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Multiview Inherent Graph Hashing for Large-Scale
Remote Sensing Image Retrieval

Yinghui Sun, Wei Wu, Xiaobo Shen

Abstract—Remote sensing image retrieval (RSIR) is one of the
most challenging tasks in remote sensing (RS) community. With the
volume of RS images increases explosively, conventional exhaustive
search is often infeasible in real applications. Recently, hashing
has attracted increasing attention for RSIR due to significant
advantage in terms of computation and storage. Hashing first
generates a set of short compact hash codes to encode RS images,
and then applies hash codes for effective RSIR. Multiview hashing
usually achieves promising RSIR performance by fusing multiples
kinds of RS image features. Conventional multiview hashing simply
predefines graph Laplacian in each view, which cannot effectively
explore underlying similarity structures among RS images. To
address this issue, this article proposes a novel multiview inherent
graph hashing (MvIGH) for RSIR. MvIGH captures the latent
similarities among RS images, and adaptively learns weights of each
view to characterize its contribution. In addition, MvIGH further
minimizes the quantization errors. We develop an efficient alter-
nating algorithm to solve the formulated optimization problem.
The experiments on three public RS image datasets demonstrate
the superiority of the proposed method over the existing multiview
hashing methods in RSIR tasks.

Index Terms—Hash learning, large-scale remote sensing (RS)
image retrieval, multiview remote sensing data.

I. INTRODUCTION

ITH the rapid development of earth observation (EO),
W the volume of remote sensing (RS) data increases dra-
matically [1]-[3]. As a vital application of RS, remote sensing
image retrieval (RSIR) [4] has become an open and tough task
in the RS community. The goal of RSIR is to find a list of
images from the RS dataset that are most similar to the given
query image. In early works, this goal was always achieved by
exhaustively comparing the query image with each image in the
dataset. The search complexity of the algorithm is O(N'), and the
storage complexity is O(Nd), where N is the number of images
in the dataset, and d is the dimensionality of an image feature.
In the era of RS Big Data, the number N of images and the
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dimensions d of feature descriptors of remote sensing images
are very high. Exhaustively comparing the high-dimensional
feature descriptor of an inquiry image with each image is often
prohibitively in computation, both in time and space, which
makes it infeasible for practical applications. To address the
aforementioned problems, the approximate nearest neighbor
(ANN) search which trades the retrieval accuracy for time
cost is introduced to RSIR. Among the diverse ANN methods,
hashing is a successful solution for many applications due to
the significant advantages in terms of computation and storage.
Hashing focuses on mapping the images from the original fea-
ture space to the Hamming space [5], [6], where the binary codes
with similarity preservation are used for the effective similarity
search.

The data-independent hashing methods are first studied. They
simply generate the hash functions by random projections,
which map similar data into similar binary codes with high
probabilities. The representative methods in this category in-
clude the most well-known locality sensitive hashing (LSH) [7]
and its extensions [8]. These methods require relatively long
binary codes to achieve good performances. The data-dependent
methods [9]-[19], which are also called learning to hash meth-
ods, have recently been proposed to address this problem. They
apply machine learning techniques to learn the hash functions
from the training set to generate more compact binary codes.
Compared to the data-independent methods, the data-dependent
hashing methods often have comparable or even better methods
with shorter binary codes. The representative data-dependent
hashing methods include spectral hashing (SH) [9], PCA hash-
ing (PCAH) [11], anchor graph hashing (AGH) [10], itera-
tive quantization (ITQ) [12], discrete graph hashing [13]. To
name a few, spectral hashing (SH) [9] is one of the earliest
data-dependent hashing methods. SH utilizes the distribution of
data and turns to be the eigen-decomposition problem of graph
Laplacian matrix. Anchor graph hashing (AGH) [10] is then
proposed to adopt anchor graph for hashing learning. However,
they work around the single-view image retrieval task. Generally
speaking, they cannot be directly handle RS image described as
different features.

In reality, remote sensing images represented by multiple
kinds of features are continually increasing. For example, each
image can be described by different kinds of features, such
as sift feature, gist feature, rgb feature. We refer this kind of
data as multiview RS data. Each view reflects some specific
characteristics of the RS images. Compared to single-view
RS images, multiview RS images offers more comprehensive
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Multi-view Data

Fig. 1. Overview of the proposed MVIGH.

information. Existing literature [20] shows that fusing multi-
ple views usually leads to better performance than the single
view. Consequently, there emerge more and more demands on
multiview RSIR. Although there are only a few works [21],
[22] for multiview RSIR, some efforts [23]-[29] have recently
been made towards effective hash code learning from multiview
data in machine learning community. Composite hashing with
multiple information sources (CHMIS) [23] establishes a graph
for each view, and then combines them to learn the linear hash
function. Multiple feature hashing (MFH) [24] preserves the lo-
cal structure of each view and globally considers the alignments
of all views to learn a group of hash functions. Later on, multiple
feature kernel hashing (MFKH) [25] learns hash function by
preserving certain similarities with linearly combined multi-
ple kernels corresponding to different features. [26] proposed
multiview spectral hashing (SU-MVSH). SU-MVSH computes
the a-averaged similarity matrix from all views, and adopts
the sequential learning approach to obtain the hash function.
However, there are two main drawbacks in these methods. First,
they simply use the predefined Gaussian kernel to calculate
the similarity between the kNN neighbors in each view. This
approach is not robust to noises, and fails to capture the latent
similarity structure among the multiple views. Second, they
simply discard the discrete constraint to reduce to a relaxed
problem. It will suffer from large distortion errors, and thus
the obtained binary codes are nonoptimal [13], [30]. Thus, how
to generate high-quality hash codes that capture the inherent
similarity structure from multiview data is still a challenging
research topic.

Due to the effectiveness of hashing-based methods, in this ar-
ticle, we introduced a new multiview hashing method to address
the above challenges for RSIR task. This method adaptively
learns the weights among the nearest neighbors to fully capture
the latent similarity structure among the multiple views. The
overview of the proposed method is illustrated in Fig. 1. We
summarize the main contributions of this work as follows.

1) We propose a novel multiview inherent graph hashing,

i.e., MVIGH, to learn high-quality hash codes for multi-
view RS images. MVIGH jointly learns the hash codes,

Multi-view Inherent Graph Hashing
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hash functions and adaptive similarity weights within one
framework to fully preserve the latent similarity structure
of multiview RS data. In addition, MvIGH also considers
minimizing quantization loss by a new regularizer.

2) We develop an efficient iterative optimization algorithm to
solve the proposed MvIGH, where each subproblem can
be solved efficiently. Moreover, we theoretically show that
the convergence of the optimization algorithm is strictly
guaranteed.

3) We perform extensive experiments on three published RS
image datasets. The results demonstrate that the proposed
MvVIGH outperforms the state-of-the-art multiview hash-
ing methods in RSIR.

The rest of this article is organized as follows. Some pub-
lished literature related to RSIR and hash learning are briefly
introduced in Section II. The details of proposed adaptive multi-
graph hashing are presented in Section III. The experimental
evaluations are given in Section I'V. Finally, Section V concludes
this article.

II. RELATED WORK
A. Remote Sensing Image Retrieval

Existing RSIR methods can be roughly divided into two
categories. The first category focuses on extracting effective
features of RS images. Datcu et al. [31] proposed a knowledge-
driven information mining (KIM) system. KIM system first
extracts the primitive features from RS images, and reduces
the dimension of features by an unsupervised classification.
Then Bayesian networks are used to learn the user-specific
interests from the semantic level. Yang et al. [32] adopted the
bag-of-words (BOW) representations for RSIR and some design
parameters on BOW features are discussed. Deep convolutional
neural networks (DCNN) is introduced to RSIR due to its
powerful capacity of feature representation. Tang et al. [33]
presented a novel unsupervised deep feature learning method
which is called deep bag of words (DBOW). DBOW first learns
the discriminative descriptor for the RS image using a deep
convolutional auto-encoder (DCAE) model in the image patch
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level, and then the DBOW features are constructed based on
the patch features. The other category aims at improving the
retrieval scheme. The entropy-balanced statistical (EBS) k-d
tree [34] is proposed to develop an efficient indexing mechanism
for large-scale RS databases, and the EBS k-d tree is built
through top-down decision tree induction. Two-stage reranking
(TSR) [35] is proposed to improve the performance of RSIR by
using reranking method. First, TSR finds the k-nearest neighbors
of a query RS image. Second, an editing scheme is developed
to eliminate the negative influence of the dissimilar images.
Finally, a multisimilarity fusion reranking (MSFR) method is
proposed to rerank the rest RS images. A content-based SAR
image retrieval method is proposed in [36]. First, the initial
retrieval results is obtained by the region-based fuzzy matching
(RFM) measure. Then, a multiple relevance feedback (MRF)
scheme is presented to improve the retrieval results.

B. Hashing for RSIR

Recently, hashing methods have been introduced to RSIR
task [21], [22], [37], [38], [39]. In very early works, data-
independent methods are studied. LSH [7] and its extensions are
representative works. LSH generates hash functions by random
projections without using original data, thus, the length of hash
codes should be very long to guarantee the performances. To
learn more compact hash codes, many data-dependent hashing
methods have been proposed. Data-dependent methods can be
roughly divided into unsupervised ones and supervised ones.
Unsupervised hashing methods generate hash codes without
semantic information. For example, spectral hashing (SH) [9]
explores the neighborhood structure inherent in the data and
generates balanced and uncorrelated hash codes. Motivated by
SH, anchor graphs hashing (AGH) [10] replaces the adjacency
graph of RS data by an approximate neighborhood graph by
using anchor graphs. Quantization error is an important fac-
tor that influences performances of learned hash codes. There
are some works focusing on reducing the quantization error.
Iterative quantization (ITQ) [12] rotates zero-centered PCA-
projected data to minimize the quantization error of mapping.
Discrete graph hashing (DGH) [13] is another work dealing with
the discrete constraints. Supervised hashing methods exploit
semantic similarity between the images to learn more discrim-
inative hash codes. Semi-supervised hashing (SSH) [11] mini-
mize the error on the labeled data while maximizing variance
and independence of hash bits over the labeled and unlabeled
data. Kernel-based supervised hashing (KSH) [40] minimizes
the Hamming distance between similar pairs and maximizes
that between dissimilar pairs. The kernel-based hash functions
are adopted to handle linearly inseparable data. Demir and
Bruzzone [41] adopt the kernel-based nonlinear hashing method
for large-scale RSIR task. Extensive experiments provided the
effectiveness of hashing methods for large-scale RSIR. The
foregoing methods are designed for RS images represented by
the single feature. Due to the complex image categories and
various texture structures of RS images, the single feature de-
scriptor is often difficult to completely characterize the content
of an image. However, there are only a few attempts [21], [22]
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TABLE I
IMPORTANT NOTATIONS USED IN THIS ARTICLE

Notation [ description
X (m) data matrix of the m-th view
w(m) projection matrix of the m-th view
B latent hash code matrix
S similarity matrix
I identity matrix of size r
alm) weight of the m-th view
A dimensionality of the m-th view
M the number of views
N the number of RS images
k the number of data sample of anchor graph
c the number of anchors
T the length of hash code
1 the weight redistribution parameter
) the similarity redistribution parameter

on multiview hashing for RSIR. Source-invariant deep hashing
convolutional neural networks (SIDHCNNSs) [21] is the first
work exploits the method for multiview RSIR. It contains a series
of optimization constraints and is optimized in an end-to-end
manner. [22] propose a deep cross-modality hashing network
(DCMHN). DCMHN first transforms RGB images into four
types of single-channel images, then randomly selects one type
of them to construct image pairs with each corresponding SAR or
optical images to solve the cross-modality discrepancy caused
by imaging mechanisms. Finally, hash function is learned for
efficient retrieval.

III. MULTIVIEW INHERENT GRAPH HASHING
A. Problem Statement

In this article, matrices and vectors are written in boldface.
For a matrix X = (z,;), its ¢th row, jth column are denoted by
X, and X.; respectively. The />-norm of a vector is defined
as || - ||2. The matrix Frobenius norm is denoted by || - || 7. X "
denotes the transpose of X. Tr(-) denotes the trace of a square
matrix.

Suppose that O = {o;}}¥, is a set of RS images, and

we are given its corresponding features {X(m) =
[xgm), e ,XS\T)]T € RNVxdm}M | ‘\where d,, is the dimension

of the mth view, M is the number of views, N is the number
of images. We also denote the latent hash code matrix
B=[by,...,by]T € {-1,1}¥" ! where b; € {-1,1}!
is the hash code associated with o;, and r is the code length.

The aim of MVIGH is to learn B that can well preserve the latent
similarity structure between objects with high probability. The
important notations in this article are summarized in Table I.

B. Formulation

In MVIGH, similarity preservation is designed to maintain the
neighborhood relationship among the samples in each view after
being mapping into the Hamming space. It defines the similarity

I'We use “—1” bit and “+1” bit during training model, and in fact we use “0”
bit and “4-1” bit for storing hash code.
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preserving function for mth view

2
b{"™ ~ b (1)
2

N
> s
ij

min
b(‘m,)

st b™ e {—1,+1}"

where Si(;n) denotes the similarity of xgm) and xgm) in the mth

view. Equation (1) can be rewritten in a compact matrix form

II(III% Tr (B(m)TL(m)B(m)) )
b m

S.t. B("L) c {_1,+1}NXT’B(77L)TB(7YL) _ NIT

where L(™) € RN*N is the normalized graph Laplcaian matrix
computed by the data local structure using different strategies.
The first constraint is a discrete constraint for B(™) , and the sec-
ond constraint is to require the bits to be uncorrelated. Summing
up all the M view, we have the following objective function:

min

M
B o mz_l o™ Tr <B(m)TL(m)B(m)) )

s.t. B ¢ {—17_|_1}NX7'7B(7")TB(m) — NI,

M
and Za(’”) =1a™ >0m=1,....M

m=1

where ™) is a nonnegative variable for weighting the relative
importance of the mth view in the learning process. However, the
approach has two main drawbacks. 1) Similarity matrices S(™)
in different views are not consistent. Thus, this strategy is not
enough to characterize the common structure among different
views since it characterizes each view independently. Besides,
existing researches [42], [43] have shown that S(™) is not robust
using KA NN method that is sensitive to the noise and number of
neighbors. 2) conventional similarity matrix is with N x N size,
thus, it is not scalable for large-scale application.

To overcome the above mentioned problems, we first assume
that there exists a latent similarity matrix S to characterize all the
views. We then adopt anchor graph [44] for graph construction
due to its computation efficiency. Anchor graph uses a small
set of samples called anchors to approximate the neighborhood
structure. We apply scalable k-means clustering to obtain the

anchors. We first generate ¢(¢ < N') anchor points { ugm)}f:l
by applying scalable k-means clustering [45] on the mth view.
Simultaneously, the similarity matrix S € R™*¢ characterizes
the similarities between the samples and anchors, where S;;
denotes the similarity between the ith object and the jth anchor.
The formulation with adaptive similarity in the mth view can be
rewritten

iisﬁ

i=1 j=1

min

(m) m 2
FRNCD) ’bi _bf‘f)Hz @)
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where bELT) is the binary code of /,Lg-m). Summing up all the M

views, we have the following objective function:

M N ¢ (m) 5
; (m) ||[(m) _ p(m) g
Jmin 03T at bl bl sy 6
T m=1i=1 j=1
st. B e {—1, 41}V
M
and Z al™ = 1,a(m) >0m=1,..., M.
m=1

In addition, for simplicity, we assume that there exists a linear
mapping between the mth view, i.e., X ™) and Hamming space,
i.e., B, where the linear mapping is parameterized with a trans-
formation matrix, i.e., W™ To this end, (5) can be further
transformed as

M N ¢
DN atmr)3 s, (©6)

m=1i=1 j=1

min
S,a, W(m)

s.t. WmTwm — 1,

M
and Za(m) =1,a"™>0m=1,...,.M

m=1

where T’ = xl(-m)TW("”) — p,;-m)TW(””), and the orthogonal con-
straint is imposed on W (™) to preserve the metric structure of
the ith view of data. In this work, we learn S from multiview
data. Each row of S corresponds to neighborhood anchors and
characterizes the local structure of each data point. The sparse
constraint on S is defined as

1Sillo = * )

where k is the predefined number of neighborhoods. || - ||o
denotes the ¢y norm of a vector, i.e., the number of nonzero
element of a vector. With the above constraint, (6) can be further
transformed into

M N ¢
>33 (at) T (i) ®)

m=1i=1 j=1

st. WTwm) — 1

min
S,Q,W<"‘)

M
and Y o™ =1a">0m=1,...,.M
m=1

and ZSU :1’Hsi<HO:k’Sij ZO,iZl,...,N

Jj=1

where 1,79 > 1 are two parameters that are used to avoid trivial
solution of (8). Specifically, ; is used to avoid trivial solution
of o where (™ with smallest loss equals to 1 and other entries
equal to 0. This solution only selects one view and ignores the
other views. In addition, 5 is used to avoid trivial solution with
S=0.

Due to the difficulty of directly learning discrete binary codes,
one conventional way is to bypass the discrete optimization
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problem by some certain relaxation strategy, which however sep-
arates the binary code learning into two mutually independent
stages, i.e., learning continuous representations, transforming
into binary codes via some binarization methods. Typically, such
optimization scheme ignores the correlation of the above two
stages, which may severely limit the representative power of the
generated binary codes. In this work, we consider the following
objective function to characterize the quantization loss:

2

min
B,W(m)

€))

M
Z X(mwm) _
m=1 F

st. Be{—1,+1}V" wimTwim —1

where B is the latent hash code matrix. The minimization of
the above loss function ensures that the continuous embedding
should be close to the target binary codes. By summarizing
the adaptive similarity structure preservation and quantization
loss minimization of binary codes, we finally formulate the final
objective function as follows:

ZZZ(W) I3 (S)"

m=1 i=1 j=1

M
A xXmwim - B
m=1

st. Be {—1,+1}V" wm

min
S, W(m) o,B

2
(10)

F
Tw(m) =1,

and ZSU = 1,||Si,||0:k,5ij 20,@': 1,...,N

j=1

M
and Y o™ =1a">0m=1,...,.M

m=1

where A is a nonnegative tradeoff parameter, weighting the
relative importance of the similarity preservation term and the
quantization loss term.

C. Optimization

It is difficult to solve the above problem directly since 1)
the above objective function is not convex over all variables
simultaneously; and 2) the constraints are discrete. Therefore,
we apply an iterative algorithm to optimize the variables.

1) Update W'™): We iteratively update W (") in the mth
view. By dropping some irrelevant terms to W (™), we have

_ (m) (m) r
m(l,I,Ll) Z Z ’ H; W (SU) ’
M 2
+al > xXmwim - B (11
m=1 F

st. WmTwm) — 1
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Algorithm 1: Curvilinear Search Algorithm Based on Cay-
ley Transformation.

Input: initial point W™ € M} 2, matrix P(™), K, B.

Output: W (™),

1: Initialize k = 0,e > 0,and 0 < p; < p2 < 1.

2: repeat

3:  Compute the gradient G("™) according to (12);

4: Generate the skew-symmetric matrix
A = G Tw(m) _ Wm)TGm).

5:  Compute the step size 7, that satisfies the
Armijo—Wolfe conditions [46] via the line search
along the path Hy(7) defined by (13);

6: Set W™ = H(r);

Setk=Fk+1;
8: until convergence

~

We denote G(™) = VF(W (™)) as the gradient with respect to
W (™) in (11), which can be computed as follows:
> (12)

Gm) — op(MTKPm)W(m)
where P(™) = [X(™)7T (™17 K =[D,,-S;-S",D.],
D, and D, are two diagonal matrices with diagonal entry that
equals to the sum of each row and each column, respectively.
We then further define the skew-symmetric matrix A (") =
G TWm) — W) TG The new trial pointis determined
through Crank—Nicolson-like scheme

+oax(mT (Z X (my(m) _

m=1

H(r) = W) — ZA(0T (W +H(m)  a3)
where 7 is the step size. H(7) is given in the following closed

form:
H(r)=W™mQ (14)

where Q = (I, — ZA™T)(I, + ZA™T)=1 (14) is referred
as the Cayley transformation. Slmllar to linear search along a
straight line, curvilinear search can be applied to find a proper
step size for 7 and guarantee the iterations to converge to a
stationary point. The details of the curvilinear search algorithm
for this subproblem are shown in Algorithm 1.

2)Update o(™: With W™ B,S fixed, we optimize the
weight of each view o). By ignoring some irrelevant terms
with respect to o, we have

M N c -
min - 373" (o) T (5i,)"

min (15)
m=1i=1 j=1
M
d atm =10 >0m=1,.. M
m=1
ZMSm represents a feasible set, which is defined as Mgm ={We

RIm*"| WIW =1,}.
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Algorithm 2: Multiview Inherent Graph Hashing.

Input: Training set {X (™) € RV*dm}M - code length r;
the number of neighborhoods k; parameters 71, r2, A.

Output: projection matrices { W) 1M

1: Initialize o™ = 1/M;

2: Initialize B as {—1,1}V*" randomly;

3: Initialize S by computed the similarity between X (1)

and u(l);

repeat

Update W (™) using (14);

Update a(™) via (20);

Update S via (24);

Update B using (26);

until convergence

R A A

For simplicity, by denoting [, = vazl Py IT13(
(15) becomes

Sig)"

min
alm)

(16)

M
> i ()"
m=1

M
Z al™
m=1
The Lagrange function with respect to (™) is

M - M
L™y =>"1, (a<m>) - (Z al™ — 1> (17

m=1 m=1
where v is the Lagrange multiplicator. By setting the derivation
with respect to (™) to zero, we have

=1,a™ >0,m=1,..., M.

r1—1
ri ()l =y =0, (18)
Then we further have
(m) v )77
e . (19)
With the constraint S a(™) = 1, we get
(m) LT
« m
atm = — == ) — (20)
2im @ 2i=1 (Im) 71

3) Update S: By denoting g;; = S.M_ (a™)"1||T||3, the
optimization problem with respect to S in (10) can be reduced
to

D> 9i(Si)"

i=1j=1

21

S8y = 1S llg = kyi=1,...

Jj=1
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We update S row by row respectively. The objective function
with respect to the ith row in (21) becomes

C

(22)

> Sij=1Silly =k, Si; > 0,i=1,...,N.

j=1
Without the constraint ||S; ||o = k, the optimal solution to the
problem in (22) is as follows:

1

Ty

Sij = %-
i (gi) T2

Since ||S;.||o = k, only k entries in S; are nonzero, which means
we only need to optimize the k nonzeros elements. The larger
gi; leads to larger objective function value in (22). Thus, we only
need to update the %k elements of S;. that corresponds to the k
smallest g;;, and set the rest N — k elements to zero. Assume
that the smallest k& elements of g;; are g;j,, Gijos - - -+ Gijy» the

optimal S;. with the sparse constraint in (21) is as follows:

1
(i)
1
SiJz =9 >k, (gmq) 12
0, Otherwise.

(23)

, for 1=1,2,... )k

(24)

4) Update B: The objective function in (10) with respect to B
can be reduced to

M 2
~ (m)w(m) _
min mzzjlx w B ) (25)

st. Be{-1,+1}V".

Since W (™) is fixed, (25) can be further reduced to the following
problem:

(26)

M T
; _ (m)ys(m)
mén 2 <Z XMW ) B

m=1
st. Be{-1,+1}V".
Obviously, we can easily have the solution of B as follows:

M

m=1

27)

where sign(-) is the sign function.

We next have the following convergence theorem of MvIGH.

Theorem 1: The alternate updating rules in Algorithm 2
monotonically decrease the objective function value of MVIGH,
i.e., (10) in each iteration, and Algorithm 2 will converge to a
local minimum of MvIGH.

Proof: The proof is easy to obtain. Since each subproblem is
solved exactly, the value of objective function is monotonically
decreasing. Besides, the objective function is lower bounded
by zero. Thus Algorithm 2 is guaranteed to converge to a local
minimum of MvIGH. ]
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(a) (b) (© (d

Fig.2. Some examples of the UCM dataset.

(e) () (& (h)

@) ' () © @

Fig. 3.  Some examples of the AID dataset.

TABLE I
STATISTICS OF THREE DATASETS

Datasets [ # Dataset  # Training  # Database  # Query # Dim
UCM 2,100 1,680 1,680 420 512/500
AID 10,000 8,000 8,000 2,000 384/300
NWPU 31,500 25,200 25,200 6,300 228/150

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
MVIGH for RSIR tasks, and compare it with several state-of-
the-art hashing methods.

A. Dataset

Three published RS image datasets are selected for evaluation.
To construct multiview data, we adopt two visual features to rep-
resent RS images: GIST features and SIFT-based BOW features.
The statistics of the three datasets are summarized in Table II.
The detailed descriptions of three datasets are as follows.

1) The first one is proposed by the University of California
Merced [47], and we name it UCM. There are 2100 RS
images divided into 21 semantic categories in UCM. Each
category includes 100 images with 256 x 256 pixels. In
addition, the spatial resolution is 0.3 m per pixel in the
RGB color space. Some examples are showed in Fig. 2. We
extract the 512-D Gist vector and 500-D vector quantized
from dense Sift features, respectively.

2) The second dataset is introduced by Wuhan University and
HuaZhong University of Science and Technology [48],
and we refer to it as AID in this article. AID consists
10 000 RS images with fixed size of 600 x 600 which
are divided into 30 semantic categories. The volume of
different scenes are ranged from 200 to 420, and the
spatial resolution changes from 0.5 to 8 m per pixel. Some
examples of different scenes are exhibited in Fig. 3. We
extract the 384-D Gist vector and 300-D vector quantized
from dense Sift features, respectively.

3) The last dataset is constructed by Northwestern Poly-
technical University [49], and we name it NWPU for

© ) ) (h)

short. NWPU is made up of 45 scene categories, and each

category includes 700 images with a size of 256 x 256 in

the RGB space. The spatial resolution varies from about

0.2 to 30 m per pixel. Some examples are displayed in

Fig. 4. We extract the 228-D Gist vector and 150-D vector
quantized from dense Sift features, respectively.

For each dataset, we randomly sample 20% samples as the

query set, and the rest samples as the training set and database.

B. Experimental Setting

To prove the effectiveness of the proposed MVIGH, we
compare it with one single view hashing method SH [9]
and five multiview hashing methods, including CHMIS [23],
MFH [24], MFKH [25], SU-MVSH [26], and CMFH. The
source codes of the comparison methods are kindly provided
by the authors. In MvIGH, the parameter A ranges from
[1073,1071,107°,10%,10%], 71 and 7, range from [2, 4, 6, 8,
10], and the number of neighbors & ranges from [3, 4, 8, 10, 20].
These parameters are finally chosen by cross-validation on the
training set. The parameters of the comparison methods are
carefully tuned according to the corresponding literatures, and
their best performances are reported.

In this article, large-scale remote sensing image retrieval
performance is quantitatively evaluated using the following two
widely adopted metrics: the mean average precision (MAP) and
the precision-recall curve. mAP is the mean of all the queries’
average precision (AP) in the database. For a query ¢, AP is
defined as

(28)

where R is the number of retrieved list, L, is the number of
the ground truth neighbors in the list, P,(s) is the precision of
the top s retrieved results, d,(s) = 1 if the sth result is the true
neighbor and 0 otherwise. In our experiment, we set 12 as the
number of images in the database. A precision-recall (PR) curve
is a graph with precision values on the y-axis and recall values
on the x-axis.
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(a) (b) (©) (d)

Fig. 4. Some examples of the NWPU dataset.

TABLE III
MAP COMPARISON WITH RESPECT TO DIFFERENT NUMBER OF BITS
ON UCM DATASET

Method | 16 32 64 128
SH [ 0.1076  0.1417  0.1621 _ 0.1596
CHMIS | 0.1612  0.1677  0.1499  0.1262
MFH | 0.1476  0.1427  0.1361  0.1251
MFKH | 0.1510 0.1618 0.1748  0.1482
SU-MVSH | 0.1623  0.1901 02013  0.1711
CMFH | 0.1472  0.1639  0.1761  0.1881

MvIGH [ 0.1832  0.1954  0.2110  0.2117

Bold numbers denote best performances.

TABLE IV
MAP COMPARISON WITH RESPECT TO DIFFERENT NUMBER OF BITS
ON AID DATASET

Method [ 16 32 64 128
SH [ 0.0572  0.0556  0.0562  0.0660
CHMIS | 0.0832  0.0771 0.0662  0.0588
MFH | 0.0665 0.0637 0.0633  0.0589
MFKH | 0.0801  0.0879 0.0847  0.0793
SU-MVSH | 0.0716  0.0893  0.1008  0.0959
CMFH | 0.0721  0.0810  0.0937  0.1004
MvIGH [ 0.0867  0.0957  0.1017  0.1080

Bold numbers denote best performances.
TABLE V
MAP COMPARISON WITH RESPECT TO DIFFERENT NUMBER OF BITS
ON NWPU DATASET

Method [ 16 32 64 128
SH [ 0.0307  0.0309  0.0330 0.0373
CHMIS | 0.0444 0.0431 0.0378  0.0331
MFH | 0.0399 0.0399 0.0369 0.0330
MFKH | 0.0449 0.0497 0.0484  0.0453
SU-MVSH | 0.0412 0.0496 0.0515 0.0401
CMFH | 0.0406 0.0428 0.0485 0.0513
MvIGH [ 0.0459  0.0531  0.0543  0.0571

Bold numbers denote best performances.

C. Performance Evaluation

This section evaluates the performance of MvIGH by com-
paring it with six state-of-the-art methods on the three datasets.
The mAP results of all the methods on UCM, AID, NWPU
are reported in Tables III-V, respectively. In addition, the PR
curves with different code lengths, i.e., 16, 32, 64, 128 b are
also shown in Fig. 5-7. We empirically compare k-means and
random strategies in the proposed MvIGH and vary ¢ from
[10, 20, 50, 100, 200] to evaluate the number of anchors on

(e ® (€9) ()

TABLE VI
MAP COMPARISON WITH RESPECT TO DIFFERENT NUMBER OF ANCHORS
ON UCM DATASET

Strategy [ 10 20 50 100 200
Random | 0.2046  0.2069  0.2027  0.2094  0.2055
k-means | 0.2078  0.2113  0.2077  0.2088  0.2017

MvVIGH. The performances of the proposed MvIGH with re-
spect to the two strategies on UCM dataset with 64-b code are
shown in Table VI. The observations can be found from these
results.

1) The proposed MvIGH outperforms all the comparisons on
all the RS datasets. MVIGH has the best mAP results in
all the 12 cases from Tables III-V. In Figs. 5-7, we see
that the PR curves of MvIGH are above the others. These
results obviously validate the superiority of MvIGH over
the comparison methods on the large-scale visual retrieval
tasks.

2) From Tables III-V, we can see that multiview methods
outperform single-view method in most cases. The perfor-
mance of the proposed MvIGH increases with the length of
hash codes increasing, and that of some comparison meth-
ods decreases with the length of hash codes increasing. For
example, the performance of SU-MVSH increases first
when code length varies from [16,32,64], then decreases
when code length is 128. One possible reason lies in low
variances of the latter bits in these methods, which reduces
the quality of the entire hash codes.

3) From Table VI, we can see k-means and random strate-
gies achieve similar performance, and the reason is that
similarity graph is optimized in the proposed MvIGH,
thus select of anchors has limited impact on performance.
However, the anchors generated by k-means is enough to
cover the whole dataset when c is close to the number of
categories, while random strategy may need to generate
more anchors. As large ¢ leads to high computational
complexity, it is suggested to apply k-means than random
strategy in MvIGH.

D. Convergence Analysis

In this section, we empirically analyze the convergence of
MvIGH. We adopt the AID dataset for this experiment, and
Fig. 8 shows the convergence curves of MvIGH. From Fig. 8§,
we can clearly see that MvIGH converges very quickly.
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T T T 20 anchors. Table VII presents training time of all the methods.
© 500 F As can be seen from Table VII, MvIGH is faster than CHMIS
> .. .
§ and MFH, and slower than other multiview hashing methods.
. The training time of MVIGH is mostly spent on curvilinear
o L ..

b 490 search step. The curvilinear search step enforces orthogonal
E property on projection matrix, which helps MvIGH improve its
24s0} performance.
©
2
o)
O 4ot .
F. Influence of Different Parameters
0 5 15 20 The influence of different parameters on MvIGH model is dis-
Number of lterations cussed in this section. A is ranged from [1073,1071, 1,10, 103].
Fig. 8. Convergence analysis of the proposed MVIGH on the AID dataset. 71 and o are varied from (2,4, 6, 8, 10]. In addition, We study the

E. Time Complexity Analysis

This section evaluates computational complexity of the pro-
posed method, we compare training time of the proposed method
and the comparisons on NWPU dataset with 64-b code and

sensitivity of the number of nearest neighbors, i.e., k¥ in MvIGH.
We vary k from the range of [3,4,8, 10, 20]. Fig. 9 shows the
mAPs with respect to the varying parameters on the UCM dataset
with the fixed 64 code length. From the results, we can see that
the performance of MvIGH increases first and then decreases
with the the increase of L. The mAP results remain relatively
stable with the change of 1, 3, and k.
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TABLE VII
TRAINING TIME ON NWPU DATASET
Method SH CHMIS MFH MFKH SU-MVSH CMFH MvIGH
Time(s) | 0.14 1092.59 588.86 19.77 1.42 4.59 290.14
0215 0.215 0.215 0.215
021 0.21 )\9\9\9/_,( 0.21 021 —o i
: 2 2 E
0.205 0.205 0.205 0.205
o2 108 101 109 10! 108 02, 4 6 8 10 02, 4 6 8 10 02 5 5 10 2
A " T2 Kk
() (b) (©) ()]
Fig. 9. Influence of different parameters. (a) A, (b) 71, (c) 72, and (d) k.
V. CONCLUSION [6] L. Xie, D. Tao, and H. Wei, “Early expression detection via online multi-

This article studies how to learn compact hash codes that
explore the latent similarity structure among multiview RS
images. The proposed MvIGH adaptively learns the weights
of the multiple views to capture the latent similarity structures
among RS images. In addition, MvIGH uses a new regularizer
to explicitly reduce the quantization error. MvIGH is optimized
in an iterative manner, and it is theoretically guaranteed to reach
a local minimum. Extensive experiments on three published
RS image datasets demonstrate the proposed method outper-
forms existing multiview hashing methods in large-scale RSIR
tasks.

There are several interesting works that deserve further stud-
ies. First, the reported performance is limited as the multiview
data are constructed by handcrafted visual features. Deep neu-
ral networks (CNN) can extract more useful information from
remote sensing images. We will develop deep extension of the
proposed method to improve retrieval performance. Second, this
work assumes that all the views exist for each image, which,
however, may not hold in real applications. How to deal with
the incomplete multiview RS images is another challenging and
interesting work.
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