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Abstract—Most deep-learning-based target detection methods
have high computational complexity and memory consumption,
and they are difficult to deploy on edge devices with limited com-
puting resources and memory. To tackle this problem, this article
proposes to learn a lightweight detector named Light-YOLOv4,
and it is obtained from YOLOvV4 through model compression. To
this end, first, we perform sparsity training by applying L1 regu-
larization to the channel scaling factors, so the less important chan-
nels and layers can be found. Second, channel pruning and layer
pruning are enforced on the network to prune the less important
parts, which could significantly reduce network’s width and depth.
Third, the pruned model is retrained with a knowledge distillation
method to improve the detection accuracy. Fourth, the model is
quantized from FP32 to FP16, and it could further accelerate the
model with almost no loss of detection accuracy. Finally, to evaluate
Light-YOLOvV4’s performance on edge devices, Light-YOLOV4 is
deployed on NVIDIA Jetson TX2. Experiments on the SAR ship de-
tection dataset (SSDD) demonstrate that the model size, parameter
size, and FLOPs of Light-YOLOv4 have been reduced by 98.63 %,
98.66%, and 91.30% compared with YOLOv4, and the detection
speed has been increased to 4.2 x. While the detection accuracy of
Light-YOLOV4 is only slightly reduced, for example, the mAP has
only reduced by 0.013. Besides, experiments on the Gaofen Airplane
dataset also prove the feasibility of Light-YOLOv4. Moreover,
compared with other state-of-the-art methods, such as SSD and
FPN, Light-YOLOV4 is more suitable for edge devices.

Index Terms—Edge device, model compression, NVIDIA Jetson
TX2, remote sensing, target detection, YOLOv4.

I. INTRODUCTION

ITH the development of remote sensing technology, the
W era of remote sensing big data has arrived [1], [2]. The
traditional target detection process, that is, transmitting remote
sensing data to the ground station and then performing target
detection, has been difficult to meet the real-time requirements
[3]. In this context, applying edge computing technology to the
field of remote sensing and deploying remote sensing image tar-
get detection on edge devices such as on-orbit satellites or UAVs
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can undoubtedly save a lot of time and improve the response
speed [4], [S]. Therefore, how to design fast and efficient target
detection algorithms suitable for edge devices has attracted more
and more attention in the field of remote sensing.

Recently, deep learning has been widely used in the field
of target detection with its powerful generalization ability [6],
[58]. Different from the traditional methods that require man-
ually designed features, these methods could extract features
automatically and realize end-to-end target detection [7], [8].
Even more, the detection performance of deep learning-based
methods is much better. In general, target detection methods
based on deep learning can be divided into two categories [9],
[10]. One is the single-stage detector, such as YOLO series
[11]-[14], SSD [15], and RetinaNet [16], which have lower
computational complexity and faster detection speed. The other
is the two-state detector, such as Faster RCNN [17] and feature
pyramid network (FPN) [18], which have the better detection ac-
curacy. Some scholars have improved these methods and applied
them to target detection in remote sensing images [19], [20].
For example, for multiscale target detection, Dong er al. [21]
improved Faster RCNN by replacing traditional nonmaximum
suppression (NMS) with Sig-NMS in the stage of region pro-
posal network, which could significantly reduce the possibility
of missing small targets. Cui et al. [22] proposed a detection
method based on a dense attention pyramid network (DAPN). By
extracting abundant features, including resolution and semantic
information, the detection performance of multiscale ship targets
is improved. For multioriented target detection, An et al. [23]
improved DRBox-v1 using FPN, focal loss, and a modified
encoding scheme, and then proposed a DRBox-v2 detector,
which could detect ships in any direction. Li et al. [24] proposed
a rotatable region-based residual network (R3-Net) to detect
multioriented vehicles in remote sensing images and videos, and
it has high robustness and detection accuracy. For dense target
detection, Wang et al. [25] added spatial groupwise enhance
(SGE) attention module to CenterNet, and experimental results
indicate that it could detect dense docked ships well. The above
methods have made satisfactory progress in terms of detection
accuracy. However, they are still computationally expensive and
time-consuming, which makes them unsuitable for deployment
on edge devices with limited computing resources and memory.
Therefore, it is necessary to design lightweight target detection
models for remote sensing images.

Lightweight model design methods can generally be divided
into two categories [26]. The first category is to design a
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lightweight model before training, including redesign the back-
bone network structure or convolution calculation unit (e.g.,
group convolution [27] and depthwise separable convolution
[28]), for example, Li et al. [29] improved the feature extraction
basic network (backbone network) structure and recognition and
positioning task network of Faster RCNN, then a lightweight
ship detector named Lite Faster RCNN was proposed. The detec-
tion speed of Lite Faster RCNN is increased by eight times. Zhao
et al. [30] introduced a depthwise separable convolutional strat-
egy to the network and built a lightweight detector. Ding et al.
[31] proposed the use of a fully convolutional neural network
instead of the fully connected layers in Faster RCNN to detect
targets in optical remote sensing images; after that, the memory
requirements and time consumption are reduced. Zhou et al.
[32] combined the idea of dense connections, residual connec-
tions, and group convolution and proposed the Lira-YOLO ship
detector. Compared with tiny-YOLOV3 [33], Lira-YOLO has a
higher detection accuracy and lower computational complexity.
These methods can meet the requirements of edge devices, but
they rely on the manual prior knowledge too much. Therefore,
the second type of lightweight model design method, namely
model compression, is adopted in this article.

Three model compression methods have been widely used in
recent years, including model pruning, knowledge distillation
(KD), and quantization [34]. Model pruning aims to remove
the redundant channels or layers of the network, which could
significantly reduce the parameter size and model size [35],
[36]. There are different pruning strategies. For example, Liu
et al. proposed to use sparse training to judge the importance of
each channel in the network and then prune the less important
channels [35]. Guo et al. proposed progressive channel pruning
to accelerate CNN, which could iteratively prune a small number
of channels from several selected layers [36]. In this article,
we have improved the methods in [35] by increasing the layer
pruning, so both the depth and width of the network can be
reduced. Second, KD takes the large and trained network as the
teacher network; then the larger network is used to guide the
training of the small student network [37], [38]. Compared with
other training methods, the detection accuracy of the network
trained by KD is much higher. Besides, the student network
can be a well-designed lightweight network or a pruned net-
work. At last, the core idea of quantization is to compress the
network by reducing the number of bits of each weight [39],
[40], for instance, from 32-bit floating point to 16-bit floating
point or 8-bit integer. After quantization, the model size and
detection speed are greatly reduced. In practice, these methods
are often used in combination to get better performance. For
example, Zhang et al. applied the structured pruning method
to compress the network, and then the KD is employed to
improve the recognition accuracy of the compressed network
[54]. Chen et al. combined squeezing, deep compression, and a
novel fast computation algorithm to compress and accelerate the
network [55]. These two methods have achieved good results for
resource-constrained SAR target recognition, and they are also
helpful for the compression of the target detection network.

Based on the above ideas, this article proposes an edge-device-
oriented target detection method, and the detector is compressed
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from YOLOvV4 [14]. Compared with YOLOV3 [13], YOLOv4
has made a series of improvements, which could improve the
detection accuracy at a low cost. In detail, first, sparsity training
is performed on the trained YOLOv4, and then channel pruning
and layer pruning are conducted to get the slimmer and shallower
pruned network, respectively. Second, the KD scheme is used to
retrain the pruned network, and YOLOV4 is the teacher network
during this process. KD makes the pruned network have a better
detection performance. The next step is quantization; it converts
the weight of the pruned network to 16-bit floating point (FP16)
from 32-bit floating point (FP32). Finally, the compressed model
is implemented on NVIDIA Jetson TX2, which is an edge device
with excellent performance and low power consumption (less
than 15 W) [42]. Experiments on the SSDD dataset [43] and
Gaofen Airplane dataset [57] demonstrate that the proposed
method is more efficient and faster than the existing methods,
and thus, it is more suitable for edge devices.

The main contributions of this article are indicated as follows.

1) Anedge-device-oriented target detection method was pro-
posed. To get it, a series of measures, including sparsity
training, channel and layer pruning, KD, and quantization,
are used to compress YOLOv4.

2) Our proposed model was successfully deployed on the
NVIDIA Jetson TX2 embedded device, which proved the
feasibility of our proposed model on edge devices.

3) Experiments on SSDD and Gaofen Airplane datasets in-
dicate that our proposed method can achieve competitive
detection accuracy with fewer FLOPS and higher speed,
which could meet the requirement of edge devices with
limited computing capability and memory.

The rest of this article is organized as follows. Section II
briefly introduces the basics of YOLOv4. Section III introduces
our proposed target detection method. In Section IV, the de-
tectors are deployed on NVIDIA Jetson TX2, what is more,
the experimental results and discussions on SSDD and Gaofen
Airplane datasets are exhibited. Finally, Section V concludes
this article.

II. BASIC OF YOLOV4

YOLO [11] is one of the most representative one-stage target
detection algorithms. So far, YOLO has been updated for four
versions, and each version brings great performance improve-
ments. YOLOv2 [12] removed the full connection layer in
YOLO. What is more, it introduced anchor boxes to predict the
bounding boxes. YOLOvV3 replaced the backbone of YOLOv2
with Darknet53 and adopted multiscale prediction strategy [13],
which significantly improved the detection speed and accuracy.

YOLOV4 is a further improvement of the YOLO series al-
gorithms. It is based on YOLOvV3 and has merged in many
excellent detection tricks to improve detection accuracy. The
network architecture of YOLOV4 is shown in Fig. 1.

Compared with YOLOvV3, YOLOv4 mainly made the follow-
ing improvements. First, YOLOv4 introduced the cross-stage
partial (CSP) [44] structure to the backbone and proposed
CSPDarkNet53 [14], which maintains the detection accuracy
while reducing the weight of the backbone network. Second,
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Fig. 2. Overall architecture of our proposed method.

FPN and path aggregation network [45] were introduced to
YOLOV4, and they could make full use of context information
to improve the feature extraction ability. Third, it is proposed
to use the mosaic method to preprocess the training data, which
can improve the detection ability for small-scale targets. What
is more, Mish activation function, SAM-block, and CIOU were
used in YOLOv4, which contribute a lot to the detection accuracy
[46].

Recently, YOLOv4 has been widely used in the field of
remote sensing and achieved good results [47]. Based on these
considerations, this aticle chooses YOLOvV4 as the baseline.

III. PROPOSED METHOD

The overall architecture of our proposed method is presented
in Fig. 2. The well-trained YOLOV4 is selected as the baseline;
then we continue to conduct sparsity training, channel and layer
pruning, KD, and quantization on it to get our model. Among
them, sparsity training is used to find the less important channels
and layers, channel and layer pruning are used to prune the
model, KD could improve the detection accuracy of the pruned
model, and quantization could further improve the detection
speed. The details of each comment will be introduced in the
following parts.
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Fig. 3. Schematic diagram of channel pruning.

A. Sparsity Training

The purpose of sparsity training is to evaluate the importance
of each channel or layer of the model. In YOLOV4, each convolu-
tional layer is followed by a BatchNorm (BN) layer, which could
improve the generalization and convergence speed. BN layer
makes use of the min-batch statics to normalize the convolutional
features, and it can be represented by the following equation:

Lin — T
)
Vo2+e

where Z and o2 represent the mean and variance of the input
features in a mini-batch, while v and (8 are the trainable scaling
factor and shift factor, respectively. Among these parameters, the
trainable scaling factor ~y can be used to measure the importance
of its corresponding channel. It means that the smaller - is, the
less important the corresponding channel is.

In the process of sparsity training, L1 regularization is per-
formed on the scaling factor ~y to find the unimportant channels.
The loss function of sparsity training is represented by

&= Touy =7 &+ ey

L =lossyoLova + o Z Y11y )

el

where 10ssyor,0v4 18 the total loss of YOLOv4, and ||y||; denotes
L1—norm. a is a hyperparameter, which is used to balance the
two parts of loss function.

B. Channel Pruning and Layer Pruning

After sparsity training, most of the scaling factors are close
to 0, and their corresponding channels contribute little to the
detection accuracy. Therefore, they can be pruned without losing
too much detection accuracy.

The first thing to do is channel pruning, as shown in Fig.
3. Channel pruning could significantly reduce the width of the
model. To this end, a global pruning ratio § is introduced to
determine which channel should be pruned. In detail, sort all the
scaling factors «y from small to large to get the sequence A and
4 corresponds to the dth percentile value in the sequence. What
is more, a local threshold ¢ is introduced to prevent overpruning
on a specific layer, where ¢ is the kth percentile of all «y in the
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layer. After that, the channel whose scaling factor is less than
the minimum of 4 and ¢ will be cut off.

It is worth noting that the residual block in the network needs
to be treated carefully. First, according to the global threshold
and local threshold ¢, a pruning mask for all convolutional layers
is constructed. Second, the layers that have connections with the
shortcut layer should have the same channel number. To match
it, we iterate through the pruning masks of all connected layers
and perform OR operations on these pruning masks to obtain
the final pruning mask [48].

Layer pruning could reduce the depth of the model, and it
is only implemented on the shortcut layers of the backbone
network. Similar to channel pruning, layer pruning also deter-
mines which shortcut layers to be pruned according to the scaling
factors. As shown in Fig. 4, we define the first CBM block before
the ith shortcut layer as the ith CBM block. Suppose that the :th
CBM block has N channels (/V scaling factors), and the mean
4, of these scaling factors can be represented by

N
1 .
%:NE:%?J:LQ,...,QS 3)
j=1

where 7{ is the jth scaling factor of the ith CBM block.

Calculate the mean ;(i = 1,2, ..., 23), then select the min-
imum M values, and their corresponding shortcut layers will be
pruned. As shown in Fig. 4, in order to maintain the integrity of
the YOLOv4 network structure, the shortcut layer and the two
CBM blocks in front of it will be cut off at the same time. It
means that a total of 3 x M layers will be pruned in the layer
pruning stage.

C. Knowledge Distillation

After channel pruning and layer pruning, the width and depth
of the model are significantly reduced, and we get a lighter de-
tector. However, model pruning will lead to the loss of detection
accuracy. Here, the strategy of KD is used to retrain the pruned
model to improve the detection performance.

KD was proposed to transfer the knowledge from a large
teacher network to a small student network. In this article,
YOLOV4 is used as the teacher network, and the pruned network
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is the student network. Only the backbone network is pruned
in the previous step; therefore, the teacher network and student
network have the same detection framework. As shown in Fig. 5,
the images are put into the teacher network and student network,
and different outputs are produced in the feature extraction layer
(hint), classification result (classification), and regression result
(regression). By comparing the outputs of two networks, the
distillation loss can be constructed.

In general, the distillation loss is called soft loss, and the
detection loss is called hard loss, and they constitute the total
loss. The calculation process of total loss can be represented by
the following equation:

Ltotal_loss =4 X Lsoft (37 t)+(]- - 6) X Lhard(37 T) (4)

In (4), Lot (8, t) is the distillation loss, and Lyara(s,T) is
the detection loss. s and ¢ are the student network and teacher
network, respectively. 7" is the ground truth label. 6 € [0, 1] is a
hyperparameter to balance the distillation loss and the detection
loss through the backpropagation algorithm to update the weight
of the student network, which could reduce the loss and make
the output of the student network gradually approach the teacher
network.

In detail, Lyapa(s,T') is the loss of YOLOv4, and it can be
expressed by

Lhard = Lloc(sv T) + Lconf(sa T)+Lcls(s» T)
= Lloc(-rsz .’I:T, ys7 yT7 ws7 wT7 h’S? hT)
+ Lcorlf(psypT)+Lcls (psva) (5)

where Lioe($,T), Leont (8, T), and Leis(s, T') are the bounding-
box loss, confidence loss, and classification loss. Lgog (s, t) can
be represented by

Lsoft = Lhint (87 t) + Lloc(s7 t) + Lconf(37 t)+Lcls(sv t) (6)

In (6), Lnint (8, t) is the hint loss, which is used to measure the
difference between the feature maps output by the student net-
work and the teacher network. Here we use Euclidean distance
to calculate Lying (s, t).

In summary, in the process of KD, the student network makes
the output of the teacher network as the “soft target.” Compared
with the ground truth label, the “soft target” contains more
information, and it is conductive to the training of the student
network [37]. On the other hand, the prediction results of the
teacher network are not all correct, and the use of a ground
truth label could effectively reduce the possibility of transmitting
the wrong information to the student network. Therefore, the
combined use of soft loss and hard loss can achieve better
performance.

D. Quantization

Model quantization could effectively reduce the requirements
for storage space and memory bandwidth. What is more, it
can improve system throughput. In this article, post-training
quantization [49] method is taken to quantify the weights, which
avoids the time-consuming quantization training or retraining
process.
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~|max| 10.0 +|max| difference between the original data and various quantized data
(for more details, refer to [56]). KL divergence is often used to
\\ : ,/ measure the difference between two distributions p and ¢, which
\ I / can be expressed by
\ /
\ : /
\ | / N
\ / ( )
x
—_—— KL_divergence = ;) log 22 8
~127 |0 127 — g (qu) le( 'l) gq(zl) ( )
i=
(@)
— 10.0 7]
H@(—n-n—x-,—n-x-x—x-n/—g-— The process of using KL divergence to determine the threshold
SR I ; is as follows.
\\ : /I 1) For each layer, collect the histograms of activations.
A | // 2) Generate many quantized distributions with different sat-
\\ I I uration thresholds.
J | L 3) Select the best threshold 7', which could minimize
—lgwmg_ KL_divergence(ref _distr||quant_distr).
N X It should be noted that compared with the Maxmin quanti-
® zation method, the threshold 7'calculated by KL divergence is
Fig. 6.  Schematic diagram of quantization. (a) Maxmin Quantization. (b) Our smaller, so there will be some values that the range of [_Ta +T] :

Quantization.

The most commonly used quantization is linear quantization,
and it can be expressed by

T =sf *t. 7

In(7), s f is the scaling factor, and 7" and ¢ are the values before
and after quantization, respectively. Obviously, the scaling factor
is crucial to quantization. As shown in Fig. 6(a), the traditional
linear quantization uses the Maxmin quantization method to
determine the quantization threshold, so as to determine the
scaling factor. Therefore, the scaling factoris s f= ;ﬁ’il ,where N
is the bit width after quantization. When the data are asymmetric,
as shown in Fig. 6(a), there will be a significant accuracy loss.

To solve the problem caused by symmetric data, first, we
produce lots of quantization thresholds, which correspond to
different quantization results. Second, KL divergence is used
to find the quantization scheme with the smallest distribution

This part of data needs to be mapped to the boundary after
quantization, which is shown in Fig. 6(b). The final scaling factor
issf= Q‘NT,‘I .

In fact, the quantization method introduced in this article has
been integrated into TensorRT, so we use TensorRT to quan-
tify the model. Besides, TensorRT could optimize the network
structure by fusing the three layers (Conv, BN, and Mish) into
one layer, which could further improve the detection speed [52],
[53].

In summary, channel pruning and layer pruning belong to
structured pruning, which can significantly reduce the width and
depth of the network, and the pruned models have no special
requirements for the platform to achieve acceleration. KD can
help improve the detection accuracy of the pruned models.
Quantization can significantly reduce the amount of calculation,
and it can be applied to most networks. However, the quantized
model requires hardware support to complete acceleration. In
this article, these methods are combined to compress YOLOv4
to achieve better performance.
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Fig.7.  NVIDIA Jetson TX2 and our experimental devices. The left side shows
our experiment devices. The right side of the image shows NVIDIA Jetson TX2.

TABLE 1
MAIN PARAMETERS OF NVIDIA JETSON TX2

Component Detailed Information
GPU NVIDIA Pascal GPU (256 CUDA cores)
CPU Denver 2 CPU (Dual-Core) + ARM A57 CPU
Memory 8GB 128-bit LPDDR4
Storage 32GB eMMC

IV. EXPERIMENTS

In this section, several experiments are implemented to verify
the effectiveness of our proposed method. First, the implemen-
tations, including experimental platform, evaluation metrics,
SSDD, and Gaofen Airplane datasets [57], will be introduced
in detail. Next, the ablation experiments will be performed on
the SSDD dataset to verify the effectiveness of sparsity training,
channel and layers pruning, KD, and quantization. Third, to
verify the detection speed and accuracy of our proposed meth-
ods, we compare them with several state-of-the-art methods on
the SSDD dataset. Finally, experiments are carried out on the
Gaofen Airplane dataset, which could prove the feasibility of
our proposed method in optical remote sensing target detection.

Implementations

1) Experimental Platform: The experiments are implemented
on Darknet and Pytorch 1.14 framework. We train and compress
the models on the computer with Intel Core i7-8700K CPU,
NVIDIA GTX 1080Ti GPU, and 16 GB memory. After that, all
the models were deployed on NVIDIA Jetson TX2. TX2 is an
edge device with low power consumption (less than 15 W) and
high performance (about 1T times floating-point operations per
second). The NVIDIA Jetson TX2 and our experimental devices
are shown in Fig. 7, and its main parameters are presented in
Table I. What is more, the operation systems of the TX2 and
computer are both Ubuntu 18.04 with CUDA 10.0 and CUDNN
7.6.

2) Datasets: SSDD dataset is widely used in SAR ship de-
tection. The images in SSDD [42] dataset mainly come from
RadarSat-2, Sentinel-1, and TerraSAR-X sensors, and they are
imaged in four polarization modes: HH, VV, HV, and VH.
As shown in Fig. 8, these images contain ship targets in both

Fig. 8.
(a) Offshore areas. (b) Nearshore areas.

Ships in offshore areas and nearshore areas in the SSDD dataset.

offshore areas and nearshore areas, and the resolution of them
ranges from 1 to 15 m. Comparatively speaking, it is more
difficult to detect ships in the nearshore areas due to its complex
background. What is more, the size of ships in the SSDD dataset
ranges from 7 x 7to 211 x 298, and itis widely used to evaluate
the performance of multiscale SAR ship detection [50], [51].

There are in total 1160 images and 2456 multiscale ships in
the SSDD dataset. We randomly divided these images into three
parts: training, validation, and test sets according to the ratio
of 7:1:2. What is more, the methods of flipping, mirroring, and
changing the contrast are used to augment the images in the train
set. After augmentation, there are 6496 images in the training
set.

Gaofen Airplane dataset is used for the detection and recog-
nition of optical airplanes, which is released in the 2020 Gaofen
challenge. There are 1000 images and 5609 airplanes in this
dataset. The size of these images is 1024 x 1024, and the reso-
lution of them ranges from 0.5 m to 0.8 m. In fact, this dataset
subdivides the airplanes into ten categories, but in our experi-
ment, we only perform the detection task (without recognition).
What is more, we divide the dataset in a ratio of 7:1:2, and the
same methods are used to augment the training set.

3) Evaluation Metrics: In this article, a total of eight metrics
are used to evaluate the performance of these methods in the
experiment, including the recall, precision, F1 score, mean of
average precision (mAP), model size, parameter size, inference
speed as frames per second (FPS), and floating point of opera-
tions (FLOPs).

Recall indicates the proportion of right detected targets in the
ground truths, while precision represents the proportion of right
detected targets in the detected objects. They can be calculated
according to the following two equations.

TP
l= ——
Recall = 757 ©)
- TP
Precision = TP TP (10)

In the above two equations, TP (true positive), FP (false
positive), and FN (false negative) could represent the number
of correctly detected targets, false alarm, and missed detected
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Fig. 9. Distribution of scaling factors during sparsity training. The horizontal
axis in the figure represents the absolute value of scaling factors. The left vertical
axis represents the distribution probability, and the right vertical axis represents
the epoch of sparsity training.

targets, respectively.

Fl— 2 x Recall x Precision

an

Recall + Precision

Recall and precision contradict each other due to the problem
of threshold, and they have limitations. While F1 score (F1) and
mAP could evaluate the overall performance of the detector. F1
can be represented by (11).

mAP is defined as (12). It indicates the average area under
precision—-recall curve, where P and R represent the precision
and recall of a point on the curve.

1
mAP :/ P(R)dR. (12)
0

All the above four metrics are used to evaluate the accuracy of
the detection results. The model size and parameter size indicate
the size of the detector. At the same time, FLOPs and FPS can
respectively describe the computation complexity and detection
speed of the detector.

Ablation Experiments

In order to verify the effectiveness of each component, sev-
eral ablation experiments are performed on the SSDD dataset.
Two models YOLOv4 and YOLOv4-tiny are implemented as
the baseline models. YOLOv4-tiny is a simplified version of
YOLOvV4, and it is much faster but less accurate. We continue
to perform sparsity training, channels and layers pruning, KD,
quantization, and TensorRT acceleration on the trained YOLOv4
model. What is more, to investigate the performance of these
models in resource-limited environments, all models were de-
ployed on NVIDIA Jetson TX2 device.

1) Effect of Sparsity Training: In the process of sparsity
training, we count the distribution of all scaling factors (absolute
value) in the backbone of YOLOvV4 and then visualize the results
in Fig. 9. It can be seen that in the beginning, the scaling factors
roughly follow the normal distribution with the mean of 1.
During sparsity training, the number of smaller scaling factors
gradually increases, while the number of larger factors keeps
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Fig. 10.  Comparison of FLOPs and FPS of YOLOv4 and five pruned models.

decreasing. Finally, most of the scaling factors are close to 0.
In fact, the channel corresponding to the smaller scaling factor
contributes less to the detection accuracy, while the channel
corresponding to the larger scaling factor contributes a lot to
the detection accuracy.

The value of « is very important. When the value of « is too
small, the scaling factors are hard to become sparse; conversely,
the scaling factors decay so aggressively that the model is easy to
be underfitting. We set o to 0.001 through multiple experiments,
and the two parts of the loss function can be well balanced at
this time.

2) Effect of Channel Pruning and Layer Pruning: After spar-
sity training, it is necessary to determine the proportion of pruned
channels and the number of pruned layers. If there are too
few channels and layers to be pruned, the saving of computing
resources is limited; on the contrary, the detection accuracy of
the model may be difficult to recover. In this experiment, we
make the following five pruning schemes:

1) pruning 60% channels and six shortcut layers;

2) pruning 70% channels and eight shortcut layers;

3) pruning 80% channels and ten shortcut layers;

4) pruning 90% channels and 12 shortcut layers; and

5) pruning 95% channels and 14 shortcut layers.

The pruned models are named YOLOvV4-60-6, YOLOv4-70-
8, YOLOV4-80-10, YOLOV4-90-12, and YOLOvV4-95-14. What
is more, the detection accuracy of the pruned models will be
much worse, so we use the fine-tuning method to retrain these
models to improve their detection performance.

The evaluation metrics of several models are given in Table II.
Obviously, compared with YOLOv4, the parameters’ size of
five pruned models is reduced by 82.12%, 90.19%, 95.52%,
98.66%, and 99.55%, respectively. The model size has been
reduced by 83.55%, 90.16%, 95.51%, 98.63%, and 99.53%.
FLOPs are reduced by 71.90%, 78.20%, 84.64%, 91.30%, and
95.18%. FPS has become 2.01, 2.30, 2.58, 2.93, and 3.22 times.
The comparison of FLOPs and FPS between YOLOv4 and five
pruned models is shown in Fig. 10. After fine-tuning, the recall,
precision, F1, and mAP of five pruned models have little loss
as compared with YOLOv4. The five pruned models are better
than YOLOv4-tiny in terms of detection accuracy.
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TABLE II
EVALUATION RESULTS OF THE TWO BASELINE MODELS AND FIVE PRUNED MODELS ON SSDD DATASET

Model Recall Precision F1 mAP FPS FLOPs (G) Model Size (MB) Parameter size (M)
YOLOv4 0.933 0.945 0.939 0.943 3.60 59.563 256.0 63.938
YOLOv4-tiny 0.781 0.933 0.850 0.838 23.20 6.787 23.5 5918
YOLOV4-60-6 0.889 0.955 0.921 0.932 7.25 16.738 42.1 11.431
YOLOv4-70-8 0.877 0.963 0.918 0.926 8.29 12.985 252 6.270
YOLOvV4-80-10 0.866 0.943 0.903 0.910 9.28 9.148 11.5 2.867
YOLOV4-90-12 0.843 0.914 0.877 0.903 10.54 5.183 35 0.857
YOLOvV4-95-14 0.802 0.753 0.777 0.791 11.60 2.868 1.2 0.290
TABLE III

COMPARISON OF EVALUATION METRICS UNDER FINE-TUNING AND KD
ON SSDD DATASET

Model Recall Precision F1 mAP
YOLOv4 0.933 0.945 0.939 0.943
YOLOv4-90-12 0.735 0.828 0779 0.779
(Without retraining)
B 0.843 0.914 0.877 0903
(Fine-tuning)
YOLOvV4-90-12-KD 0.898 0.907 0.902 0.931

It is worth noting that although the parameter size, model size,
and FLOPs of YOLOv4-90-12 and YOLOvV4-95-14 are much
better than YOLOv4-tiny, their detection speed is significantly
lower than YOLOv4-tiny. This may be due to the pruned models
having a deeper network. In the detection process, the top layers
of the deep network always wait for the outputs from the bottom
layers to perform forward calculations, which will take more
time. In the following experiments, we choose YOLOv4-90-12
model to balance the speed and accuracy of the pruned model.

3) Effect of KD: After pruning, the width and depth of the
model are significantly reduced, but the detection accuracy will
also decrease. The next step is to retrain the pruned model to
improve its detection accuracy. Here we compare two retraining
methods: fine-tuning and KD. In addition, the value of J is set to
0.5 in the process of KD, and it is obtained by multiple experi-
ments. Retraining will not affect the model size, parameter size,
FLOPs, and inference speed of the pruned models. Therefore,
only four evaluation metrics of recall, precision, F1, and mAP
were compared in this experiment. The comparison of evaluation
metrics is given in Table III.

It can be seen that after retraining, the recall, precision, F1,
and mAP of the pruned model YOLOvV4-90-12 have been sig-
nificantly improved. The improvements brought by fine-tuning
to the above four evaluation metrics are 0.108, 0.086, 0.098, and
0.124, and they have increased by 14.69%, 10.39%, 12.58%,
and 15.92%. While the improvements brought by KD are 0.163,
0.079, 0.123, and 0.152, and they have increased by 22.18%,
9.54%, 15.79%, and 19.51%. Obviously, the effect of KD is
better than fine-tuning.

What is more, compared with YOLOV4, the recall, precision,
F1, and mAP of YOLOv4-90-12-KD are reduced by 0.035,
0.038, 0.037, and 0.012, respectively, but the detection speed
has increased to 2.93x. We think that the significant increase

@ b ©

Fig. 11.  Comparison results of finetune and KD. (a) Ground truth. (b) Results
of finetune. (¢) Results of KD.

in detection speed is worth the slight decrease in detection
accuracy.

In order to compare the effects of KD and fine-tuning more
intuitively, we selected two images of the nearshore area for
testing, and the detection results are shown in Fig. 11. It can be
seen that the missed detection of the model trained by fine-tuning
is more serious. In detail, first, for the dense ship targets, the
model trained by fine-tuning often recognizes the multiple ship
targets as one ship (see the first row of Fig. 11). Second, the
model trained by fine-tuning cannot detect the docking small-
scale ship targets (see the second row of Fig. 11). However, the
detection results of the model trained by KD are much better. In
addition, due to the complex background of the nearshore area,
both fine-tuning and KD training models will produce several
false alarms.

4) Effect of Quantization: In fact, both FP16 and Int8 model
inference need the support of hardware, and TX2 only supports
FP16 model inference. Therefore, the model YOLOv4-90-12-
KD is quantized from FP32 to FP16 in this experiment. In addi-
tion, we accelerated the model by TensorRT during quantization.
We named the quantized model Light-YOLOvA4.

Table IV lists the comparison of detection results between
the quantized model and other YOLOv4 models. It can be
seen that the detection speed of Light-YOLOV4 is 15.12 FPS,
and the mAP is 0.930. Compared with YOLOv4, the detection
speed has increased to 4.2, while mAP is only decreased by
0.013. After the model is quantized as FP16, the mAP is only
reduced by 0.001 (compared with YOLOv4-90-12-KD), which
almost has no impact on the detection results, but the detection
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TABLE IV
COMPARISON OF DETECTION PERFORMANCE AFTER MODEL QUANTIZATION
AND ACCELERATION ON SSDD DATASET

Model Data Type mAP FPS  Acceleration Effect
YOLOv4 FP32 0.943 3.60 1*
YOLOvA4-tiny FP32 0.838 23.20 6.44%
YOLOvV4-90-12-KD FP32 0.931 10.54 2.93*
Light-YOLOv4 FP16 0.930 15.12 4.2%

speed is increased by 4.58 FPS. It has been proved that the
improvement in detection speed brought by quantization and
structure optimization is very obvious.

In addition, compared with YOLOv4-tiny, the detection speed
of Light-YOLOV4 is 8.08 FPS slower, but its detection accuracy
is much better (the mAP is 0.092 higher).

It is worth noting that the network structure is also optimized
while the model is quantized, and they are completed simulta-
neously. After that, the network structure and parameters of the
model are fixed in the trt file. The parameter size and FLOPs
of the trt file are hard to count, so we ignore the influence
of quantization and structure optimization on parameter size,
FLOPs, and model size.

C. Comparison With State-of-the-Art Methods

To comprehensively evaluate Light-YOLOv4 in terms of
mAP, F1, FPS, FLOPs, model size, and parameter size, we make
a comparison with other target detection methods based on deep
learning, including YOLO-series, SSD, Faster RCNN, FPN, and
RetinaNet. The experiments are conducted on the SSDD dataset.
The input image size of the YOLO series model is 416 x 416,
and the input image size of other models is 512 x 512. The
results are given in Table V. What is more, as shown in Fig. 12,
we visualized the results in Table V so as to compare the
performance of these methods more intuitively.

Obviously, YOLOv4 has the best detection accuracy, while
YOLOv4-tiny has the fastest detection speed. The detection per-
formance of other methods is between YOLOv4 and YOLOv4-
tiny.

In detail, compared with YOLOv4, the detection accuracy
of Light-YOLOV4 has slightly reduced, for example, its mAP
has reduced by 0.013. But Light-YOLOvV4’s detection speed has
increased by 3.2, and FLOPs, model size, and parameter size
have reduced by 91.30%, 98.63%, and 98.66%, respectively. It
means that Light-YOLOv4 sacrifices a small amount of detec-
tion accuracy but saves a lot of computing resources. The detec-
tion speed of Light-YOLOvV4 is slower than YOLOv4-tiny, but
the remaining metrics are significantly better than YOLOv4-tiny.
The above analysis means that Light-YOLOv4 has made a good
balance between detection speed and accuracy.

As for the comparison with Faster RCNN, FPN, SSD, and
RetinaNet, Light-YOLOV4 has the highest detection accuracy
and fastest detection speed. Light-YOLOV4 is also better than the
other four methods in terms of FLOPs, model size, and parameter
size. It is obvious that Light-YOLOv4 is more suitable to be
deployed on edge devices.
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Fig. 12.  Comparison of detection results under different target detection

methods on the SSDD dataset. (a) F1. (b) mAP. (c) FPS. (d) FLOPs (G). (e)
Model size (MB). (f) Parameter size (M).

In order to compare the detection results of these methods
more intuitively, we visualized some detection results. Taking
into account the limited computing resources of the edge device,
we only compare YOLOv4-tiny, SSD, and Light-YOLOv4.

Fig. 13 displays the results, in which the first column shows the
ground truth, while the second, third, and fourth columns show
the detection results of YOLOv4-tiny, SSD, and Light-YOLOv4.
What is more, the above two rows display the detection results
of offshore areas, and the remaining three rows show the results
of nearshore areas. It can be seen that, in the offshore areas,
the detection results of the three methods are very good, and
there are no false alarms and missed detections. However, in the
nearshore areas with complicated backgrounds, the detection
results of YOLOv4-tiny and SSD are not very good. The details
are as follows.

1) Some small-scale ships could not be detected by YOLOv4-

tiny.

2) For multiple dense docking ships, both YOLOv4-tiny and

SSD will detect the multiple ships as one ship.

3) SSD will produce an obvious false alarm.

On the contrary, the detection results of Light-YOLOvV4 in
nearshore areas are much better; not only the dense docking ships
but also the small-scale ships can be detected by our proposed
model.

To summarize, compared with other target detection methods,
our proposed model could meet the requirements of detection
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TABLE V
COMPARISON OF DETECTION RESULTS UNDER DIFFERENT TARGET DETECTION METHODS ON SSDD DATASET

Model Fl mAP FPS FLOPs (G) Model Size (MB) Parameter size (M) Input Size
YOLOV3 0.879 0911 4.64 65.304 246.4 58.7 416x 416
YOLOv4 0.939 0.943 3.60 59.563 256.0 63.938 416x 416

YOLOvV4-tiny 0.850 0.838 23.20 6.787 23.5 5918 416x416
SSD 0.893 0.904 3.06 59.86 225.1 36.0 512x512
Faster RCNN 0.831 0.827 1.65 49.37 323.0 40.2 512x512
FPN 0.839 0.893 1.43 63.25 330.2 41.1 512x512
RetinaNet 0.862 0.921 2.13 61.22 290.0 37.7 512x512
Light-YOLOv4 0.902 0.930 15.12 5.183 3.5 0.857 416x 416

Fig. 13. Comparison detection results of YOLOv4-tiny, SSD, and Light-YOLOV4. (a) Ground truth. (b) Detection results of YOLOv4-tiny. (c) Detection results
of SSD. (d) Detection results of Light-YOLOv4.
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TABLE VI
COMPARISON OF DETECTION RESULTS ON GAOFEN AIRPLANE DATASET

Model Recall Precision F1 mAP
YOLOv4 0.907 0.749 0.821 0.891
Light-YOLOv4 0911 0.728 0.809 0.885

Fig. 14.

Detection results of Light-YOLOv4 on Gaofen Airplane dataset.

accuracy and detection speed at the same time and it is more
suitable for edge devices with limited computing resources.

D. Detection Results on Gaofen Airplane Dataset

In order to verify the feasibility of our proposed method
in optical remote sensing target detection, we carried out this
experiment. The image size in the Gaofen Airplane dataset is
large, so we crop the images (1024 x 1024) into several small
images (416 x 416) with an overlap of 100 pixels. After the
target detection is completed, several small images will be
spliced into a large image. This image processing method is
widely used in the field of remote sensing.

Here, we only compare Light-YOLOv4 with YOLOvV4 (the
Light-YOLOV4 in this experiment is also obtained based on
YOLOV4-90-12). What is more, only four metrics were com-
pared, and they are recall, precision, F1, and mAP. The detection
results are given in Table VI.

It can be found that compared to YOLOv4, the mAP and F1 of
Light-YOLOv4 have decreased by 0.006 and 0.012, respectively,
which has little impact on the detection accuracy. At the same
time, the detection speed is 4.2 x that of YOLOv4. What is more,
we have visualized some detection results of Light-YOLOv4,
which are shown in Fig. 14. Obviously, Light-YOLOv4 could
detect these targets well, even if the airplane is small or the
background is complex. The above experiments show that our
proposed method still has good performance in optical remote
sensing target detection.

V. CONCLUSION

Target detection methods based on deep learning have high
computational complexity and memory consumption, which
makes them difficult to deploy on edge devices with limited
resources. To solve this problem, this article proposed to learn
a lightweight detector through model compression. We select
YOLOV4 as the baseline and then continue to implement sparsity
training, channel and layer pruning, KD, and quantization on it to
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obtain the lightweight detector, that is, Light-YOLOv4. Finally,
Light-YOLOv4 was successfully deployed on NVIDIA Jetson
TX2, which is an edge device with low power consumption and
high performance.

To verify the effectiveness of Light-YOLOv4, several exper-
iments were carried out on the SSDD dataset. The results show
that Light-YOLOV4 is able to achieve comparable detection
accuracy as YOLOvV4. At the same time, the parameter size is
reduced by 98.66%, the model size is reduced by 98.63%, FLOPs
is reduced by 91.30%, and the inference speed is increased to
4.2 x. Comparison experiments with other state-of-the-art meth-
ods show that our proposed model can meet the requirements
of detection accuracy and speed at the same time. In addition,
experiments on the Gaofen Airplane dataset verify the feasi-
bility of our method in optical remote sensing target detection.
Of course, there are still some limitations to our method. For
example, the training process of our model is time-consuming,
and the pruned model cannot make full use of the computing
resource. In future work, we will try other edge devices and
other model compression and acceleration methods to further
improve the detection performance.
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