

images without any training. This is highly relevant for hyper-
dimensional images since it is challenging to transfer a model
trained on RGB images to hyperdimensional images, however,
it is trivial to just initialize a model to ingest as many number
of image channels as desired. This strategy is certainly not as
good as learning complex spatial features with abundant labeled
images, however, good enough for CD in hyperdimensional
images. Arguably, the spatial complexity of hyperdimensional
images is not high in most cases, as can be seen in Table I. This
is also evident from the fact that some works in the hyperspectral
image classification just use 1D convolution [27]. While spatial
complexity still has an important role to play for hyperspectral
multitemporal analysis, we argue that this is not as critical as
in high-resolution multispectral images. This brings forth the
possibility whether complexity in low-spatial and high-spectral
resolution multitemporal hyperdimensional images can be cap-
tured by an untrained deep model, merely initialized with a
deep model initialization strategy [28], [29]. The likelihood of
such possibility is supported by the fact that untrained models
have recently shown remarkable performance in some computer
vision tasks where the spatial complexity is much more critical
than the hyperspectral images, e.g., deep image prior [26].

We propose an unsupervised CD method for hyperdimen-
sional images using an untrained deep model as deep fea-
ture extractor. The proposed method does not need any prior
knowledge about the input or the arrangement of the spectral
bands. In addition to distinguishing the changed pixels from
the unchanged ones (binary CD), we also extend the method for
multiple CD. The key contributions of this article are as follows.

1) This article shows that even an untrained model, merely
initialized with a weight initialization technique [28], can
be used to capture the spatio-temporal semantics, espe-
cially for hyperdimensional data where pretrained models
are generally not available. Based on this, this article
proposes a CD method, which can effectively segregate
changed pixels from the unchanged ones in the hyperdi-
mensional images.

2) This article further extends the method for multiple/ mul-
ticlass CD using deep change vector obtained using un-
trained model to cluster the changed pixels into different
groups.

3) This article experimentally validates the proposed ap-
proach on three bitemporal hyperspectral scenes, as well
on a bitemporal hyperdimensional PolSAR data, showing
the versatility of the approach.

The rest of this article is organized as follows. Some relevant
works are discussed in Section II. Section III discusses the
proposed method. Section IV presents the datasets and results
related to hyperspectral images. Results related to PolSAR data
are presented in Section V. Finally, Section VI concludes this
article.

II. RELATED WORK

Following the relevance to our work, we briefly discuss in this
section about:

1) unsupervised CD;
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2) hyperdimensional CD methods; and
3) deep image prior.

A. Unsupervised CD

Unsupervised CD methods are generally based on the con-
cept of pixewise difference operation, i.e., CVA [30] or clus-
tering [31]. With the emergence of high-resolution imaging,
object-based variants of CVA, e.g., parcel change vector analysis
(PCVA) [11], incorporated the notion of spatial context in CVA.
Morphological filters have also been employed to capture the
object information [32]. Deep-learning-based unsupervised CD
methods, e.g., DCVA [2] are based on transfer learning. DCVA
incorporates CVA with pretrained deep network based feature
extraction based on the assumption that a pretrained model is
available for the target geography and sensor. In addition to
optical images, transfer-learning-based frameworks have also
shown success in SAR amplitude image analysis [3].

B. CD in Hyperdimensional Images

Very few deep-learning-based CD methods have been pro-
posed for hyperdimensional (hyperspectral or other hyperdi-
mensional) images [33]–[35]. In [33], authors identified high
dimension and limited datasets as unique challenges for hyper-
spectral CD. Toward alleviating these challenges, they devised a
preclassification-based end-to-end CD framework. Another su-
pervised framework recurrent 3-D fully convolutional network
(Re3FCN) was introduced by Song et al. [35]. Re3FCN merges
a 3-D fully convolutional network (FCN) and a convolutional
long short-term memory. Chen and Zhou [36] proposed a su-
pervised CD method consisting of the following three steps:
reduction of spectral dimension, joint affinity tensor construc-
tion, and binary (changed or unchanged) classification by CNN.
While these works successfully introduce deep learning to the
hyperspectral CD, they do not present any unique solution
toward circumventing the limited availability of datasets in
hyperspectral multitemporal analysis. Their works use pixels
from same image for training and evaluation. Using such large
supervised networks when training and test pixels belong to
same scene may lead to overoptimistic accuracy assessment, as
shown by Molinier and Kilpi [37]. Thus, it is crucial to design
unsupervised/transfer-learning-based approaches, like the ones
proposed for multispectral and SAR images [2], [3]. In addition
to hyperspectral images, hyperdimensional CD has also been
studied in the context of PolSAR images [24]. To the best of
authors’ knowledge, all deep-learning-based hyperdimensional
CD methods are proposed in context of binary CD, without
delving into multiple/multiclass CD.

C. Deep Image Prior

Deep models are generally trained on large labeled datasets.
This makes us to believe that the excellent performance of CNNs
are due to their capability to learn realistic features or data priors
from the data. However, several recent works have shown that
this explanation is not entirely correct. In one of such first works,
Zhang et al. [38] showed that an image classification network

can overfit on the training images even when the labels are
randomized. This provides us hints that the success of the deep
network is possibly not always due to large amount of labeled
data, rather sometimes due to the structure of the network. Fur-
ther delving into this topic, Ulyanov et al. [26] investigated this
phenomenon in context of image generation. They showed that a
large amount of the image statistics are captured by the structure
of generator CNNs itself. Instead of choosing the usual paradigm
of training CNNs on large dataset, they fitted CNNs on single
image for image restoration problems. The network weights
were randomly initialized. Their simple setup could provide
remarkable result for various image restoration problems, e.g.,
denoising and super-resolution. This phenomenon is remarkable
as it demonstrates the power of untrained network. Following
this work, several other works have followed similar approach
demonstrating success of untrained network for different com-
puter vision problems, including surface reconstruction [39] and
photo manipulation [40]. Another similar line of research is
random projection network [41] that is proposed in the context
of high-dimensional data, which implies a network architecture
with an input layer that has a huge number of weights, making
training infeasible. Random projection network [41] tackles this
challenge by prepending the network with an input layer whose
weights are initialized with a random projection matrix.

III. PROPOSED METHOD

Let us assume that we have a pair of coregistered hyperdimen-
sional images X1 and X2 having B0 bands, where B0 is much
larger than usual number of bands in a multispectral image. No
training label or suitable pretrained network is available to us.
Our goal is two fold.

1) Binary CD: Distinguish the changed pixels (Ωc) from the
unchanged ones (ωnc).

2) Multiple CD: Further cluster the changed pixels into a
group of semantically meaningful groups.

To accomplish the abovementioned goals, we initialize a deep
model with number of input channels and kernels in intermediate
layers modulated according to the dimension of the X1 and X2.
This deep model, while untrained, is initialized with an appro-
priate weight initialization technique [28]. Following this, we
use this network to extract a set of features from the bitemporal
images. Pixelwise difference is obtained as deep change vector
that is thresholded to identify the changed pixels. Once changed
pixels are segregated, they are further clustered based on the
deep change vectors for multiple CD. The proposed hyperdi-
mensional CD framework is called untrained hyperdimensional
multiple DCVA (UHM-DCVA) and is shown in Fig. 1 .

A. Feature Extraction

Deep models trained for multispectral images can ingest input
images of few channels/bands, in order of three to ten [42], [43].
In contrast, hyperdimensional remote sensing images have B0

channels that is generally larger than 200. Thus, deep models
trained on multispectral images are not suitable to ingest hyper-
dimensional X1 and X2. To overcome this challenge, we use an
untrained model for deep feature extraction from X1 and X2.
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Fig. 1. Proposed UHM-DCVA technique.

The model, being untrained, can be initialized with capacity to
ingest any number of input channels and subsequently projected
to any number of kernels in the successive layers.

Conforming to the dimension of X1 and X2, we design
first convolution layer such that it ingests the hyperdimen-
sional image of B0 channels and projects it to β0B0 kernels
where β0 > 1. We use 3× 3 filters, i.e., weight of first layer
is 3× 3×B0 × β0B0. In our experiments, we set β0 = 4. The
following convolution layer ingests input of dimension β0B0

and projects it to β1β0B0 dimension. For simplicity, we have set
β1 = 1. In this way, more layers can be added to the network.
Increasing number of layers capture larger spatial receptive field.
Considering the coarse spatial resolution of the most hyperdi-
mensional images, we postulate that network need not be as
deeper as it is common in multispectral image analysis (further
validated in Section IV). Rectified linear unit (ReLU) function is
used between successive convolution layers. Pooling operation
and fully connected layers are not used. Hence, the spatial size
of the input is preserved through successive layers. Key structure
of the network is shown in Table II and Fig. 2.

Alhough untrained, the weights are initialized with the He
initialization method [28]. Their weight initialization strategy
allows the initialized elements to be mutually independent and
share the same distribution. Although weight initialization was
initially proposed in context of obtaining efficient starting point
for better training, we use it to obtain a superior feature extractor

TABLE II
KEY STRUCTURE OF FIVE-LAYER UNTRAINED FEATURE EXTRACTOR

NETWORK ASSUMING NUMBER OF CHANNELS IN INPUT IMAGE IS 224

All convolution layers are followed by ReLU activation.

Fig. 2. Simplified network architecture considering five layers.

that can be subsequently used as deep feature extractor in pro-
posed CD framework. Note that weight initialization does not
involve any training. Once initialized, the deep model is used
to extract a set of features from both X1 and X2 separately, as
detailed in Section III-B.

B. Binary CD

All bands ofX1 andX2 are normalized to have values between
0 and 1. Untrained model is separately applied on X1 and X2

to extract a set of deep features for each pixel in the scene [2].
Using same model on both images ensure that two very similar
inputs (pixels) are mapped to similar representation in the feature
space while dissimilar pixels are mapped to dissimilar feature
representation, since they are processed through same set of
functions. Furthermore, a variance-based feature selection strat-
egy is applied as in [2]. Deep features are extracted from the last
layer of the network to form pixel wise deep change hypervector
(G) [2] that are obtained as the deep-feature-differences of X1

and X2. Components of G (gd (d = 1, . . ., D)) tend to zero for
unchanged pixels (ωnc) while they tend to larger (positive or
negative) value for the changed pixels (Ωc). To segregate Ωc

from ωnc, we compute deep magnitude ρ for each pixel as the
Euclidean norm of G

ρ =

√√√√ D∑
d=1

(gd)
2
. (1)
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ρ maps the D-dimensional G into a 1-D index, while preserving
the main properties of the changes. Unchanged pixels tend to
generate smaller ρ in comparison to the changed pixels. This
is used to segregate Ωc and ωnc by using a thresholding τ .
While any suitable thresholding [44] method can be used, we
use Otsu’s thresholding [45] to compute τ . Any pixel having
ρ > τ is assigned to Ωc and to ωnc otherwise.

C. Multiple CD

Changed pixels (Ωc) are further analyzed in unsupervised way
based on G to segregate different kinds of change without any
a priori knowledge about the different kinds of change [2].
However, we assume an a priori knowledge about number
of kinds of change (K). G is a high-dimensional vector and
clustering is challenging in such high-dimensional space [46].
To overcome this, we first binarize/discretize the components of
G [2], [47]. Components of G are likely to be either positive
or negative, and different kinds of change are likely to show
different patterns on the gd (d = 1, . . ., D), components of G.
Binarization simplifies the information in G, while preserving
information descriptive of clusters. G is binarized to Gbin with
components greater than 0 set to 1 and components smaller than
0 set to 0. Gbin is also D-dimensional like G.

Assuming number of changed pixels (pixels in Ωc) as Nc,
we have Nc binary vectors of D-dimension each. Conversely,
representing each feature as a vector, we have D vectors of
Nc-dimension each. We expect pixels belonging to same kind
of change to exhibit similar binary signature, while pixels
belonging to different kinds of change to exhibit dissimilar
binary signature. Furthermore, many features exhibit similar
binary signature and, thus, redundant for discriminating different
types of change. Out of D features, the feature which shows
most similarity to other D − 1 features can be defined as the
most informative feature. Toward this, R(i, j) measures the
correlation distance [48] between two Nc-dimensional features
i and j, scaled in range 0–1 [2], where 1 represents the farthest
features. Rd (d (d = 1, . . ., D)) measures the informativeness
of an individual feature

Rd = −
D∑

j=1

R(d, j). (2)

In the abovementioned equation, while the term within summa-
tion computes distance of a feature from other features, coupled
with the negation, Rd measures how similar is the feature d to
the other D − 1 features. The most informative feature d∗ is
selected by choosing the feature that maximizes Rd

d∗ = arg maxdRd. (3)

Chosen d∗ can be used to group pixels in Ωc into two classes.
Next most informative feature can be selected by following
the abovementioned process, but first discarding the most in-
formative feature d∗ and features made redundant by it. This
hierarchical process allows us to select a set of informative
features that are further used to cluster Ωc into desired number
of classes ωc1, ωc2, . . ., ωcK .

IV. VALIDATION ON HYPERSPECTRAL DATA

A. Datasets

We validate the proposed method on the following three
publicly available bitemporal hyperspectral scenes [49], [50].1

1) The Santa Barbara bitemporal scene is acquired on 2013
[see Fig. 3(a)] and 2014 [see Fig. 3(b)] with the AVIRIS
sensor (224 spectral bands) over the Santa Barbara region
in California, United States. The spatial dimension of the
images are 984 × 740 pixels. Reference information is
known for only 132 552 pixels, out of which 80 418 pix-
els are unchanged and 52 134 pixels are changed [see
Fig. 3(c)].

2) The Bay Area bitemporal scene is acquired on 2013 [see
Fig. 5(a)] and 2015 [see Fig. 5(b)] with the AVIRIS sensor
(224 spectral bands) over the area surrounding the city of
Patterson (California). The spatial dimension of the im-
ages are 500×500 pixels. Reference information is known
for only 60 610 pixels, out of which 29 393 pixels are
unchanged and 31 217 pixels are changed [see Fig. 5(c)].

3) The Hermiston scene [see Figs. 6(a) and (b)] is acquired
on the years 2004 and 2007 with the Hyperion sensor
(242 spectral bands) over the Hermiston City area in
Oregon, United States. Bands B001–B007, B058–B076,
and B225–242 are not calibrated, hence, we exclude them
from our processing. The spatial dimension of the images
are 390× 200 pixels. A total of 68 014 pixels are labeled as
unchanged. Remaining pixels are changed [see Fig. 6(c)].
The changed pixels are further grouped into 5 change
types: type 1 (5558 pixels), type 2 (1331 pixels), type 3
(79 pixels), type 4 (1557 pixels), and type 5 (1461 pixels),
shown in Fig. 7(a).

Please note the following.
1) For Santa Barbara and Bay Area scene, reference informa-

tion is not known for a fraction of pixels. However, these
datasets are not prepared by us and are publicly available
datasets used in previous research works [49], [50]. Hence,
we follow the reference maps available with those datasets.

2) We evaluate binary CD method on all three scenes, how-
ever, multiple/multiclass CD method on only Hermiston
scene, as multiple change reference map is available for
only this scene.

B. Compared Methods

We compared the proposed method to following unsupervised
methods.

1) CVA using the hyperdimensional pixel values. The com-
parison to CVA is crucial to understand whether the pro-
posed method provides any additional benefit over mere
pixel difference.

2) PCVA [11] that captures the spatial information as super-
pixel. This comparison helps us to understand whether
spatio-temporal context in hyperdimensional images can
be simply captured by a superpixel-based analysis.

1[Online]. Available: https://citius.usc.es/investigacion/datasets/hyperspectral-
change-detection-dataset
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Fig. 3. Santa Barbara scene, false color composition (R: band 50, G: band 20, B: band 10) images: (a) prechange and (b) postchange, (c) reference image
(white—unchanged, black—changed, gray—unknown), and CD maps: (d) CVA, (e) DCVA3Channels-1, (f) Proposed.
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Fig. 4. Visualization of two randomly selected features, as generated by the proposed model, on the Santa Barbara scene. It is evident that the features capture
the change information.

3) Spectral angle mapper Z-score image differencing
(SAMZID) [19] that is designed specifically for hyper-
spectral CD based on spectral angle mapper and image
difference. The method, as proposed in [19] originally
consists of an unsupervised predictor phase and a super-
vised learning phase. We exclude the supervised phase and
apply thresholding [45] on the change map obtained after
unsupervised predictor phase. As proposed in [19], two
variants are compared: SAMZIDSin and SAMZIDTan.

4) Autoencoding of bitemporal Hyperspectral Images for
Change Vector Analysis (AICA) [34]—A deep-learning-
based unsupervised CD method proposed for hyperspec-
tral images that combines CVA with autoencoder-based
training.

5) DCVA [2] with feature extractor pretrained on
largescale computer vision dataset using VGG16/VGG19
architecture [42]. This comparison is important to
understand whether a simple transfer learning approach
can be used instead of the proposed method. Pretrained
VGG architecture can ingest only three channels.
So we just select three optimum (RGB) channels
from the hyperspectral image to feed to the network.
We use three different configurations: by using first
convolutional layer of VGG16 (DCVA3Channels-1),
second convolutional layer of VGG16 (DCVA3Channels-
2), and fifth convolutional layer of VGG16
(DCVA3Channels-3).

6) DCVA as mentioned above, however, in this case, we
modulate the first layer of the network by replicating the
weights as number of channels of hyperspectral images.
In this way, we can feed the unmodified entire hyper-
spectral images to the network. We use two different con-
figurations: by using first convolutional layer of VGG16
(DCVAAllChannels-1) and second convolutional layer of
VGG16 (DCVAAllChannels-2).

7) A variant of the proposed method using dilated convo-
lutional layers (dilation set as 3) to understand whether
the proposed method can benefit from the larger receptive
field.

8) A 1D variant of the proposed method using 1×1kernels in-
stead of 3×3 kernels. This helps us to understand whether
both the spatial context/spectral information contributed
to the CD result.
The first two compared methods are from classical CD
literature. The third and fourth methods are from hyper-
spectral CD literature that specifically exploit properties
unique to hyperspectral images. The following two meth-
ods are based on deep transfer learning. The proposed
method is unsupervised, does not require any training or
even any pretrained network, thus, not compared to any
supervised [36] or preclassification [33] based hyperspec-
tral CD method. The last two methods are variant of the
proposed method and are shown on the Santa Barbara
scene.

C. Settings and Other Details

The results are reported as average of five runs. Comparison
is performed in terms of sensitivity (accuracy in percentage
computed over reference changed pixels), specificity (accuracy
in percentage computed over reference unchanged pixels), and
overall accuracy. In more details, given true positive (TP), true
negative (TN), false positive (FP), and false negative (FN), sensi-
tivity is TP/(TP+FN), specificity is TN/(TN+FP), and accuracy
is given by (TP+TN)/(TP+TN+FP+FN), all scaled by 100. For
multiple CD, kappa score is provided.

We perform a number of additional experiments on the Santa
Barbara scene.

1) For the proposed method, we use a five-layer network,
however, we provide a comparison of performance as
number of layers is changed.
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Fig. 5. Bay Area scene: (a) prechange and (b) postchange, (c) reference image (white—unchanged, black—changed, gray—unknown), and CD maps: (d) CVA,
(e) DCVA3Channels-1, (f) Proposed.
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Fig. 6. Hermiston scene, false color composition (R: band 52, G: band 31, B: band 22) images: (a) prechange and (b) postchange, Reference images: (c) binary
(white—unchanged, black—changed, gray—unknown), Binary CD maps: (d) CVA, (e) DCVA3Channels-1, (f) Proposed.

Fig. 7. Multiple CD for Hermiston scene: (a) Reference image, CD maps: (b)
Using original hyperspectral pixel values and (c) Proposed.

2) For the proposed method, we generally use He weight
initialization method [28], however, its performance with
respect to another weight initialization method [29] is
discussed.

TABLE III
PERFORMANCE VARIATION OF THE PROPOSED METHOD ON THE SANTA

BARBARA SCENE AS NUMBER OF LAYERS ARE VARIED

All results are reported as average of five runs.

3) For the proposed method we use Otsu’s threshold deter-
mination method [45], however, its performance with few
other thresholding method is shown.

4) We show variation of result as β0 is varied.

D. Binary CD Results

1) Santa Barbara: We first analyze the impact of increasing
number of layers for the proposed method (see Table III).
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Fig. 8. Decomposed POLSAR dataset (details in [24]). CD maps: (a) reference, (b) CVA, (c) Proposed.

TABLE IV
CD RESULTS FOR THE SANTA BARBARA SCENE

The proposed method’s result is reported as average of five runs.

We observe that both sensitivity and specificity gradually in-
crease up to four layers. Sensitivity increases while specificity
slightly decreases when five layers are used. No performance
gain is observed, rather decreases for six layers. While adding
more convolution layers improve the spatial receptive field of
the filters and increase the complexity of the filters, considering
the coarse resolution of the hyperspectral images this behavior
saturates soon. Henceforth, we use five layers for all experiments
related to the proposed method.

CVA obtains a sensitivity of 76.92 and specificity of 96.69
[see Fig. 3(d)]. Remarkably, PCVA performs worser than
CVA, showing that spectral and temporal complexity of hy-
perspectral bitemporal images cannot be captured by mere
superpixel-based representation. Being designed for hyperspec-
tral CD, SAMZIDSin, SAMZIDTan, and AICA outperform CVA
and PCVA. DCVAAllChannels-1 and DCVAAllChannels-2 are
outperformed by the DCVA3Channels-1 [see Fig. 3(e)] and
DCVA3Channels-2. This clearly shows that structure of the
network is important. VGGNet architecture, originally proposed
for 3-channel input, can work satisfactorily while ingesting
only 3 out of 224 spectral bands of AVIRIS sensor. However,
attempting to forcefully feed the network with all bands result
in decrease in the performance.

TABLE V
VARIATION OF THE RESULT FOR SANTA BARBARA SCENE AS THRESHOLD

DETERMINATION SCHEME IS VARIED

The proposed method [see Fig. 3(f) and Table IV] clearly
outperforms all the compared methods (including its dilated
and 1-D variant), obtaining a sensitivity 87.98, specificity of
98.57, and accuracy of 94.40. This shows the superiority of
the proposed method to ingest input bitemporal images of
arbitrary dimension, which cannot be achieved with transfer
learning settings (DCVAAllChannels or DCVA3Channels). The
proposed model can capture the change information, which is
evident from visualization of two randomly selected features (in
deep-difference domain) in Fig. 4. Remarkably, the proposed
method’s 1-D variant that only captures spectral context outper-
forms the dilated convolution based variant. This indicates that
the spectral information plays more important role on CD than
the spatial context information for the considered hyperspectal
data. This also partly explains why the proposed unsupervised
method outperforms transfer learning from models trained on
computer vision data.

The performance of the proposed method may vary if another
weight initialization strategy is used instead of the He initial-
ization method [28], e.g., if Xavier weight initialization [29] is
used, the proposed method obtains a sensitivity of 80.12% and
specificity of 94.27%, which is still superior to most compared
methods in Table IV.

For thresholding the Otsu’s method [45] is used, as it is
popular in the unsupervised CD methods [2], [51]. However
any other suitable method [52]–[55] can be used with similar
result as shown in Table V for the ISODATA method [52], [53]
and the Li’s method [54].

In Section III-A, we chose β0 as 4. In Table VI, we show
variation of result with different values of β0 that supports the
choice of abovementioned value.

2) Bay Area: The Bay Area scene shows complex urban
area along with vegetation patches. As in Santa Barbara,
PCVA, DCVAAllChannels-1, and DCVAAllChannels-2 do not
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TABLE VI
VARIATION OF THE RESULT FOR SANTA BARBARA SCENE AS β0 IS VARIED

TABLE VII
CD RESULTS FOR THE BAY AREA SCENE

The proposed method’s result is reported as average of five runs.

TABLE VIII
CD RESULTS FOR THE HERMISTON SCENE

The proposed method’s result is reported as average of five runs.

obtain satisfactory result. CVA [see Fig. 5(d)], SAMZIDSin,
SAMZIDTan, AICA, DCVA3Channels-1 [see Fig. 5(e)] and
DCVA3Channels-2 obtain superior result in comparison to
them. The proposed method outperforms all of them, in terms
of sensitivity, specificity, and accuracy [see Fig. 5(f)]. Detailed
quantitative results are shown in Table VII.

3) Hermiston: The spatial complexity of Hermiston is lesser
compared to the other two scenes. The changes form sim-
ple geometric pattern in this scene. Results obtained for this
scene is similar to the other two scenes. Quantitative results
are shown in Table VIII. The proposed method [see Fig. 6(f)]
either outperforms or obtains comparable specificity in com-
parison to other methods. The proposed method outperforms
CVA [see Fig. 6(d)], PCVA, SAMZIDSin, SAMZIDTan, AICA,
DCVAAllChannels-1, and DCVAAllChannels-2 also in terms of

TABLE IX
CD RESULTS FOR SAN FRANCISCO POLSAR SCENE

The Proposed method’s result is reported as average of five runs.

sensitivity. However, DCVA3Channels-1 and DCVA3Channels-
2 obtain superior sensitivity than the proposed method. This
relative success of transfer-learning-based setup on this dataset
can be attributed to the less spatial complexity of the scene.

E. Multiple CD Results

Multiple CD reference map is only available for Hermiston
scene. The reference map is shown in Fig. 7(a). Result obtained
by the proposed method, using deep features extracted using
untrained model, is shown in Fig. 7(c). It is evident that the pro-
posed method is able to detect the important semantic changes.
There is certainly overlap between the classes shown in blue and
red. However, it is clear from Figs. 6(a) and (b) that the blue and
red classes represent similar semantic notion, making it difficult
for the unsupervised multiple CD method to differentiate them.

To understand whether the proposed multiple/multiclass CD
scheme benefits from using the untrained model as feature
extractor, we compare it to result obtained by using original
hyperspectral data [see Fig. 7(b)]. The proposed method is visu-
ally superior than this baseline. The proposed method obtains a
kappa of 0.80, in comparison to 0.72, obtained using the original
hyperspectral data.

V. RESULTS ON DECOMPOSED POLSAR DATA

The decomposed POLSAR bitemporal data is a pair of 138
band real-valued data acquired using UAVSAR over an urban
area in San Francisco city on September 2009, and May 2015,
first presented in work by Najafi et al. [24]. We use the same
set of methods as for hyperspectral CD for comparison except
those specifically designed for hyperspectral images (SAMZID
and AICA) and DCVA3Channels-1/2 as there are no available
R, G, B bands in this case. Fig. 8(a) shows the reference
CD map. The proposed method obtains satisfactory result [see
Fig. 8(c)], visually significantly better than CVA [see Fig. 8(b)].
The proposed method quantitatively outperforms all compared
methods, as tabulated in Table IX.

VI. CONCLUSION

In this work, we presented an unsupervised CD method for
hyperdimensional images. Labeled training data is scarce for
hyperdimensional images and models trained on multispectral
sensors cannot be directly applied on them, due to mismatch
of dimension. The proposed method overcomes this problem
by simply using an untrained model for feature extraction from
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bitemporal hyperdimensional images. As the feature extractor
model is untrained, it can be initialized with as many number of
input channels as desired with appropriate weight initialization
technique. Moreover, the number of filters in the subsequent
layers can also be chosen in a flexible manner, as there is
no training involved. Extensive experiments on four hyperdi-
mensional datasets show the superiority of the proposed ap-
proach. The proposed approach is also capable of clustering the
changed pixels into semantically meaningful groups, as shown
for Hermiston dataset. While the idea seems bold and new in
context of remote sensing, similar idea has been verified before
in the computer vision and machine learning literature, e.g.,
deep image prior. The proposed approach benefits from the
fact that hyperdimensional images generally exhibit less spatial
complexity due to the cost of generating higher resolution in
both spectral and spatial domain. Thus, the applicability of the
method to very high spatial resolution hyperdimensional sensors
may not be straightforward and will be investigated in future
work. Our future work will also investigate untrained models in
the context of the hyperspectral image classification. As a final
note, the proposed approach should not be seen as a competitor
to the supervised methods, rather as a complementary to them.
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