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Abstract—High-resolution (HR) satellite images, due to the tech-
nical constraints on spectral and spatial resolutions, usually contain
only several broad spectral bands but with a very high spatial
resolution. This provides rich spatial details of the objects on the
Earth surface, while their spectral discrimination is relatively low.
Recently, the increase of the satellite revisit times made it possible to
acquire more frequent data coverage for finer classification. In this
article, we proposed a novel multitemporal deep fusion network
(MDEFN) for short-term multitemporal HR images classification.
Specifically, a two-branch structure of MDFN is designed, which
includes a long short-term memory (LSTM) and a convolutional
neural network (CNN). The LSTM branch is mainly used to learn
the joint expression of different temporal-spectral features. For
the CNN branch, the three-dimensional (3-D) convolution is firstly
applied along the temporal and spectral dimensions to jointly learn
the temporal-spatial and spectral-spatial information, respectively,
and then the 2-D convolution is performed along the spatial di-
mension to further extract the spatial context information. Finally,
features generated from the two different branches are fused to
obtain the discriminative high-level semantic information for clas-
sification. Experimental results carried on two real multitemporal
HR remote sensing datasets demonstrate that the proposed MDFN
provides better classification performance over the state-of-the-
art methods, and it also shows the potentiality to use short-term
multitemporal HR images for more accurate land use/land cover
mapping.

Index Terms—Convolutional neural network (CNN), deep
feature fusion, land use/land cover (LULC) classification, long short
term memory (LSTM), multitemporal images.
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1. INTRODUCTION

ITH the rapid development of the earth observation (EO)
W technology, high resolution or even very-high-resolution
(VHR) satellites [e.g., Pleiades, Gaofen (GF), and Worldview
series] have been launched with a revisit time about 1 to 5 days
(see Table I). Such high temporal resolution allows the adequate
analysis of monotemporal or multitemporal images within a
given period (e.g., short-term, medium-term, or long-term) [1],
[2]. The increasing availability of HR remote sensing images of-
fer great potential and opportunities for the applications, such as
land use/land cover (LULC) mapping [3]-[5], forest monitoring
[6], disaster evaluation [7] and urban management [8], etc.

Unlike hyperspectral (HS) images that provide a high spectral
resolution, HR images usually have a relatively coarse spectral
resolution but rich spatial details. Thus, it is quite difficult to
accurately identify the rough spectral difference of different
objects, especially for subcategories corresponding to the same
major-category (e.g., grass, farmland, and trees that belong to
the vegetation category) [9]. In addition, the phenomenon of
misclassification is severe as the fact that these optical images are
susceptible to clouds, shadows, illumination, and atmospheric
reflection conditions, etc. In the latest multispectral HR satellite
missions, the revisit frequency has improved leading to data
with a high temporal resolution. Therefore, there is a very
high potential in using short-term multitemporal information
for HR image classification. How to effectively combine spatio-
temporal-spectral information provided by such HR images
becomes an open challenging question [4], [10], [11].

In the past decades, many spectral-spatial methods have been
proposed for HR image classification by taking advantages of
its rich context information. For example, popular methods
developed based on the direct spectral-spatial feature extraction
(e.g., Gabor filtering [12], edge-preserving filtering [5], [13],
extended morphological profiles [14], and extended attribute
profiles [15]), the multiple kernel learning [16], [17], the Markov
random fields [18], [19] and the superpixel processing [20]
achieve successful results in various applications in the litera-
ture. Despite their effectiveness in combining spectral-spatial
features, these traditional machine learning methods usually
generate many misclassification errors especially in edge details

For more information, see https://creativecommons.org/licenses/by/4.0/
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TABLE I
EXAMPLES OF THE MOST WIDELY-KNOWN HR SATELLITES
. Number of ~ Ground sample distance (m)  Repetition
Satellites - -
Bands Panchromatic ~Multispectral ~ Cycle (d)
Ziyuan-3/01 4 - 6 <
Ziyuan-3/02 4 - 5.8
Gaofen-2 4 0.8 32 5
Gaofen-1 4 2 8 4
Gaofen-6 4 2 8 4
Pleiades-1 4 0.5 2 1
Pleiades-2 4 0.5 2
WordView-2 8 0.5 1.8 1.1
WordView-3 8 0.31 1.24 1
WordView-4 4 0.31 1.24 1
PlanetScope 4 - 3 1

and objects homogeneity due to limited feature representation
and generalization abilities [21].

Recently, deep learning (DL) based methods have demon-
strated their outstanding performance for remote sensing image
classification [22]-[24]. Among them, the convolutional neural
network (CNN) and the recurrent neural network (RNN) have
been widely used. By taking into account the characteristics
of remote sensing images, researchers have designed several
spectral-spatial or shallow-deep feature fusion networks, such
as the fast dense spectral-spatial convolution network (FDSSC)
[25], the spectral-spatial unified network (SSUN) [26], and the
spectral—spatial residual network (SSRN) [27], etc. With the ro-
bust capability of automatic feature learning, DL-based methods
can adaptively exploit more complex and effective high-level
features to enhance the classification performance [28].

Despite the success of the aforementioned classification meth-
ods, they were all designed for monotemporal remote sensing
images. In reality, optical HR images are frequently affected by
complex acquisition situations such as clouds contamination,
illumination conditions and image bad strips, which leads to
inaccurate mapping of ground materials. On the other hand, the
limited spectral information in HR images leads to a difficulty
with separating certain LULC classes with similar spectral sig-
natures. Even for the common DL-based methods, most of them
usually rely on high-level features in the last layer for classifica-
tion. For example, information for the fully connected layer in
the CNN has often undergone many down-sampling operations,
which may not be suitable to accurately describe small objects
details. The lack of a dominant spatial information with coarse
spectral information would greatly reduce the applicability of
multispectral HR image data.

Considering the above problems in monotemporal multispec-
tral HR image classification, a joint classification of multitempo-
ral HR images expands the spectral representation towards the
temporal domain, increasing the possibility for more accurate
LULC classification. Moreover, for typical ground objects (e.g.,
buildings, roads, trees, and water), they are usually stable within
a certain period, which also makes the short-term multitemporal
HR images useful.

In the literature, there are existing works on the classifi-
cation of multitemporal HR images. As an example, in [29],
multitemporal texture features (pseudocross variogram) were
directly combined with the original bands for multitemporal
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images classification. In [30], some bands and some temporal
normalized difference vegetation index were extracted from
Sentinel-2 multispectral images time series for land and crop
classification using the random forest (RF) classifier. In [31], a
manifold alignment framework was proposed to leverage prior
knowledge while exploiting spectral similarities in the underly-
ing manifolds of two multitemporal HS images. Similarly, [32]
introduced a novel semisupervised kernel manifold alignment
(KEMA) method, which successfully applied KEMA to mul-
titemporal and multisource VHR classification tasks. In [33],
a two-stage classifier was proposed for classifying cloud- and
snow-contaminated multitemporal images. The proposed classi-
fier mainly combined multitemporal information to improve the
missing data and then performed classification. In addition, some
researchers also proposed DL-based methods for multitemporal
images classification. For example, a temporal-attention CNN
and gated recurrent unit (CNN-GRU) approach was proposed in
[34] to distinguish subtle crop differences. A DL-based architec-
ture namely twin neural networks for sentinel data (TWINNS)
was proposed in [11] to boost the LULC classification task using
radar and optical satellite images.

Despite the many existing studies on multitemporal classifi-
cation methods there are still several problems and challenges.

1) Mostexisting approaches unitized traditional medium res-
olution images with a relatively long revisit time. There
are few works on the short-term multitemporal HR im-
ages. The complementarity between spatio-temporal and
spectral dependencies had not been fully considered in
these methods, which will lead to the presence of many
misclassifications.

2) Most studies still relied on traditional hand-crafted fea-
tures, which are not able to extract the high-level dis-
criminative feature representation. In addition, there were
many misclassification errors because the fact that they
did not further explore the invariant temporal-spectral
features to suppress the abrupt or abnormal changes on
each monotemporal image.

To overcome these drawbacks, in this article, a novel frame-
work named multitemporal deep fusion network (MDFN) is
proposed for dealing with the short-term multitemporal HR
images classification, where long short-term memory (LSTM)
and CNN branches are combined to extract and fuse rich spatio-
temporal-spectral features. The main contributions of this article
are summarized as follows.

1) By integrating LSTM and CNN branches, the uni-
fied spatio-temporal-spectral features are extracted and
fused at different layers, and in this way the invariant
temporal-spectral features combined with multiple short-
term temporal images can be greatly benefited. Further-
more, rich and complex high-level information is gen-
erated for the classification by fusing features at differ-
ent layers without the pooling or other down-sampling
operations.

2) The three-dimensional (3-D) convolutions toward the
spectral dimension and temporal dimension are designed
to learn the rich spectral-spatial and temporal-spatial cor-
relation information, and then reduce the misclassifica-
tion errors caused by clouds, shadows, illumination, and
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atmospheric reflection conditions on each monotemporal
image.

3) The 2-D convolutions based on concatenating two types of
3-D convolution features are designed to capture the spa-
tial context information. This guarantees a strong descrip-
tive capability for the invariant spatio-temporal-spectral
features that contribute to the improved classification.

The rest of this article is organized as follows. Section II

introduces the related techniques including LSTM and CNN.
Section III provides a detailed description of the proposed
MDEN framework. Section IV presents the experimental results
obtained on two real multitemporal HR image datasets. Finally,
Section V draws the conclusion and discusses future research.

II. RELATED WORK
A. Long Short-Term Memory

LSTM is a special structure of RNN and it is capable to learn
long-term dependencies and deal with the gradient vanishing or
the exploding problems present in the traditional RNN [35], [36].
It works well to solve a large variety of problems in the temporal
or spectral domains, and is successfully used for HS classifica-
tion. The neurons of the LSTM not only receive information
from other neurons, but also receive their own information with
feedback loops. Therefore, the LSTM with “memory” makes
it more suitable for time series analysis compared with other
networks such as CNN.

The key concepts of the LSTM are the cell state and the gating
mechanism. In particular, the data transmission and processing
in LSTM are realized by three key gate units: the forget gate
f1, the input gate i;, and the output gate o;, which are used for
implementing information protection and control [36]:

1) Forget Gate f;: It is mainly used to control the amount of
information that needs to be forgotten respect to the previous
moment. Its mathematical model can be formulated as follows

ft = o(Wilhe—1, 2] + by) (H)

where Wyand byrepresent the weight and bias of f, respectively,
x; is the candidate state at current time #, and o is the nonlinear
activation function, such as Tanh, Sigmoid, and ReLU.

2) Input Gate iy It is used to control the amount of infor-
mation that needs to be saved in x;. The specific formulas are
defined as

iy = o(Wilhe—1, z¢] + b;) (2)
Ct/ = tal’lh(WC[htfl,l't] + bC) (3)

where W, and b, represent the weight and bias of i;, respectively,
(' is the new candidate value generated by the tan/ function,
and W and b ¢ represent its weight and bias, respectively.

3) Output Gate o It represents the initial output, and h;
is the final output which is obtained by multiplying the C;
compressed to the [—1, 1] state with o;. These mathematical
formulas of o, and 4, can be defined as

Cr=fixCro1+iy x CY 4
or = o(Wolhi—1, 2] + bo) (5)
ht = oy X tan h(Ct) (6)
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where C; is the new cell state information at time ¢, which can
be considered as an intermediate state saved by LSTM, W, and
b, represent the weight and bias of oy, respectively.

B. Convolutional Neural Network

The CNN is a popular type of neural network, which uses
at least one convolution layer in the framework [37], [38]. In
general, the CNN mainly consists of four components, i.e., the
convolution layer, the pooling layer, the batch normalization
layer and the fully connected layer. According to the dimension
of the convolution layer, CNNs can be divided into 1-D-CNN,
2-D-CNN and 3-D-CNN.

1) 1-D-CNN: it is usually designed to use the pixel vector
along the radiometric dimension to extract deep features, which
can be conceptually considered as a spectral-based classification
approach [39], [40].

2) 2-D-CNN: the convolution kernels of a 2-D-CNN move
along the height and width directions of an image, and extract
multilevel features (e.g., shallow, medium, and deep features)
from specified local neighborhoods. The shallow layers usually
extract some low-level features like edges and textures, while the
deep layers generate more abstract and discriminative high-level
features. For a 2-D convolution layer, the convolution value Y
of the given pixel (i, j) on the kth channel in the /th convolution
layer can be obtained as

Ve = [(Wk,l « XN+ bk’l} 7)

where b is the bias of the convolutional layer, fis the nonlinear
activation function, (i, j) represents the coordinate of a given
pixel, and X'~ represents the set of input sensors (and is also
the set of output in the /-1th layer [41]).

2) 3-D-CNN: different from the 2-D-CNN that extracts im-
age features from the spatial direction, a 3-D-CNN extends
the 2-D convolution into a 3-D convolution along the channel
direction. It performs convolution along the height, width, and
channel dimensions of the input image. In case of multiframe
videos and multitemporal images, the 3-D convolution is capable
to learn time-series dependencies. For a 3-D convolution layer,
the output value Y at the pixel location (i, j, r) on the kth channel
in the /th convolution layer can be generated as

Y= F (W= X5, + biy ®)

(Vs

III. PROPOSED MDFN FRAMEWORK

The technical framework of the proposed MDFEN is shown
in Fig. 1. Its two-branch structure includes: the LSTM branch
that is used for modeling the spectral-temporal dependencies
of short-term multitemporal HR images; and the CNN branch
with CONV3_T, CONV3_S and CONV2 modules. It is used
for learning the rich spatio-temporal-spectral information at
different levels. Note that in order to avoid the down-sampling
effect that impacts on the classification of ground objects, there
is no pooling layer in the CNN branch.
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Fig. 2. Structure of LSTM branch in the proposed MDFN.

A. LSTM Branch

Based on the characteristics of the multitemporal images, the
LSTM branch is designed to model the temporal correlation
of the multitemporal spectral information. This branch makes
full use of the spectral-temporal dependencies of the short-term
multitemporal HR images, which is essentially conducive to a
high-precision identification of different ground objects. Fig. 2
shows the structure of the LSTM branch in the proposed MDFN.
By considering the number of HR images, three LSTM layers are
set to extract the discriminative and invariant temporal-spectral
features. In addition, the number of filter kernels is set to 128,
and the effective ReLU is selected as its nonlinear activation
function.

B. CNN Branch

To reduce the spectral inconsistence due to abnormal changes
caused by complex acquisition situations, such as clouds con-
tamination, illumination conditions and striping noise occurred
in the monotemporal images, the CNN branch is designed

to jointly use 3-D-2-D convolution layers. Specifically, 3-D
convolution layers include two paralleled modules, i.e., the
3-D convolution along the multitemporal direction (denoted
as CONV3_T) and the 3-D convolution along the spectrum
direction (denoted as CONV3_S). CONV3_S is effective to
capture the invariant information of the same object in the
spatio-temporal-spectral dimension, and CONV3_T can learn
the discriminative information between different or similar ob-
jects in the spatio-spectral-temporal dimension. This results in
a more comprehensive and reasonable feature representation
in the multitemporal classification domain. Finally, results of
the CONV3_T and CONV3_S modules are imported to the
2-D convolution module (denoted as CONV?2) to further learn
the spatial context information based on different receptive
fields.

1) CONV3_T: as shown in Fig. 3, the CONV3_T module
includes two 3-D convolution layers: 64 3 x 3 x n and 64
1x1xn convolution kernels to capture the discriminative
temporal-spatial information at two spatial scales (i.e.,
3x3 and 1x1). Let the raw multispectral HR images be
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Structure of CNN branch in the proposed MDFN.

I € RTC*™*P where rx ¢ denotes the size of these im-
ages, n represents the number of channels for a monotem-
poral image, and p is the number of the phases for the
multitemporal images. It is worth noting that the input of
CONV3_T is resampled tolconys T € R™“*"*P. With
the 3-D convolution along the spectral-temporal direction,
it is beneficial to learn the discriminative temporal-spatial
information.

CONV3_S: similar to the CONV3_T, the CONV3_S
module also includes two 3-D convolution layers: 64
3x3xp and 64 1x1xp convolution kernels (see Fig. 3).
However, the input form of CONV3_S is resampled
to Iconvs.s € R7*“*P*™ The main difference between
CONV3_T and CONV3_S is that the former directly
stacks each monotemporal image according to the time
sequence, and the latter stacks the multitemporal data
based on the spectral sequence. Therefore, the defined
CONV3_S module performs the 3-D convolution along
the temporal-spectral direction. It is useful to model the
stable spectral-spatial features on the time series, and then
reduce the spectral variations or even abrupt temporal
changes caused by the influence of clouds, shadows, and
other external environmental conditions.

CONV2: As illustrated in Fig. 3, the CONV2 module is
performed based on the concatenated of 3-D convolution
features to further enhance the local spatial context infor-
mation extraction at different scales (i.e., 3x3 and 1x1).
This further improves the strong descriptive capability for
the invariant spatio-temporal-spectral features that con-
tribute to the final classification.

C. Multilevel Feature Fusion and Classification

In this step, the final spatio-temporal-spectral features gener-
ated by the LSTM and the CNN branches are fused together by
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the concatenation layer. The stacked multilevel features are then
imported into to the fully connected layer to obtain the higher-
level semantic information. Finally, the discriminative features
are input into the Softmax classifier to realize an end-to-end
automatic multitemporal HR images classification.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets Descriptions

In this article, two real HR multitemporal datasets are used
to evaluate the performance of the proposed and reference
methods.

1y

2)

Ponte Arche (PA): The first dataset is built on three Plan-
etScope images, which were collected over the PA area, in
the Autonomous Province of Trento in Italy. PlanetScope
satellite constellation consists of more than 130 small
satellites called Doves. These Dove satellites launched in
groups greatly improved the revisit times. So PlanetScope
can provide once daily images of every location on Earth.
Three short-term multitemporal images characterized by
four spectral bands (blue, green, red and near-infrared)
were acquired over the PA area on April 2, 17, 22, and
2018, respectively. This dataset has a size of 304x361
pixels with a ground resolution of 3 meters. False color
composite images for the three dates and the ground refer-
ence (GR) map are shown in Fig. 4. There exist five LULC
classes in the analyzed area (i.e., buildings, roads, trees,
farmland and soil). From three monotemporal images, it
can be seen that there are various radiometrical changes
due to illumination variations, topographical relief, and
measurement noise conditions (e.g., see the forest and
farmland areas in Fig. 4).

Shanghai (SH): The second dataset is made up of four
images acquired over the city center of Houkou district,
Shanghai, China, by the GF-1/6 satellite sensors. The
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Fig. 4.

(@) (b)

Fig. 5.
2019 (T3). (d) GF-6: April 18, 2019 (T4). (e) GR map.

acquisition times for the four images are April 8, 12, 15
and 18, 2019, respectively. It is worth noting that GF-1
and GF-6 are the high-resolution optical EO satellites
of China National Space Administration (CNSA) with a
four-day repetition cycle. Based on the acquired raw im-
ages, several image preprocessing (e.g., orthorectification,
pansharpening, and image registration) were carried out.
These images contain four spectral bands (i.e., blue, green,
red and near-infrared) with a spatial resolution of 2 m after
the pansharpening operation. The size of the final selected
image subset for the experiment is 400 x400 pixels. Fig. 5
presents the four dates false color composite images and
the GR map. There are five land-cover classes (i.e., build-
ings, roads, trees, grass, and water) in different colors are
shown in Fig. 5(e). In addition, the quality of monotem-
poral images changes at different times, especially it can
see clearly that clouds contamination and shadows in T2
image [see Fig. 5(b)] and different illumination conditions

in other images [see Fig. 5(a)—(d)].
Note that the GR maps in the two datasets were made accord-
ing to a careful image interpretation. Details of the reference
samples for each class in the two datasets are given in Table II.

B. Experimental Setup and Parameter Settings

To demonstrate the effectiveness of the proposed MDFN ap-
proach, five reference methods were implemented and compared
in the experiments including two popular classifiers, i.e., support
vector machine (SVM) and RF, and three state-of-the-art classifi-
cation networks: FDSSC [25]; SSUN [26]; and SSRN [27]. The
FDSSC, SSUN and SSRN are three excellent state-of-the-art

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

False color composite images and the GR map of the PA dataset. (a) April 2, 2018 (T1). (b) April 17, 2018 (T2). (c) April 22, 2018 (T3). (d) GR map.

(¢)

False color composite images and the GR map of the SH dataset. (a) GF-1B: April 8, 2019 (T1). (b) GF-1: April 12, 2019 (T2). (c) GF-1D: April 15,

TABLE II
DETAILED REFERENCE SAMPLE INFORMATION IN TWO DATASETS

Number of samples (pixels)

Classes
PA SH
Buildings 1749 13400
Roads 1413 1358
Trees 16535 13954
Farmland 16671 -
Grass - 2582
Soil 10775 -
Water - 4318

DL-based frameworks. Specifically, the FDSSC framework uses
different 3-D convolutional kernel sizes to extract spectral and
spatial features separately, and the 3-D densely-connected struc-
tures was used for deep learning of features, leading to extremely
accurate classification. The SSUN structure also includes the
LSTM and CNN branches that is similar to the proposed MDFN.
But it is designed for monotemporal HS image classification,
where LSTM is used to learn the spectral group information and
CNN for extracting the spatial context information. The SSRN is
designed with 3-D residual blocks and 3-D convolutional layers,
potentially more suitable to learn the spatio-temporal-spectral
information.

Parameter setting and evaluation were carried out in the
experiment, in order to analyze the classification performance
of the proposed MDFN and the compared methods. For the
SVM classifier, the radial basis function was selected as kernel
function. For the RF classifier, the number of decision trees was
set to 500. For different networks used in this article, detailed
parameter settings are given in Table III. In general, a larger
window size (w) will help to increase the classification accuracy.
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Fig.7.



10698

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

-
L
-
S

SVM

RF

FDSSC

SSUN

SSRN | K

MDFN | &

GR

Fig. 8.

Classification maps obtained by different methods at local subsets on the PA dataset. Columns 1-4 represent three monotemporal and the multitemporal

classification results of subset 1; columns 5-8 are the classification results of subset 2 (corresponding to the highlighted subsets in Fig. 7); and rows 1-6 represent
the local classification maps obtained by SVM, RF, FDSSC, SSUN, SSRN, and MDFN methods, respectively, and row 7 shows the GR maps of two subsets.

TABLE III
PARAMETERS SETTINGS IN DIFFERENT METHODS

Type FDSSC SSUN SSRN MDFN
Window size (w) 4 8 4 4
Batch size 32 128 16 128
Epoch 80 500 200 20

However, this also increases the possibility of the over-
smoothing and time consumption. Therefore, considering the
tradeoff between the accuracy and the computational cost, we
set the size of the input block as four for the FDSSC, SSRN and
MDEFN methods, and eight for the SSUN due to the fact that
its network includes three average pooling layers. For the batch

size and epoch, they are set according to the literature work and
multiple trials in our experiments, which are provided as given
in Table III.

In addition, considering the Adam optimizer can solve sparse
gradients on noisy problems, so the Adam with a learning
rate of 0.0001 was selected as the optimization algorithm of
the proposed MDFN framework. In addition, in order to make
consistence with the multitemporal input in the proposed MDFN
method, we stacked p-times of the monotemporal image as the
input of the proposed MDFN.

The training samples of two datasets are set as 1% randomly,
and the rest (99%) are used for test. Quantitative experiments are
performed with ten runs in order to eliminate the errors caused
by random samplings. Four indices are utilized to evaluate the
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Classification accuracies obtained by different methods with ten runs of random sampling under 1% training samples (SH dataset). T1-T3 represent three

monotemporal image results, respectively, and TM represents the multitemporal image results.

performance of the considered classification methods, including
the class accuracy (CA), the overall accuracy (OA), the kappa
coefficient (k), and the computing cost (7).

All experiments were carried out on a computer with Intel (R)
Core (TM) i7-6700 CPU, 3.41 GHz, NVIDIA Quadro K620,
RAM 32.0 GB.

C. Classification Performance

1) Results of the PA Dataset: Fig. 6 illustrates the quantita-
tive comparison between the monotemporal and multitemporal
images classification accuracies obtained by different methods
after ten runs. From the fluctuations of monotemporal (T1-T3)
and multitemporal (TM) curves, one can see that the OA of the
multitemporal images classification is not only higher than the
one of monotemporal image classification, but also relatively
less affected by random sampling, exhibiting a more stable
performance. By comparing multitemporal results obtained by
different methods (see the red curves in Fig. 6), the proposed
MDEN approach with the highest OA values and lowest fluc-
tuating deviations exhibits the best performance. These results
demonstrate that the proposed MDFN is robust under the random
sampling condition, but also that it has a high descriptive capa-
bility of stable spatio-temporal-spectral features for short-term
multitemporal HR images.

Table IV gives the quantitative assessment of the proposed
MDEN and the reference methods based on the multitemporal
images classification. The proposed MDEN approach produces
the highest OA value with the lowest standard deviation value
(i.e., 0.05). In particular, the MDFN (OA = 99.50%) achieves
roughly 1% and 2% of OA increase than the three advanced DL-
based methods FDSSC (98.72%), SSRN (98.69%) and SSUN
(97.65%), respectively. Traditional machine learning methods
SVM and RF classifiers present the low computing cost as they

TABLE IV
CLASSIFICATION ACCURACIES (%) PROVIDED BY DIFFERENT METHODS WITH
1% TRAINING SAMPLES (PA DATASET)

Classes SVM RF FDSSC SSUN SSRN  MDFN
Buildings | 7533  59.88 87.50 78.86 89.02 94.42
Roads 76.38  69.61 83.05 78.36 82.07 94.06
Trees 99.95  99.71 99.96 99.43 99.93 99.97
Farmland | 99.79  99.28 99.71 99.15 99.77 99.90
Soil 99.00  97.52 99.19 98.19 98.85 99.71
OA (%) 98.05  96.68 98.72 97.65 98.69 99.50
+0.27  £0.56 +0.14 +0.39 +0.35 +0.05
Kx100 9720  95.21 98.17 96.62 98.11 99.28
+0.39  +0.80 +0.20 +0.57 +0.50 +0.07
T(s) 0.46 1.36 57.53 42.44 130.07 61.67
+0.06  +0.07 +3.49 +1.20 +1.41 +1.38

do not implement multitemporal feature fusion operations, but
their accuracies are lower than the proposed MDFN.

Fig. 7 visualizes the best classification maps obtained by dif-
ferent methods on each monotemporal image and multitemporal
image. In order to better illustrate the classification performance
at local scales, the subsets highlighted in red rectangles in Fig. 7
are further compared in Fig. 8. It is obvious that the qualitative
results between different methods are in line with the quantitative
results provided in Fig. 6 and Table IV. Among all results, the
monotemporal image with only four broad spectral bands is quite
prone to confuse between buildings and soil, and between trees
and farmland (see in rows 1-3 in Fig. 7, and in columns T1-T3 in
Fig. 8). After fusing three monotemporal images, the misclassifi-
cation problems in buildings and trees are greatly improved (see
inrow 4 in Fig. 7, and in column T4 in Fig. 8). This demonstrates
that the multitemporal information integration can significantly
improve the separability of similar ground objects (e.g., trees and
farmland). Furthermore, compared with the reference methods,
the proposed MDFN results in the most accurate, regular and
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(e-1)

(e-2) (e-3)

Fig. 10.

(e-4) (e-5) (e-6)

Classification maps obtained by different methods on the SH dataset. (a)-(c). Three monotemporal image classification maps, respectively.

(d) Multitemporal classification maps; and columns 1-6 represent the classification maps obtained by SVM, RF, FDSSC, SSUN, SSRN, and MDFN methods,

respectively.

smooth classification map with OA = 99.57% (see the whole
classification map in Fig. 7d-6 and the subset results in the row
MDEFN in Fig. 8). To sum up, it verifies that the proposed MDFN
is more robust owing to the strong spatio-temporal-spectral
complementary ability even under limited training samples. The
good generalization capability and effective feature representa-
tion enables the MDEFN to offer an outstanding performance for
short-term multitempotal HR images classification.

2) Results on the SH Dataset: Fig. 9 illustrates the classi-
fication accuracies obtained on four monotemporal and multi-
temporal images by different methods. One can see that in all
methods, the multitemporal classification is clearly superior to
the ones using monotemporal images according to the higher
OA values.

Monotemporal classification results showed different perfor-
mances due to the variety in their data quality. The SVM, RF and
MDEFN methods have relatively smaller fluctuations affected by
the random sampling compared with other DL-based methods.
The proposed MDFN method presents the best multitemporal
classification performance with the highest OA values and a
better stability. In addition, one can observe that MDFN is
also effective in monotemporal classification compared with the
reference methods.

The quantitative assessment results of different methods for
multitemporal images classification are given in Table V. Com-
pared with the five reference methods, the proposed MDFN
achieved the highest classification accuracy (i.e., OA = 96.30%)
with a small standard deviation value (i.e., 0.55%). The SSRN
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Fig. 11.

Classification maps obtained by different methods at local subsets on the SH dataset. Columns 1-4 represent three monotemporal and the multitemporal

classification results of the subset highlighted in Fig. 10; column 5 shows the GR maps of the local subset; and rows 1-6 represent the local classification maps

obtained by SVM, RF, FDSSC, SSUN, SSRN, and MDFN methods, respectively.

method achieved the highest OA (95.55%) among five reference
methods. However, its computing cost is about three times higher
than MDFN. The performance of three DL-based methods is
reduced since the limited number of training samples were
considered in this case, so it is very difficult to meet the network
training requirements. This also demonstrates that the proposed
MDEN approach effectively integrates the multitemporal infor-
mation, while shows a strong robustness even in a small-sample
case.

Fig. 10 visualizes the best classification maps obtained by
different methods on each monotemporal and multitemporal
image. In order to better illustrate the classification performance
at local scales, subsets highlighted in white rectangles in Fig. 10

are further compared in Fig. 11. In consistent with the above
quantitative analysis results, from the qualitative analysis, it can
be seen that the joint classification of the multitemporal HR
images can effectively reduce the miss and false alarms in some
typical ground objects. For example, the classification maps of
column 5 in Fig. 11 (i.e., TM) present less misclassification
between trees (in dark green) and grass (in bright green) than in
the first columns (T1-T4). Especially, classification errors in T2
image affected by clouds and shadows (see Fig. 10 column 2) are
eliminated, thus they are correctly classified in TM results (see
Fig. 10 column 6). FDSSC resulted in good classification results
as shown in Fig. 10e-3 and Fig. 11 row FDSSC, comparing
with the other reference methods. However, it fluctuates greatly



10702

TABLE V
CLASSIFICATION ACCURACIES (%) PROVIDED BY DIFFERENT METHODS WITH
1% TRAINING SAMPLES (SH DATASET)

Classes SVM RF FDSSC SSUN SSRN  MDFN
Buildings | 99.61 98.71 93.93 97.82 96.11 97.79
Trees 98.74 99.04 99.06 97.61 98.80 99.52
Water 99.42 99.70 99.70 99.31 98.61 99.91
Roads 6.64 21.08 59.02 24.99 59.01 49.85
Grass 88.24 71.83 92.32 73.03 89.25 89.51
OA (%) 94.88 94.05 95.19 93.34 95.55 96.30
+0.34 +0.45 +2.99 +0.45 +0.63 +0.55

Kx100 92.36 91.11 93.03 90.11 93.48 94.53
+0.51 +0.67 +4.14 +0.66 +0.92 +0.81

T(s) 1.06 2.14 50.14 34.27 102.31 32.09
+0.02 +0.07 +2.48 +0.85 +1.54 +1.23

and its average accuracy with the highest standard deviation
value (2.99%) under ten runs of random sampling (see Fig. 9
and Table V). Therefore, the proposed MDEN with the higher
robustness and excellent classification performance is more
suitable for multitemporal HR images classification.

V. CONCLUSION

In this article, a novel multitemporal deep fusion and classifi-
cation network MDFN has been developed based on short-term
multitemporal HR images. The two branches of LSTM and CNN
are designed in MDFN to learn the discriminative information
from spectral, spatial and temporal dimensions. Experimental
results obtained on two real multitemporal HR datasets vali-
dated the effectiveness of the proposed MDFN. Compared with
traditional and state-of-the-art methods, MDFN exhibits three
main advantages: the discriminative spatio-temporal-spectral
feature extraction and fusion; high model stability under few-
shot learning; and high descriptive capability for the temporal-
invariant ground objects. With a robust end-to-end learning
process, the proposed MDFN not only efficiently learns the
multitemporal information, but also improves the spectral sta-
bility and the discrimination of typical ground objects. It can be
also applicable to the short-term multiple UAV/airborne image
classification.
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