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Study of Climate Change Detection in North-East
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Abstract—The study of climate change has become an important
topic because of its negative impact on human life. The North-East
African part lacks the studies for climate change detection, despite
it being one of the most affected parts worldwide. The relationship
between the emission of greenhouse gases (GHGs) and climate
change is an important factor to understand. To investigate this
linkage, we used machine-learning (ML) models based on essential
climate variables (ECVs) to investigate the relationship between the
GHGs and the rhythm of climate variable change. The article inves-
tigates how ML techniques can be applied to climatic data to build
an ML model that is able to predict the state of climate variables
for the short and long term. By selecting a candidate model, it will
help in climate adaptation and mitigation, also determine at what
level GHGs should be kept and their corresponding concentrations
in order to avoid climate events and crises. The used models are
long short-term memory, autoencoders, and convolutional neural
network (CNN). Alternatively, the dataset has been selected from
U.K. National Centre for Earth Observation and Copernicus Cli-
mate Change Services. We compared the performance of these
techniques and the best candidate was the Head—CNN; based
on performance metrics such as root-mean-squared-error: 5.378,
2.395, and 15.923, mean-absolute-error: 4.157, 1.928, and11.672,
Pearson: 0.368, 0.649, and 0.291, and R2 coefficient: 0.607, 0.806,
and 0.539 for the ECVs temperature, CO2, and CH4, respectively.
We were able to link the GHG emission to ECVs with high accuracy
based on the reading of this geographic area.

Index Terms—Climate change, greenhouse gases (GHGs),
machine learning (ML), neural network, space systems.

I. INTRODUCTION

A FRICA has been affected by extreme climate change re-
cently; East Africa was exposed to unprecedented rainfall

over the period of October 2019 to January 2020. Rainfall
impacts floods and landslides across the region causing a natural
disaster in many countries including Ethiopia, Kenya, Somalia,
Uganda, Tanzania, and Djibouti, adversely affecting over 2.8
million people [1]. However, these regions face a poor rainy
season from March to May, resulting in food shortages and
famines [2]. Moreover, climate change makes these regions more
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precarious than ever, leading to additional attention to the study
of climate change, especially in the North-Eastern part of Africa.

Atmospheric greenhouse gases (GHGs) affect climate change
the most, leading to a need of monitoring the anthropogenic
GHG concentrations from space using artificial satellites. The
sources of more than 40% of global annual anthropogenic
emissions of carbon dioxide (CO2) are power plants operated
by coal burning. Additionally, methane (CH4) leakage can be
attributed by anthropogenic sources, such as coal mines, oil-gas
systems, livestock, wastewater management, rice cultivation,
and landfills, in addition to natural sources, such as termites,
inland waters, and wetlands.

Ever since the start of the industrial revolution, consumption
of fossil fuels has modified the Earth’s climate in unforeseen
ways. A 1.5 °C increase in temperature can be observed because
of global warming compared with the preindustrial levels and
global GHG emissions as reported in the Intergovernmental
Panel on Climate Change (IPCC) 2018 [3]. The change con-
sequences to the climate are seemingly everywhere such as
rising average temperatures and sea levels. Moreover, these
climate changes affect the quality and availability of water
resources, food production, and the ecosystem. The industrial
sector contributes 65% of the global emissions of the world’s
GHGs emissions. Oil and gas extraction, heavy industry, power
sector, and mining produce 55% of the world’s CO2 emissions.
Additionally, agriculture gives a majority contribution to anthro-
pogenic emissions of NO2 and CH4 by approximately 75% and
40% of global emissions, respectively [4]–[7].

The assessment of the satellite-derived column of XCO2

measurements and the CO2 emission estimates for each other has
been found in different applications, for example, in determining
the impact of regional fossil fuel emissions on global XCO2

fields [8], in determining CO2 emissions from individual power
plants from space through plume model simulations [9], and
for observing the emission of anthropogenic CO2 by deriving
CO2 anomalies through deseasonalizing and detrending XCO2

column measurements [10]. Moreover, the hyperspectral mea-
surement of Earth-reflected radiation in the shortwave spectral
range (300–2500 nm) improves the monitoring of CO2, as
well as the classification of gases using artificial intelligence
techniques [11]–[13].

Climate change is based on many variables that can be cor-
related in one way or another. The variables have many data
acquired by sensor readings over a period of time. The linkage
between those variables and each other as well as the effect of
each phenomenon and climate change over a very large number
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of readings cannot be perceived by the human mind, which is
where the role of the machines comes in. A large amount of data,
as well as the relation between variables, can be processed by a
well-developed machine-learning (ML) approach [14].

In this article, we introduce ML models based on variables
affecting climate change to relate GHGs to the rhythm of climate
change. We compared different ML techniques to assess their
performance. The dataset used in this article is acquired from
different sensors, including U.K. National Centre for Earth
Observation (NCEO) as part of the European Space Agency
(ESA) GHG–climate change initiative (GHG–CCI) and coper-
nicus climate change services (C3S) projects [15]–[17].

The rest of this article is organized as follows. First, we
introduce the essential variables affecting climate change based
on a literature review. Then, we describe the dataset and explain
the preprocessing of data acquired from different sensors, as
well as the time-series continuity of variables. The third section
describes the proposed ML techniques, after which we introduce
the evaluation methodology and justify its use in assessment. Fi-
nally, we discuss the assessment of the algorithms and conclude
the article with a discussion on the results.

II. FACTORS AFFECTING CLIMATE CHANGE AND GLOBAL

WARMING

Climate models are usually used to forecast climate status
in the future. It handles the interaction between the physical
processes in the atmosphere, land, and water system, and the
surrounding environment. Climate models generate projections
of future temperature and precipitation based on GHGs concen-
tration scenarios [18].

Anthropogenic (human-caused) climate change occurs due to
GHGs trapping more heat in the environmental ecosystem. The
distribution of global average temperatures is expected to shift
to the warmer side; therefore, sometimes anthropogenic climate
change is referred to as “global warming.”

A. Climate Variables

The Global Climate Observing System has defined a set of
parameters known as essential climate variables (ECV); these
variables are related to land, ocean, and atmosphere. Studying
these variables helps in understanding the past, current, and
future climate variability and possible changes. The ECVs could
be physical, chemical, or biological variables or a set of related
parameters that potentially characterize the Earth’s climate. The
ECV for the atmosphere are precipitation, temperature, water
vapor, clouds, pressure, wind speed and direction, CO2, CH4,
and other GHGs, aerosol, and ozone. Meanwhile, the land’s
ECVs are river discharge, groundwater, lakes, soil moisture,
snow and glaciers, albedo, fire, and anthropogenic GHG fluxes.
Moreover, the ECVs for the ocean are ocean surface heat flux, sea
ice, level, salinity, temperature, currents, color, biogeochemical,
and ecosystem marine habitat and plankton.

In this article, we carried out the analysis for only
“XCO2, XCH4, pressure, temperature, total column water vapor
(TCWV), and total column rain water (TCRW).” The ECVs
datasets contribute to understand and predict the variability of

Fig. 1. Linear trend of column-average dry-air mixing ratios of CO2 and CH4

for North-East part of Africa for the period 2003–2018.

climate, tackling these changes by mitigation, and adaptation
processes, estimate the impacts of climate change, and thus,
enhance climatic services.

B. Greenhouse Gases Effect

GHGs are important in understanding the climatic system and
how climate might change [6], [7]. As the concentration of these
gases gets higher in the atmosphere, the warming effect becomes
greater. GHGs in the atmosphere absorb radiation emitted by
the Earth’s surface and reradiate it in scattered directions. Since
some of this reradiation is downward, the net effect is to inhibit
heat loss from the surface to the upper reaches of the atmosphere.

Gases that have a greater effect on climate change and surface
temperatures are CO2 and CH4. CH4 can last only for a decade so
it is relatively shorter lived than CO2 that persists for a century
or more. However, during its lifespan, CH4 is about 85 times
more effective at trapping heat than CO2 [6].

The impacts of CO2 changes induce several important ef-
fects. The first effect is from additional water vapor that results
from higher temperatures. Because water vapor is also a GHG,
increasing CO2 by a small percentage heats the atmosphere
by trapping more heat. This permits more water vapor in the
atmosphere, which also traps more heat (positive water vapor
feedback) [19]. Chapter 5 of the fifth assessment report [20]
discussed the impacts of anthropogenic GHGs emissions on
climate change specifically CO2 and CH4 describing them as
a warming impact. These gases are mostly derived from human
daily life: industry, transport, buildings, energy, and waste. Fig. 1
shows a significant increase in CO2 and CH4 over the North-East
part of Africa; however, this region is neither industrial nor
energy—oil & gas—producer.

1) Measuring of GHGs: With the exponential growth in
space-based remote sensing, algorithmic complexity, and com-
puting power, end-to-end learning systems are becoming grad-
ually accessible to academic researchers and the private sector.
There are also feasible methods using remote sensing data that
may be used to measure the emission levels of GHGs [21].

The first method is measuring emissions directly using sensors
on airborne and spaceborne instruments. The other way is the
indirect method, which use various identifiable parameters and
characteristics to build an estimated model for GHG emissions.
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Monitoring emissions by direct method demands the use of
special instruments of airborne or satellites to accurately monitor
GHGs with high precision from space. This is a challenging
task because of their relatively small signal compared to other
atmospheric constituents. Alternatively, the advances in both
sensor technology and retrieval models are leading to more
accurate detection and interpretation [10].

The indirect methodology should identify the main features
associated with GHG emissions. For illustration, factory use
rates are inherently correlated to the ratio of GHGs emissions.
By using spaceborne tools combined with in situ factory-level
production data gives the ability to model temporal variations
in a factory use rate. Employing this projection of the use
rate, an estimate of the emissions can then be obtained using a
standardized model, such as those outlined in the IPCC reports
[3], [5], [6].

2) Satellite Sensors Used to Measure GHGs: Usually, satel-
lite sensors orbiting the earth at low sun-synchronous orbit are
used to measure GHGs at a fixed observing time each day for
the same geographical area, which is known as the temporal
resolution. CO2 and CH4 are measured as column-averaged dry
air mole fractions (XCO2 and XCH4) in the along-track nadir
[22]. Some instruments are also used to measure cross-track in
the off-nadir to enhance the spatial coverage. Shortwave infrared
(SWIR) imaging is highly recommended for measuring GHGs
to differentiate the spectral signature of each element. The CH4

spectral characteristic is located in SWIR wavelengths around
1650 and 2300 nm, and at 8000 nm in the thermal infrared (TIR)
spectrum. While CO2 wavelength regions can be derived around
760, 1610, and 2060 nm, measurements in the SWIR are more
sensitive to the near-surface atmospheric layers where the emit-
ting sources are located, whereas TIR measurements provide a
more regular sampling of the entire atmospheric column. This
makes TIR retrievals less sensitive to CO2 and CH4 emissions
on local and regional scales [12], [23]. Table I lists GHG
sensors onboard satellite missions. Using such sensors onboard
earth-orbiting satellite provides continuous measurements with
wide coverage and near real-time observation. An example of
such sensors onboard satellites is SCanning Imaging Absorption
spectroMeter for Atmospheric CHartographY (SCIAMACHY)
on ESA’s ENVIronmental SATellite (ENVISAT), and Thermal
and Near infrared Sensor for carbon Observation–Fourier Trans-
form Spectrometer (TANSO–FTS) on Greenhouse Gases Ob-
serving Satellite (GOSAT) [24]. SCIAMACHY/ENVISAT was
a spectrometer installed on ESA’s ENVISAT satellite (2002–
2012). SCIAMACHY [25], [26] covers the spectral region from
the ultra-violet to the SWIR spectral region (240–2380 nm)
at moderate spectral resolution (0.2–1.5 nm) and observes the
Earth’s atmosphere in various viewing geometries (nadir, limb,
and solar or lunar occultation). SCIAMACHY permits the re-
trieval of XCO2 and XCH4 [27], [28] from the appropriate
spectral regions in the SWIR (around 1.6 μm).

The GOSAT is dedicated to measuring the concentrations
of CO2 and CH4 from space. TANSO–FTS/GOSAT is an
FTS onboard the Japanese GOSAT satellite [23], [29]. The
GOSAT satellite was launched and operated successfully in
2009. GOSAT measures at 1650 nm with a high spectral res-
olution for CH4 retrieval on a continental or regional scale. It

TABLE I
ILLUSTRATES SUMMARY OF GHG MISSIONS THAT HAVE BEEN LAUNCHED

should measure at predefined pixel locations that are partially
separated by more than 250 km, and this may lead to gaps in
spatial observation. It is also designed to deliver concentrations
of CO2 using the 2060 nm fitting window. The data is delivered
as needed for accurate XCO2 and XCH4 retrieval [22], [23], [30].
Moreover, a two-year comparison of airborne measurements of
CO2 and CH4 with GOSAT at the railroad valley, Nevada has
demonstrated a highly effective validation method for GOSAT
by comparing with the Japan Aerospace Exploration Agency in
situ data [31]. In 2018, GOSAT–2 [32] was launched, which has
a high precision and capability for detecting CH4 in the 2300 nm
wavelength.

NASA’s Orbiting Carbon Observatory-2 (OCO-2) mission
[33] has been successfully launched in July 2014. The ob-
jective of OCO-2 is to collect space-based measurements of
CO2 with the required resolution, precision, and coverage to
identify its sources and sinks after quantifying their changes
over the seasonal cycle. OCO-2’s single instrument is based on
three high-resolution grating spectrometers designed to measure
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Fig. 2. Study is conducted in the North-East part of Africa, with a covered
area from longitude 22 to 40 and latitude from −5 to 32.

the near-infrared absorption of reflected sunlight by CO2 and
molecular oxygen [34]. OCO-2 covers similar spectral bands as
SCIAMACHY and GOSAT; however, OCO-2 has much smaller
ground pixels and the swath width is smaller than SCIAMACHY.
OCO-2 only delivers XCO2 but not XCH4 [35].

The European Copernicus program [36] is, currently, prepar-
ing the ultra-violet/visible/near infrared/short wave infrared
spectrometer instrument onboard Sentinel-5 to be launched in
2021. The mission’s main target is the operational monitoring
and tracing of gas concentrations for atmospheric chemistry and
climate applications. Moreover, the Chinese CO2 observation
satellite (TanSat) has a spatial resolution of 1 × 2 km2 and a
16-day for temporal resolution [37].

Another small satellite mission that has been recently de-
veloped for the precise allocation of GHGs emissions is the
commercial Canadian satellite GHGSat CLAIRE, IRIS, and
Hugo. These missions were launched in 2016, 2020, and 2021,
respectively. GHGSat has the capability to detect only the CH4

emissions at industrial facilities from space [38].

III. CASE STUDY—NORTH-EAST AFRICA

Climate change puts Africa in a hotspot like other areas in
the world. For example, Tunisia and Egypt have seen a sharp
decrease in rainfall and higher temperatures over the last 50 years
[39]–[41]. Dry spells and floods are the most widely recognized
as hotspots of environmental condition events in Africa [42] that
characterize direct threats to lives and socioeconomic matters.
Furthermore, rising temperature related to climatic change is
predicted to scale back the agricultural land cover in this part
of Africa. As ocean levels rise, Alexandria city, on the Mediter-
ranean coast of Egypt, is predicted to sink [43].

North-East Africa, Fig. 2, faces several problems involving
geographical climate impacts in water inadequacy and soil
degradation. Moreover, in Egypt, it is projected that a 1-m water
level rise can affect millions of people “poor,” living within the
Nile River delta basin. Thus, this weakening within the Nile

Fig. 3. Change of seasonal temperature (°K) by a decade for North-East part
of Africa: TANSO-FTS L2 SWIR data.

Fig. 4. Change of total column of CO2 (ppm) by a decade for North-East part
of Africa: TANSO-FTS L2 SWIR data.

River Delta that is heavily populous and used for agriculture
shall impact several people [44]. Thus, this weakening within the
Nile River Delta that is heavily populous and used for agriculture
shall impact several people [44].

This article is conducted in the North-East part of Africa
with a covered area from longitude 22 to 40 and latitude from
−5 to 32. A sample representation of temperature and total
column of CO2 for our study area is shown in Figs. 3 and 4.
The temperature reached over 320oK for some areas, and CO2

reached over 415 parts per million (ppm). The samples are a
representation of data for five consecutive files from day 20 to
24 from the months April, July, September, and December for
2009 and 2018; the data are acquired from GOSAT satellite data
retrieved by ESA GHG–CCI projects [24]. There is a remarkable
change in temperature and XCO2 for the same period over
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different years, as we can see from Fig. 3 summer gets more
increase in temperature, and the winter gets warmer which is a
demonstration of excess CO2 emissions.

A. Dataset Description

In this article, we used level 2 processed datasets produced
by the U.K. NCEO, which is a part of the ESA GHG–CCI and
C3S projects [15], [17], [27]. NCEO produced algorithms for re-
trieving near-surface sensitive column-averaged mixing ratios of
CO2 and CH4, denoted XCO2 and XCH4, from SCIAMACHY/
ENVISAT (nadir mode) and TANSO/GOSAT [24].

There are two types of retrieval algorithms full-physics (FP)
and proxy (PR); FP product is preferred as this product is
independent of any (model) assumptions on CO2. Where the
PR products suffer from scattering related biases and have much
more data points [45], we used the FP algorithm results to reduce
the uncertainty due to assumptions.

The dataset used in this article has been gathered from the
SCIAMACHY which is analyzed based on optimal estimation
theory introduced to the remote sensing community by Rodgers
(1976) [46]. The Bremen Optimal Estimation DOAS (BESD)
algorithm is used to retrieve the column-average dry-air
mole fraction of atmospheric CO2. Meanwhile, the iterative
maximum a posteriori-DOAS (IMAP-DOAS) algorithm is
used to retrieve CH4.

The OCO FP retrieval (OCFP) algorithm is applied to retrieve
CO2 and CH4 from GOSAT SWIR spectra at the University
of Leicester. The OCFP retrieval algorithm was developed to
retrieve XCO2 and XCH4 from a simultaneous fit of the near-
infrared O2-A Band spectrum at 0.76 μm and the CO2 bands
at 1.61 and 2.06 μm as measured by the OCO-2 instrument.
While the algorithm was developed to retrieve XCO2 from OCO
and OCO-2 observations, it was designed to be adaptable to
analyze data from other instruments for algorithm testing and
validation. The OCFP algorithm has successfully been used to
analyze observations from GOSAT, and ground-based FTS.

We conducted our study based on CO2–GOS–OCFP and
CH4–GOS–OCFP data produced by the University of Leicester.
In addition, we used algorithms retrieved for SCIAMACHY:
CO2–SCI–BESD and CH4–SCI–IMAP. The selection of these
approaches is based on the studies [16], [27], [47] according to
retrieval accuracy compared with other approaches and with the
total column carbon observing network (TCCON).

The dataset is presented in the form of column-average dry-air
mixing ratios (mole fractions) [24] of CO2 and CH4, denoted
XCO2 (in ppm) and XCH4 (in parts per billion, ppb). The first
sensor data received from the GOSAT satellite TANSO–FTS
sensor represent the period from April 2009 to December 2018.
Parameters extracted are XCO2, XCH4, surface air pressure
(hPa), and air temperature (oK) of the first level based average
kernel. The second sensor data is E SA’s ENVISAT satellite–
SCIAMACHY sensor, we used data for the period January 2003
to April 2009. Parameters extracted are XCO2, XCH4, and sur-
face air pressure (hPa). Because of SCIAMACHY temperature
parameter is not presented in the dataset provided by Copernicus
Climate Data Store, we completed our dataset using ERA5
sensor [48]. We used the ERA5 “2-m temperature” parameter

TABLE II
COMPLETE STRUCTURE OF THE DATASET INCLUDING PARAMETERS, SOURCE

OF DATASET OVERTIME

to fill up our temperature parameter for the period from 2003
to April 2009. Furthermore, we used parameters from ERA5
for TCWV (kg m−2) and TCRW (kg m−2) that are measured
as a column density. The temporal description of the dataset is
presented in Table II.

The GOSAT temperature is measured over 20 levels of pres-
sure; we select the first level measurements which are the nearest
to the earth’s surface to be more compatible with the ERA5 2-m
temperature parameter.

Similar studies combined XCO2 measurements derived from
SCIAMACHY and GOSAT for generating global CO2 maps
with high spatiotemporal resolution [49], [50]. Buchwitz et
al. [47] used datasets of XCH4 retrievals from SCIAMACHY
and GOSAT—generated by different research teams of the
GHG–CCI project of the ESA CCI—to identify CH4 hotspot
emissions. The GHG–CCI products used from SCIAMACHY
are CH4_SCI_WFMD and CH4_SCI_IMAP. In addition, they
used the two GOSAT products CH4–GOS–OCPR and CH4–
GOS–SRFP.

IV. THEORETICAL ANALYSIS AND METHODOLOGY

In this article, we collected atmospheric GHGs datasets from
multiple satellite-observations to produce a long time series of
spatiotemporal continuous XCO2 and XCH4 from satellite ob-
servations. Additionally, we collected a set of climatic variables
such as temperature, pressure, TCWV, and TCRW, from ERA5
reanalysis dataset to assess the impacts of GHGs emissions
on climate variables especially the temperature as described in
section “Dataset Description” in (III-A). The flowchart of the
work flow in this article is shown in Fig. 5.

The following section describes the flow of the methodology
used in the article including intercalibration, spatiotemporal
scaling, interpolation/data processing, dataset splitting, and ML
approaches.

A. Intercalibration

The retrieval algorithm uses an iterative retrieval scheme
based on Bayesian optimal estimation to estimate a set of atmo-
spheric/surface/instrument parameters, referred to as the state
vector, from measured, calibrated spectral radiances.
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Fig. 5. Flowchart for climate change detection and prediction using machine
learning approaches and satellite data.

The inverse method employs the Levenberg–Marquardt mod-
ification of the Gauss–Newton method to find the estimate of the
state vector with the maximum a posteriori probability, given
the measurement y [51]. The state vector will typically include
a CO2 (or CH4) profile together with a non-CO2 state vector.
After this iterative retrieval process has converged to a solution,
the error covariance matrix Ŝ and the averaging kernel (AK)
matrix A are calculated using the a priori covariance matrix Sa

and the measurement covariance matrix Sε. XCO2 is inferred
by averaging the retrieved CO2 profile weighted by the pressure
weighting function, h. The associated column AK for a level i is
then given by (aCO2)i, and the variance of XCO2 byσXCO2. The
iterative retrieval process equations are represented in (1)–(5):

Ŝ =
(
KTSε

−1K + Sa
−1
)−1

(1)

A = ∂x̂/∂x = ŜKTSε
−1K (2)

XCO2 = hT x̂ (3)

(aCO2)i =
∂XCO2

∂ui

1

hi
=

(
hTA

)
i

1

hi
(4)

σXCO2 = hT Ŝh. (5)

The variance σ is used to measure the retrieved data uncer-
tainty; the retrieved XGHG and its uncertainties data after apply-
ing the retrieval process for the research study area, North-East
part of Africa are represented in Figs. 6 and 7. Comparing the
output of the retrieval algorithms with ground-based TCCON
observations exposed that the retrieved data are very comparable
with respect to biases. The XCO2 bias range of the retrieval
algorithms BESD/SCIAMACHY and OCFP/GOSAT should not
exceed the 8 ppm as shown in Fig. 6(b). Meanwhile, the XCH4

bias range of the OCFP/GOSAT retrieval algorithm should be
below 34 ppb as shown for the period 2009–2018 in Fig. 7(b).

Fig. 6. Retrieved XCO2 after performing the retrieval process for the research
study area North-East part of Africa: (a) CO2 and (b) CO2 bias.

Fig. 7. Retrieved XCH4 after performing the retrieval process for the research
study area North-East part of Africa: (a) CH4 and (b) CH4 bias.

This is also true for the estimated measurement precisions for
IMAP/SCIAMACHY for the time period 2003–2005; however,
the SCIAMACHY detector suffered from a major degradation
in its spectral region needed for CH4 retrieval, which explains
the major bias values after 2005.

B. Spatiotemporal Scaling

Since the data are gathered from multiple satellite sensors as
mentioned above in Section III-A, we had to unify the measure-
ment scale and calibrate for the time of different data acquisition,
as represented in Table II. GOSAT revisit time (time of regular
data acquisition) over North-East Africa is between 10:00 and
11:35 AM, while the other part of data acquired by ERA5 is an
hourly tagged dataset, so we used data with the same time tag. In
contrast for SCIAMACHY/ENVISAT, its revisit time was from
7:00 to 8:35 AM; therefore, we used the ERA5 parameters at 11
AM to be compatible with GOSAT variables, especially for the
temperature.

C. Interpolation/Data Processing

AKs are used in case of using different satellite products
because of measurement sensitivity at different altitudes through
the atmospheric column. The corrections are based on vertical
priori profiles which should be adjusted to a common profile
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when comparing XGHGs from different instruments. Moreover,
the retrieval smoothing effect must be considered by applying
the AKs [44] to decrease the effects from different instruments
on XGHGs retrievals.

The AK and related parameters are provided for “layer-based
AKs” and “level-based AKs” for layer-based AK; m is the
number of layers which are defined by k = m+1 pressure levels.
For level-based AK, only levels are used; all parameters have the
same number of elements, namely m levels. Here, the number
of pressure levels is also m (i.e., k = m). The layer-based AK
approach is applied on CO2–SCI–BESD and CH4–SCI–IMAP,
while level-based AK approach is applied on the University of
Leicester products CO2–GOS–OCFP and CH4–GOS–OCFP.

The column AK vector is defined as sensitivity of the retrieved
XCO2 to the true layered CO2 mixing ratios. In the ideal case, the
column AK vector would be identical unity. This would mean
that a XCO2 change introduced by a change of the i’th layer is
one-to-one reproduced by the retrieved XCO2.

The following equation is used for layer and level based
average kernels:

XGHGmod

=

m∑
i = 1

[
VMRi

apri +
(
VMRi

mod − VMRi
apri

)
AKi

]
pwi

(6)

whereXGHGmod is the desired modeled XCO2 or XCH4 value,
which corresponds to the satellite retrievals. The sum is over the
m atmospheric layers (located between pressure levels pi and
pi+1 with i = 1 …m). Here, i = 1 corresponds to the bottom of
the atmosphere and i = k = m +1 corresponds to the top of the
atmosphere.
pwi is a layer-dependent pressure weight vector. VMRi

apri

is the satellite a priori layer-averaged CO2 or CH4 volume mix-
ing ratio (VMR) or, more precisely, dry mole fraction (DMF),
between pressure levels Pi and Pi+1 (Pi > Pi+1).

VMRi
mod is the corresponding value of the model (CO2 of

CH4) VMR (DMF) between pressure levels Pi and Pi+1. AKi

is the satellite XCO2 or XCH4 AK for layer i.

D. Dataset Splitting

We used data for the period from 2003 to 2015 as training,
while data from 2016 to 2018 for validation. We split the data
into standard weeks, by organizing the data into weeks gives 677
full standard weeks for training a predictive model, whereas the
test dataset has 156 weeks. We used neural networks and as such,
they are slow to train but fast to evaluate. The preferred usage of
the models is to build them on historical data and then use them
to predict each step of the walk-forward validation. The models
are static (not updated) during their evaluation. Table II shows
the structure of the dataset, which includes parameters of climate
change and its corresponding data sources; the parameters are
XCO2, XCH4, pressure, temperature, TCWV, and TCRW.

For temperature, CO2, and CH4, we used ML algorithms
to predict their values over time of validation (677 weeks for
training and 156 weeks for validation). We used all parameters

for neural network training; that means we included the effect
of pressure, water vapor, and rainwater on the temperature,
CO2, and CH4, in addition to the effect of these parameters on
each other.

We implemented the ML algorithms using Python3 program-
ming language. The neural network models are implemented
using Keras deep learning library on top of Google TensorFlow
[52].

We used the following performance evaluation metrics to
assess the models prediction outcome: root-mean-squared-error
(RMSE) in (7), mean-absolute-error (MAE) in (8), Pearson in
(9), standard deviation in (10), and R2 coefficient to evaluate the
performance of each model [53]. The results of Pearson and R2

vary between ±1 that indicates how the variables are related to
a positive or negative relationship. For the naïve methods, we
used only RMSE as it is more punishing of prediction errors,
unlike MAE:

RMSE
(
X, X

)
=

√√√√ 1

N
.

N∑
n=1

(
X̄n − Xn

)2
(7)

MAE
(
X,X

)
=

1

N
.

N∑
n=1

∣∣X̄n −Xn

∣∣ (8)

rX̄X =

N
N∑

n=1
XnX̄n −

N∑
n=1

Xn

N∑
n=1

X̄n√
N

N∑
n=1

X2
n−

(
N∑

n=1
Xn

)2
√

N
N∑

n=1
X̄2

n−
(

N∑
n=1

X̄n

)2

(9)

STD =

√√√√ 1

N

N∑
i = 1

(xi − μ)2 (10)

where X̄n and xi, Xn, N, μ, and rX̄X represent predicted value,
observed value, the mean of predicted values xi, the number of
data, and Pearson correlation coefficient, respectively; STD is
the standard deviation.

The neural network models are evaluated using a scheme
called walk-forward validation [54]. This is where the model
is required to make a one-week prediction, and then the actual
data for that whole week are made available to the model so it
can be uses as a basis for predicting the subsequent week.

V. MACHINE-LEARNING APPROACHES

A group of ML experts [4] described climate change as one
of the greatest challenges facing humanity. Furthermore, they
invite the ML community to join the global effort against climate
change. Recent trends have created opportunities for ML to
advance the state-of-the-art in climate prediction [55]. Many
challenges have been the motivation for introducing the ML
technique as a reliable tool for addressing climate change phe-
nomena. First, GHGs monitoring satellites are creating petabytes
of climate observation data. Second, enormous computational
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Fig. 8. Long short-term memory block.

climate modeling projects generate petabytes of simulated cli-
mate data. Third, climate forecasting is computationally expen-
sive [56], [57]; meanwhile, ML models are becoming gradually
fast to train and run, particularly on next-generation computing
hardware [57]–[59].

ML may be able to help with many aspects of CO2 removal,
and also identify and characterize potential storage locations. A
deep learning approach in [60] is used to improve the retrieval
of temperature and humidity profiles from a ground-based mi-
crowave radiometer.

We examined different types of neural network models for
multistep multivariate time series forecasting: long short-term
memory (LSTM), convolutional neural network (CNN) (multi-
ple input channels and multiple input heads), and autoencoders
(LSTM, CNNLSTM, and CONVLSTM). Moreover, we applied
different naïve linear regression (LR) approaches such as LR,
ridge regression, huber regression (Hber), least-angle regression
(LARS), passive–aggressive regression, random sample con-
sensus (RANSAC) regression, and stochastic gradient descent
(SGD) regression [61].

A. Long Short-Term Memory

LSTM is developed from recurrent neural networks (RNN)
by replacing the RNN hidden layer neurons with LSTM blocks,
as shown in Fig. 8. Each block has a memory cell that helps over-
come the RNN vanishing gradient problem [62], illustrated by
(11)–(16). This technique has been recently used in many fields
including commercial, medical, and space fields [14]. However,
replacing matrix multiplication with the convolution operation at
each gate in the LSTM block results in the ConvLSTM approach,
which is effective in multidimensional time-series data [63] as
illustrated by the equations in (17)–(22). In [64], ConvLSTM is
used as a Hurricane–Tracker for its capability of tracking and
predicting extreme climate events.

LSTM can be used in our article to handle a large amount of
data received from satellites; since the data are huge and arranged
in a time-series manner, we expected to have good results.

A recent study on LSTM applied to satellite data, suggested
that, the algorithm performs well whenever larger data are
arranged in time series, compared to gated recurrent units (GRU)
and multilayer perceptron [65], [66].

The LSTM block equations are shown in (11)–(16):

it = σ (wxixt + whiht−1 + wcipt−1 + bi) (11)

ft = σ (wxfxt + whfht−1 + wcfpt−1 + bf ) (12)

ot = σ (wxoxt + whoht−1 + wcopt + bo) (13)

gt = g (wxgxt + whght−1 + bg) (14)

ct = ft � ct−1 + it � gt (15)

ht = ot � h (ct) . (16)

While the ConvLSTM block equations are in (17)–(22):

it = σ (wxi ∗ xt + whi ∗ ht−1 + wci ∗ pt−1 + bi) (17)

ft = σ (wxf ∗ xt + whf ∗ ht−1 + wcf ∗ pt−1 + bf ) (18)

ot = σ (wxo ∗ xt + who ∗ ht−1 + wco ∗ pt + bo) (19)

gt = g (wxg ∗ xt + whg ∗ ht−1 + bg) (20)

ct = ft � ct−1 + it � gt (21)

ht = ot � h (ct) (22)

where σ is a sigmoid activation function with range [0, 1], g
and h are tanh activation function with range [−1, 1], ∗ is the
convolutional operation, � is a pointwise vector product, wxi,
whi … are the weight matrices, and bi, bf … are the bias.

The input, forget, and output gates are represented by it, ft,
and ot in (11)–(13), respectively. The new memory content gt is
represented in (14), (15) is the current memory content ct, while
(16) is the LSTM block output ht [67].

B. Convolutional Neural Network

A CNN is the basis of most computer vision technologies. It
uses “convolution” and “pooling” operations to reduce input data
into its essential features and uses those features to understand
and obtain the desired output [68]. The convolutional layers can
read large input data as a sequence and automatically extract
features. The pooling layers can refine the extracted features
and focus attention on the most salient elements. Then, the fully
connected layers can interpret the internal representation and
output a vector representing multiple time steps. The key benefits
of the approach are the automatic feature learning and the ability
of the model to output a multistep vector directly [56], [69].
The configuration of the CNN architectures is divided into two
groups multihead (H–CNN) and multichannel (CH–CNN). The
H–CNN uses independent single-channel convolutional heads to
process each time series sensor data separately, and the output
of all heads is concatenated before reaching the fully connected
part, as shown in Fig. 9. The latter, CH–CNN, uses a single
convolutional head with multiple channels to process all the
time-series data [70].
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Fig. 9. Multiheaded multistep CNN applied on essential climate variables.

CNN and RNN approaches are not mutually exclusive, com-
bining CNN and RNN (LSTM) results in CNNLSTM architec-
ture, which is particularly promising in various domains such as
weather recognition [71], gesture recognition [72], estimation of
the TCWV [13], and speech recognition [73]. Furthermore, they
facilitate the analysis of inputs over longer periods than could
be achieved with lower level RNN architecture types [74].

C. Autoencoders

An unsupervised artificial neural network technique called
autoencoder that learns in what way to efficiently compress and
encode data after that knows how to reconstruct the data back
from the reduced encoded representation to a representation
that is as adjacent to the original input as possible [62]. The
design of autoencoders works on decreasing data dimensions
by learning how to ignore the amount of noise in the data. The
network architecture for autoencoders can vary between a simple
Feedforward, LSTM, CNN, ConvLSTM, and CNNLSTM net-
works or a mixture of them depending on the use case[69], [75].
Furthermore, an unsupervised analysis for change detection and
clustering approach is applied on satellite image time-series
data by combining neural network GRU with autoencoder-based
model [76].

In this article, the autoencoder is used to extract the charac-
teristics of original climate variables data. Then, we use LSTM,
CNN, ConvLSTM, or CNNLSTM models to predict the climate
variables based on data acquired from satellite sensors.

D. Linear Methods for Regression

LR is a linear approach to modeling the relationship between
a scalar response and one or more explanatory variables (also
known as dependent and independent variables). The ridge and
lasso approaches shrink the regression coefficients by imposing a
penalty on their size. The ridge coefficients minimize a penalized
residual sum of squares. LARS is an algorithm for fitting LR
models to high-dimensional data.

Hber is an alternative approach that is based on a slightly
modified loss function, called Huber loss. It defines a threshold
that makes the loss function switch from a squared error to an
absolute one [77].

RANSAC is an iterative method to estimate parameters of a
mathematical model from a set of observed data that contains
outliers. It is a nondeterministic algorithm in the sense that it

Fig. 10. Relation between the essential climate variables for the North-East
part of Africa dataset.

produces a reasonable result only with a certain probability with
this probability increasing as more iterations are allowed.

Passive–aggressive behavior is characterized by a pattern of
passive hostility and an avoidance of direct communication.
Inaction, where some action is socially customary, is a typical
passive–aggressive strategy.

SGD is an iterative method for optimizing an objective func-
tion with suitable smoothness properties (e.g., differentiable or
subdifferentiable). It can be regarded as a stochastic approx-
imation of gradient descent optimization, since it replaces the
actual gradient (calculated from the entire dataset) by an estimate
thereof (calculated from a randomly selected subset of the data).
SGD is a simple and very efficient approach to fitting linear
classifiers and regressors under convex loss functions such as
(linear) support vector machines and logistic regression [61].

VI. RESULTS AND ANALYSIS

The relationship between the climate variables (XCO2,
XCH4, pressure, temperature, TCWV, and TCRW) used in this
article is shown in Fig. 10. The graphs show the trends and
dependency between variables and each other; the trend line is
shown crossing the data graphs. Each trend indicates the depen-
dency between two variables. From the relationship between the
climate variables presented in Fig. 10, we found that tempera-
ture, XCO2, and XCH4 are mostly dependent. This is clear from
the regression line between the temperature and XCO2 which
shows a correlation of 39% as well as the same percent for XCH4.
This result indicates that these three parameters (ECVs) are the
most significant factor in studying the climate change. For each
of these variables, we applied the ML models for prediction,
and then we calculated the evaluation metrics for assessment.
In Tables III and IV, the assessment of prediction accuracy
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TABLE III
COMPARISON OF THE PERFORMANCE OF DIFFERENT METHODS

TABLE IV
RMSE COMPARISON OF THE PERFORMANCE OF DIFFERENT NAÏVE METHODS

of each model applied for the essential climatic variables was
summarized.

A. Prediction Methods Accuracy Assessment

1) ML Prediction Accuracy Assessment: In the results of
Table III, a comparison between different architectures of LSTM
and CNN is presented. Multihead CNN and the multichannel
CNN give a comparable result; however, multihead CNN is
promising better accuracy compared to multichannel architec-
tures as the number of features extracted from concatenated
heads presents more information that helps in the prediction
process. Furthermore, H–CNN, CH–CNN, and LSTM give
the best prediction accuracy for RMSE and MAE, where the
H–CNN gives 5.378, and 4.157 ppm in RMSE and MAE, re-
spectively, comparing these values w.r.t the uncertainty from the
XCO2 retrieval algorithm discussed in Section IV-A that should
be less than 8 ppm. Additionally, the H–CNN gives 15.923 and
11.672 ppb in RMSE and MAE, respectively, for XCH4 which
is still less than the uncertainty of the XCH4 retrieval algorithms

Fig. 11. RMSE for different Naive approaches for the essential climate vari-
ables of temperature, CO2, and CH4.

that equal to 34 ppb; these results can overcome the degradation
that occurred to CH4 detectors of SCIAMACHY after 2005.

Alternatively, autoencoder LSTM and multichannel CNN
(CH–CNN) achieved the highest performance accuracy regard-
ing the Pearson coefficient and r2 correlation coefficient.

The autoencoders (AE–ConvLSTM and AE–CNNLSTM)
show a comparable accuracy especially for STD since the con-
volutional part is to extract the most related characteristics from
the data. Despite that, the autoencoder part performs well on
encoding and decoding, this might decrease extracted features.
One of the main differences between the proposed approaches is
the number of features extracted from each one. Consequently,
more features the architecture can obtain means more informa-
tion to get better results.

This means that multihead CNN is the most reliable model for
prediction of ECVs; however, multihead CNN should be used
with careful to avoid overfitting.

2) Naïve Methods Prediction Accuracy Assessment: The
performance of naïve methods is shown in Table IV and Fig. 11;
the RMSE of each approach illustrates that the SGD has less
RMSE in the prediction of CO2, CH4, and temperature as well.
SGD’s nature always tries to converge to the global minimum
which reduces the variance of the parameter updates, leading to
be more stable convergence.

The SGD regressor performing the best with an overall RMSE
for the three essential climate parameters (temperature, CO2, and
CH4) compared to other regression methods, shown in Table IV,
followed by HuberRegressor, LinearRegression, and LARS. As
a result, for naïve methods, we can conclude the SGD as the
best candidate, which makes it a best choice as an optimization
algorithm for state-of-the-art deep learning libraries.

B. ML Prediction Efficiency

The evaluation of predicted values of the different techniques
compared to the real data is shown in Figs. 12 and 13; as we
can see from the chart, the multihead CNN gives a compa-
rable result to the real values as it has the highest features
extracted; other techniques such as channel CNN and LSTM
models have the second better prediction performance followed
by AE-ConvLSTM and AE-CNNLSTM.

Fig. 13 shows the monthly mean temperature from 2016 to
2018, the graph shows the real data (red) versus the predicted
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Fig. 12. Real vs. predicted values of different applied ML approaches for the
essential climate variables of temperature, CO2, and CH4.

Fig. 13. Monthly mean temperature (oK) of real data (red) vs. the different
ML approaches used for prediction.

values of different ML models. The H–CNN (yellow) gives
similar behavior to the real trend. The model can successfully
mimic the real data promising to be used as a simulation tool to
forecast future trends of the temperature.

The head-CNN model vs. the real data for ECVs are shown in
Fig. 14, where the black line represents a perfectly steady slope,
while the blue line is the regression line representing the data
distribution trend, for the ECVs (temperature, CO2, and CH4).

C. Prediction of Essential Climatic Variables

We can rely on these data to conclude that the multiheaded
CNN and autoencoder models are best candidates in climate
change prediction based on the given ECVs. The predicted maps
of ECVs using multihead CNN are presented in Figs. 15 –17 for
the years 2016, 2017, 2018, and predicting the trend in 2030.
The subfigures show how the temperature, CO2, and CH4 are
changed over the years. By 2030, the increase in atmospheric
CO2 and CH4 concentrations may reach 440 ppm for CO2, and
more than 2000 ppb for CH4; and therefore, there would be a
significant increase in the temperature values that may reach
2 °C by 2030. Further studies have been performed to forecast
the temperature and GHGs emissions in 2030 and obtained a
similar result. Lazar and Williams [78] evaluated the climate
change resulted from increased GHG emissions. They used the

general circulation models to predict the change in temperature
and precipitation for the years 2030 and 2100 using GHGs
emissions scenario for the years 2030 and 2100, relative to 1990.
They found that the temperature will increase 2 °C by 2030 and
6 °C by 2100. Amin et al. [79] used a climate model based on
ensemble learning for evaluation and analysis of temperature for
historical (1996–2015) and projected (2030–2060) climates in
Pakistan. They concluded that maximum temperature projected
for 2030 and 2060 was worth noting where negative trends were
increased as compared to past temperature trends on annual and
seasonal (summer) basis; furthermore, minimum temperature
projected for future 2030 and 2060 revealed that negative trends
were increased by almost three times for the number of weather
stations (larger for 2060 than 2030) then past weather trends
(1996–2015) for summer and annual.

VII. DISCUSSION

Building an adaptation model is a process which is used
to tackle climate change; a carbon—CO2 and CH4—emission
model using ML approaches and remote sensing data can im-
prove the accuracy of carbon monitoring and estimation. The
developed model helps to unify the world’s sustainability data
into a single scheme. The ML models have the ability to recalcu-
late the carbon emissions and identify which features influence
the emissions the most. Moreover, the ML approaches are used
to identify the impacts of these emissions on temperature and
global warming.

In this article, we studied the general climate parameters, and
justified our selection for the ECVs; then we applied different
ML models to these ECVs. Best model has been identified and
applied for these climate variables for prediction.

The prediction results have been discussed in some details
and we concluded a reliable model for climate trend prediction.
The multihead CNN used for climate change detection and
prediction revealed that by 2030, there will be a significant
increase in temperature that may reach 2 °C above the normal
temperature range; the algorithm also showed that this excess
of temperature is due to, mainly, the predicted growth rate of
atmospheric CO2 which is expected to reach around 440 ppm,
in addition to the concentration of CH4 that is predicted to reach
more than 2000 ppb.

These results give an early warning alert to countries across
the world about the industrial emissions of GHGs. Despite that
ML techniques are still predictive methods that use available data
for learning, it has become a reliable tool for decision making
and supports futuristic studies. The general limitation of ML
models can be summered in next section.

A. Prediction Limitations of ML Models vs. Climate Models

Many climate prediction models depend on data from weather
stations; these models suffer from limited data. Existing climate
models deal with this limitation by relying heavily on physical
laws that is computationally expensive to be included in global
climate models; however, ML models are able to efficiently solve
such systems. Gentine et al. [80] trained a deep learning model
to emulate the behavior of a high-resolution cloud simulation,
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Fig. 14. Head-CNN model vs. the real data for essential climate variables where the black line represents a perfectly steady slope, while the blue line is the
regression line representing the data distribution trend; for A-Temperature, B-CO2, and C-CH4.

Fig. 15. Predicted maps of CO2 using multihead CNN for the years 2016–2018
and the prediction for 2030. The subfigures are the CO2 difference for years
2017–2016, 2018–2017, and the predicted 2030–2018.

and their model gave comparable results for a fraction of the
cost and was stable in a simplified global model.

Climate models are applied at the scale of years to decades;
their long-term trends are driven by slow, predictable changes
of ocean, land, and ice, which make them chaotic on short time
scales. ML models, in contrast, could bridge that gap by making
good predictions at intermediate time scales of weeks to months.
Running such models on weather data gives an early caution by
forecasting extreme events [4].

From an ML perspective, learning from an existing model
has many advantages: modelers can generate new training and
test data on-demand, and the new ML model inherits some
community trust from the old one. Despite all of the ML ad-
vantages, there are some limitations of ML models especially
when applied in the geosciences [81] as follows:

Fig. 16. Predicted maps of CH4 using multihead CNN for the years 2016–2018
and the prediction for 2030. The subfigures are the CH4 difference for years
2017–2016, 2018–2017, and the predicted 2030–2018.

1) Interpretability: Improving predictive accuracy is impor-
tant but insufficient. Certainly, interpretability and under-
standing are crucial, including visualization of the results
for analysis by humans. This presents a challenge in this
domain, which usually requires a domain expert to assure
proper interpretation of data and results. Achieving a
self-explanatory model is still far away.

2) Physical consistency: ML models can fit observations very
well, but predictions may be physically inconsistent due
to observational biases. This can be solved by teaching the
model physical rules of the Earth system.

3) Complex and uncertain data: ML methods are needed to
deal with complex statistics, multiple inputs and outputs,
different noise sources, and high-dimensional spaces.



11092 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 17. Predicted maps of temperature using multihead CNN for the years
2016–2018 and the prediction for 2030. The subfigures are the temp. difference
for years 2017–2016, 2018–2017, and the predicted 2030–2018.

4) Computational demand: There is a huge technical chal-
lenge regarding the high computational cost of current
geoscience problems—an example is Google’s Earth En-
gine, which allowed the solution of real problems like
deforestation and lake monitoring.

VIII. CONCLUSION

In this article, we addressed the challenge of predicting the
status of climate change based on a set of variables acquired
from remote sensing data. We collected a dataset from space
system sensors including SCIAMACHY/ENVISAT, CH4–SCI–
IMAP, and CO2–SCI–BESD; TANSO–FTS/GOSAT, CH4–
GOS–OCFP, and CO2–GOS–OCFP and ERA5. The data were
preprocessed to unify the rhythm. We applied a set of ML
approaches; starting from NAÏVE Methods to CNN and LSTM,
based on parameters affecting climate change. The parameters
are XCO2, XCH4, pressure, temperature, TCWV (kg m−2), and
TCRW (kg m−2). The applied models are LSTM, CNN (multiple
input channels and multiple input heads), and autoencoders
(LSTM, CNNLSTM, and CONVLSTM). Moreover, we applied
different naïve LR approaches such as LR, Ridge, huber regres-
sor, LARS, passive–aggressive regressor, RANSAC regressor,
and SGD regressor.

We compared the performance of ML techniques to determine
the best candidate algorithm that can be used in forecasting cli-
mate variables based on data acquired from satellite sensors. The
RMSE, MAE, Pearson coefficient, R2 coefficient, and standard
deviation have been used to assess the algorithms.

We concluded that multihead CNN and autoencoder could
be used effectively to predict climate variables compared with
other neural networks such as traditional CNN, LSTM; while for

naïve methods, we concluded that SGD can be a good candidate
as well. We can rely on these data to select the multiheaded CNN
to generate predicted maps of ECVs for the years 2016, 2017,
2018, and predicting the trend in 2030.

By 2030, the increase in atmospheric CO2 and CH4 concen-
trations may reach 440 ppm for CO2, and more than 2000 ppb
for CH4; and therefore, there would be a significant increase in
the temperature values that may reach 2 °C by 2030. This ob-
vious change in concentrations causes warming and is affecting
various aspects of climate, including air and ocean temperatures,
precipitation, and sea levels. Human health, agriculture, water
resources, forests, wildlife, and coastal areas are all vulnerable
to climate change.

The multihead CNN achieved the highest accuracy in linking
between the temperature as the main climate variable from one
side and CH4 and CO2 as GHG factors from the other side. With
this approach, we can rely on the GHG measurements acquired
from the neighborhood regions to forecast for the climate change
variable in North-East Africa. The forecasting can help reduce
the effect of climate changes on the life ecosystem in this
region.

The future trend in this article will be to effectively combine
the climate models, which are based on physics and the equation
of climate environment, with ML models, which have the ability
to forecast and deal with massive data. However, this trend is
quite complex, it will unveil the full power of both models.
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