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Abstract—Accurate unsupervised classification of hyperspectral
images (HSIs) is challenging and has drawn widespread attention
in remote sensing due to its inherent complexity. Although sig-
nificant efforts have been made to develop a variety of methods,
most of them rely on supervised strategies. Subspace clustering
methods, such as sparse subspace clustering (SSC), have become
a popular tool for unsupervised learning due to their high perfor-
mance. However, the computational complexity of SSC methods
prevents their use on full HSIs. Furthermore, since SSC ignores
the spatial information in the HSIs, its discrimination capability is
limited, hampering the clustering results’ spatial homogeneity. To
address these two relevant issues, in this article, we propose a fast
algorithm that obtains a sparse representation coefficient matrix
by first selecting a small set of pixels that best represent their
neighborhood. Then, it performs spatial filtering to enforce the
connectivity of neighboring pixels and uses fast spectral clustering
to get the final clustering map. Extensive simulations with our
proposed method demonstrate its effectiveness in unsupervised
HSI classification, obtaining remarkable high clustering perfor-
mance compared with state-of-the-art SSC-based algorithms and
even novel unsupervised-deep-learning-based methods. Besides,
the proposed method is up to three orders of magnitude faster than
SSC when clustering more than 2 × 104 spectral pixels.

Index Terms—Hyperspectral image clustering, spectral–spatial
classification, subspace clustering, unsupervised learning.

I. INTRODUCTION

S PECTRAL remote sensing systems acquire the Earth’s sur-
face information by sensing a large amount of spatial data at

different electromagnetic radiation frequencies. Hyperspectral
images (HSIs) are commonly regarded as 3-D datasets or data
cubes with two dimensions in the spatial domain (x, y) and one
in the spectral domain (λ) [1]. As depicted in Fig. 1, every
spatial location in an HSI is represented by a vector whose
values correspond to the intensity at different spectral bands.
These vectors are also known as the spectral signature of the
pixels or spectral pixels. Since different materials usually reflect
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electromagnetic energy differently at specific wavelengths [1],
the information provided by the spectral signatures allows dis-
tinguishing different physical materials and objects within an
image. The research in hyperspectral remote sensing is mainly
focused on developing new and automatic methods for hyper-
spectral imagery analyses, including spectral classification [2],
image denoising [3], and spectral clustering. In particular, the
efficient clustering or unsupervised classification of HSIs is an
important task for many practical applications, such as precision
agriculture [4], vegetation classification [5], urban land use
mapping [6], change detection [7], monitoring and management
of the environment [8], [9], and security and defense issues [10].

Accurate HSI clustering is challenging due to the high-
dimensional feature space, and it has drawn widespread attention
in remote sensing [11], [12]. In the past decade, significant
efforts have been made in the development of numerous HSI
classification methods; however, most of them rely on super-
vised approaches [13], [14]. More recently, with the blooming
of deep learning techniques for extensive data analysis, several
deep neural networks have been developed to extract high-level
features of HSIs achieving state-of-the-art supervised classifi-
cation performance [15]. However, the success of such deep
learning approaches hinges on a large amount of labeled data,
which is not always available and often prohibitively expen-
sive to acquire. As a result, the remote sensing community is
currently focused on developing unsupervised methods that can
adapt to new conditions without requiring a massive amount of
data [16].

The sparse subspace clustering (SSC) algorithm is one of the
most successful unsupervised learning methods in the literature.
SSC exploits the fact that high-dimensional data can be well
represented as the union of low-dimensional subspaces. Under
this assumption, SSC captures the relationship among all data
points by exploiting the self-expressiveness property [17]. This
property states that each data point in a union of subspaces can be
written as a linear combination of other points from its own sub-
space. Then, the set of solutions is restricted to be sparse by min-
imizing the �1 norm. Finally, an affinity matrix is built using the
obtained sparse coefficients, and the normalized spectral cluster-
ing algorithm [18] is applied to achieve the final clustering map.

Assuming that spectral pixels with a similar spectrum ap-
proximately belong to the same low-dimensional structure, the
SSC algorithm has been successfully applied to HSIs [19]–[25].
Despite the great success of SSC in HSI clustering, two main
problems are well known.
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Fig. 1. HSI classification. Since different materials usually reflect electromag-
netic energy differently at specific wavelengths, the spectral signatures allow
discriminating materials within an HSI.

Fig. 2. Clustering accuracy (left) and running time (right) of the SSC algorithm
compared with our proposed method for HSI clustering. In this example, we
vary the number of data points (N ) by performing the two subspace clustering
algorithms on the full image and two ROIs of the Indian Pines dataset (see
Section IV). The first ROI has N = 4900 pixels and k = 4 classes; the second
has N = 10000 pixels and k = 12 classes; and the whole Indian Pines image
has N = 21025 pixels and k = 17 classes.

1) The overall computational complexity of SSC prohibits
its usage on large HSI datasets. For instance, given an HSI
with Nr rows, Nc columns, and L spectral bands, SSC
needs to compute theN ×N sparse coefficient matrix cor-
responding to N = NrNc spectral pixels, whose compu-
tational complexity is O(LN3). Moreover, after building
the affinity matrix, spectral clustering performs an eigen-
value decomposition over the N ×N graph Laplacian
matrix, which also has cubic time complexity, or quadratic
using approximation algorithms [26] (see Fig. 2, right).

2) Under the context of HSI, the SSC model only captures
the relationship of pixels by analyzing the spectral fea-
tures without considering the spatial information. Indeed,
the sparse coefficient matrix obtained by SSC should be
piecewise smooth since spectral pixels belonging to the
same land cover material are arranged in a common region;
hence, there is a spatial relationship between the represen-
tation coefficient vector of one pixel and its neighbors.

Article Contribution: In this article, we are interested in
the unsupervised classification of HSI using SSC. Since SSC
methods require to express each data point as a linear combi-
nation of all other points in the dataset, our main observation is

that we can take advantage of the spatial–spectral properties
of HSI to select the most representative spectral pixels over
small regions and then constrain the remaining data points to
be represented as a linear combination of them. This signifi-
cantly reduces the clustering time and increases the accuracy.
Specifically, we propose an efficient algorithm for selecting the
most representative pixels of each subset by minimizing the
maximum representation cost of the data. After this procedure,
we concatenate the obtained most representative spectral pixels
to form a matrix. We solve an optimization problem using this
matrix to get the coefficients that encodes information about
similarities between each subset’s most representative spectral
pixels and the whole HSI. Finally, we propose to enhance
the obtained coefficient matrix via 2-D smoothing convolution
before applying a fast spectral clustering algorithm that provides
the final clustering map in a significantly less amount of time.
The motivation of using such 2-D convolution is to enforce
the piecewise smoothness in the coefficient matrix. In essence,
the proposed method enforces the connectivity in the affinity
matrix and then efficiently obtains spectral embedding without
the need to compute the eigenvalue decomposition, which has a
computational complexity of O(N3).

Increasing the number of data points and the classes enlarges
the computation time and makes clustering more challenging.
The proposed method, shown with the blue line in Fig. 2,
can be up to three orders of magnitude faster than SSC and
outperforms it in terms of accuracy when clustering more than
2 × 104 spectral pixels. This article evaluates and compares our
approach on three real remote sensing HSIs with different imag-
ing environments and spectral–spatial resolution. Throughout
this article, we use the words “spectral pixels” and “spectral
signatures” interchangeably.

II. RELATED WORKS

In this section, we review some related works from two
points of view: efficient general-purpose SSC-based methods
and SSC-based methods for HSI clustering. Considering a given
collection of N data points X = {x1, . . . ,xN} that lie in the
union of k linear subspaces of RD, SSC expresses each data
point xj as a linear combination of all other points in X, i.e.,
xj =

∑
i�=j cijxi, where cij is nonzero only if xi and xj are

from the same subspace, for (i, j) ∈ {1, . . . , N}. Such repre-
sentations {cij} are called subspace preserving. Once obtained
the {cij} representations, an affinity matrix between any pair of
pointsxi andxj is defined asAij = |cij |+ |cji|, and it is used as
input for the spectral clustering algorithm to infer the clustering
of the data [17], [18]. Although the representation produced by
SSC is guaranteed to be subspace preserving, the affinity matrix
may lack connectedness [27], i.e., the data points from the same
subspace may not form a connected component of the affinity
graph due to the sparseness of the connections.

A. Efficient General-Purpose SSC-Based Methods

Considering the self-expressiveness property, an early ap-
proach to address the SSC scalability issue assumes that a
small number of data points can represent the whole dataset
without loss of information. Then, Peng et al. [28] proposed
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the scalable sparse subspace clustering (SSSC) algorithm to
cluster a small subset of the original data and then classify
the rest of the data based on the learned groups. However, this
strategy is suboptimal since it sacrifices clustering accuracy for
computational efficiency.

In [29], You et al. replaced the �1 optimization in the original
SSC algorithm [17] with greedy pursuit, e.g., orthogonal match-
ing pursuit (OMP) [30], for sparse self-representation [31].
While SSC-OMP improves the time efficiency of SSC by sev-
eral orders of magnitude, it significantly loses clustering accu-
racy [32]. Besides, SSC-OMP also suffers from the connectivity
issue presented in the original SSC algorithm. To solve this issue,
You et al. [33] proposed to mixture the �1 and �2 norms to take
advantage of subspace preserving of the �1 norm and the dense
connectivity of the �2 norm. Specifically, the algorithm named
ORacle Guided Elastic Net solver (ORGEN) is proposed to
identify a support set for each sample. However, in this approach,
a convex optimization problem is solved several times for each
sample, limiting the algorithm’s scalability.

More recent works use a different subset selection method
for subspace clustering. In particular, the method named scalable
and robust SSC (SR-SSC) [34] selects a few sets of anchor points
using a randomized hierarchical clustering method. Then, within
each set of anchor points, it solves the LASSO [35] problem for
each data point, allowing only anchor points to have nonzero
weights.

Similar to the SSC-OMP paper, You et al. [36] proposed
an approximation algorithm [37] to solve the SSC optimiza-
tion problem. Specifically, instead of using all the dataset X,
the exemplar-based subspace clustering (ESC-FFS) algorithm
in [36] selects a small subset X̃ ⊆ X that represents all data
points, and then, each point is expressed as a linear combination
of points in X̃ ∈ RD×M , where M < N . In particular, the
selection of X̃ is obtained by using the farthest first search
(FFS) algorithm, which is a modified version of the farthest-
first traversal algorithm, where the main difference is the used
distance metric [37]. The authors propose to construct X̃ by
first performing random sampling to select a base point and
then progressively add new representative data points using the
defined metric.

In general, the previously described algorithms provide an
acceptable subspace clustering performance on large datasets.
However, these general-purpose methods do not fully exploit
the complex structure of remotely sensed HSIs, ignoring their
rich spatial information, which could boost the accuracy of these
algorithms.

B. SSC-Based Methods for HSI Clustering

Some SSC-based methods have been proposed for unsuper-
vised HSI classification, which take advantage of the neighbor-
ing spatial information but still present the efficiency issue of
SSC. Under the context of HSIs, the Nr ×Nc × L 3-D image
data cube can be rearranged into a 2-D matrix X ∈ RD×N to
apply the SSC algorithm, where N = NrNc and D < L is the
number of features extracted from the spectral signatures after

using principal component analysis (PCA) [13]. Taking into
account that the spectral pixels belonging to the same land cover
material are arranged in common regions, different works [19],
[21]–[24], [38], [39] aim at obtaining a piecewise smooth sparse
coefficient matrix to incorporate such contextual dependence. In
particular, S-SSC [23] helps to guarantee spatial smoothness and
reduce the representation bias by adding a regularization term
in the SSC optimization problem, which enforces a local aver-
aging constraint on the sparse coefficient matrix. More recently,
Hinojosa et al. [19] have proposed the 3DS-SSC algorithm,
which incorporates a 3-D Gaussian filter in the optimization
problem to perform a 3-D convolution on the sparse coefficients,
obtaining a piecewise-smooth representation matrix. Also, an-
other recent work proposes a graph convolutional subspace
clustering (GCSC) framework [20] that efficiently processes
graph data by modeling information from neighbor samples
(or nodes). Then, the graph is used as a dictionary for the
subsequent affinity learning and finally outputting classification
results by a clustering model. In general, these methods are
slow since they load and process all the data points, hence
having large memory dependence. Therefore, these methods
commonly present clustering results on small regions of interest
(ROIs) from the full HSI in their original manuscripts. Aiming
to be fair, we compare our proposed algorithm with these meth-
ods using the same commonly used ROIs in the experimental
section.

III. FAST AND ACCURATE SIMILARITY-CONSTRAINED

SUBSPACE CLUSTERING (SC-SSC)

This section presents our proposed subspace clustering al-
gorithm for unsupervised HSI classification that incorporates
both properties: it is efficient and takes advantage of the spa-
tial information of HSIs to boost the clustering accuracy. In
general, we exploit the self-representation property within sub-
sets of neighboring similar pixels to select the most represen-
tative data points of the whole HSI. Then, we enhance the
sparse representation and perform fast spectral clustering to
obtain the segmentation result. We show the complete workflow
of the proposed method in Fig. 3.

A. Similarity-Constrained Spectral Pixel Selection

As neighboring spatial pixels commonly belong to the same
land cover material, our proposed method aims to select a
small subset of pixels that best represent their neighborhood.
In this regard, we first propose to group all the spectral pixels
with similar spectrum into small spatial regions. In general,
this preprocessing step can be done in different ways. In this
article, we particularly adopted the simple linear iterative clus-
tering (SLIC) [40] algorithm to generate the guidance region
map due to its efficiency. In particular, we perform PCA to
retrieve the three principal components ofX and form the matrix
XPCA ∈ R3×N . Then, we use the SLIC algorithm [40] to obtain
a regions map m̃ ∈ RN from XPCA such that m̃j ∈ {1, . . . , E},
where E is the number of segments. For instance, if m̃j = e, it
means that the spectral pixel xj belongs to the segment e. Note
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Fig. 3. Our proposed workflow is composed of four stages. In the first stage, we group spectral pixels with similar values into regions. For this step, we first apply
PCA to obtain the three principal components of the HSI and adopt the SLIC algorithm to generate a guidance map and use it to group similar spectral pixels into
regions. In the second stage, we use our proposed Algorithm 1 to select the most representative spectral pixels from each region or subset and then stacked them as
columns in the matrix X̂. In the third stage, we solve (4) to obtain the {cj} vectors. We propose to further improve the connectivity of matrix C = [c1, . . . , cN ]
by performing a 2-D convolution with a Ks ×Ks kernel, hence obtaining a piecewise-smooth coefficient matrix. We obtain the final data segmentation via fast
spectral clustering. The computational complexity of the overall algorithm is O(ρ2 N3) (see Section III-C2).

that PCA is only performed to obtain m̃ from XPCA via SLIC;
then, we use m̃ to select the most representative spectral pixels
xj from X within each segment.

Let pe ∈ RNe be the vector containing the indices of
theNe most similar spectral pixels belonging to the subset e. We
are interested in selecting the Me = �ρNe� most representative
pixels from each subset, where ρ ∈ (0, 1). Taking advantage
of the self-expressiveness property, the selection of the pixels
within each neighborhood e is obtained by searching for a subset
X∗

e ⊆ X that minimizes

X∗
e = arg min

Xe∈RD×M

Fτ (Xe) (1)

where Fτ is the self-representation cost function defined as

Fτ (Xe) := sup
xj∈X : j∈pe

fτ (xj ,Xe). (2)

The metric function fτ (xj ,Xe) geometrically measures how
well a data point xj ∈ X : j ∈ pe can be represented by the
subset Xe, and we define it as

fτ (xj ,Xe) := min
cj∈RN

‖cj‖1 + τ

2

∥∥∥∥∥xj −
∑

i:xi∈Xe

cijxi

∥∥∥∥∥

2

2

(3)

where τ ∈ (1,∞) is a parameter. Note that with (2), we constrain
(1) to search only for pixels xj within the subset e, using the
vector pe. To efficiently solve (1) for each subset e, we propose
the algorithm described in Algorithm 1. Note that, instead of
using a random initialization, we select the centroid spectral
pixel x̄e as the initialization since it is the most similar point, in
the Euclidean distance, to all other data points in e. The search
space constraint, given by dividing the HSI into subsets and
selecting the centroid spectral pixel, speeds up the acquisition
of the representative spectral pixels.

B. Enhancing the Sparse Representation Coefficients for Fast
Spectral Clustering

Once obtained the most representative spectral pixels from
each subset, we build the matrix X̂ by stacking the results as
columns, i.e., X̂ = [X1, . . . ,XE ]. Then, the sparse coefficient
matrix C of size M ×N , with M = �ρN�, can be obtained by
solving the following optimization problem:

min
cj∈RM

‖cj‖1 + τ

2
‖xj −

∑

i:xi∈X̂
cijxi‖22 ∀ xj ∈ X. (4)
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Note that C encodes information about the similarities between
X̂ and X. Besides, each row of C contains the representation
coefficient distribution of the whole image with respect to a
single representative pixel. Consider that the spectral pixels
belonging to the same land cover material should be regionally
distributed in the image, i.e., two spatially neighboring pixels
in an HSI usually have a high probability of belonging to the
same class. Then, according to the self-expressiveness prop-
erty, their representation coefficients should also be very close
concerning the same basis; hence, each row of C should be
piecewise smooth. Therefore, to further improve the structure
of matrix C, we propose to apply a 2-D smoothing convolution
on its coefficients. This is a postprocessing procedure, and it
is performed before spectral clustering. Given a blur kernel
matrix IKs

of sizeKs ×Ks, we will denote the 2-D convolution
process as Ĉ = G(C, IKs

). Specifically, as depicted in Fig. 3
within the dashed blue line, we propose to perform G by first
reshaping each row of C to a window of size Nr ×Nc, which
corresponds to the spatial dimensions of the HSI, and then
conducting the convolution with IKs

. Finally, the convolution
result is rearranged back as a row vector of the piecewise-smooth
coefficient matrix Ĉ = [ĉ1, . . . , ĉN ] ∈ RM×N .

Finally, we use fast spectral clustering to efficiently obtain
the spectral embedding of the input data. Specifically, let us
consider the columns of C̃ = [c̃1, . . . , c̃N ] ∈ RM×N , where
c̃j = |ĉj |/‖ĉj‖2, and compute the ith element of D as

(D)i =

N∑

j=1

Aij =

N∑

j=1

c̃Ti c̃j = c̃Ti

N∑

j=1

c̃j = diag(C̃Tα)i (5)

where α =
∑N

j=1 c̃j ∈ RM . Next, we can find the eigenvalue

decomposition of D−1/2AD−1/2 by computing the singular

value decomposition (SVD) [41] of C̃D
−1/2 ∈ RM×N . Finally,

the segmentation of the data can be obtained by running the
k-means algorithm on the top k right singular vectors for

C̃D
−1/2

= UΣPT . As a result, the computational complexity
of spectral clustering in our framework is linear with respect
to the size of the data N . Our proposed SC-SSC method is
summarized in Algorithm 2.

C. Analysis of the Proposed Method

1) Subspace-Preserving Property and Connectivity: As
mentioned in Section II, one of the main requirements for the
success of subspace clustering methods is that the optimization
process recovers a subspace-preserving solution. Specifically,
the nonzero entries of the sparse representation vector cj should
be related only to the intrasubspace samples of xj . Indeed, as
the following definition states, the representation coefficients
among intrasubspace data points are always larger than those
among intercluster points.

Definition 1 (Intrasubspace projection dominance, IPD [42]):
The IPD property of a coefficient matrix C indicates that for all
xu,xv ∈ S and xq /∈ S , where u, v, q ∈ {1, . . . , N}, and S is a
subspace of X, we have Cuv ≥ Cuq .

Since the proposed method selects the most representative
spectral pixels for each subset e based on the self-representation
property, it is expected that each subset is subspace preserving,
i.e., cij is nonzero only if xi and xj , for i, j ∈ pe, belong to the
same subspace S . Furthermore, note that it is very probable that
a subset e has more spectral pixels from the same class due to
the spatial dependence in the HSI; then, the resulting coefficient
vector will have large values for those spectral pixels within
e. Therefore, the strategy adopted in the proposed method will
improve the structure of the vectors cj obtained by (4) and will
improve the probability that cj satisfies the IPD.

Besides, using the 2-D smoothing convolution procedure
G(C, IKs

), the proposed method improves the connectivity of
the data points by preserving the most significant values in the
coefficient matrix C and reducing the small or noisy isolated
values, based on the IPD property [42]. Then, the resulting
matrix Ĉ will have localized neighborhoods in the sparse codes
making the representation coefficients of spatially neighboring
pixels very close as well, following our main assumption in
Section III-B.

2) Computational Complexity Analysis: As shown in Fig. 3,
the proposed method mainly involves four stages: the extraction
of spatial similarities, the selection of similarity-constrained
representative spectral pixels, the sparse coefficient matrix esti-
mation by solving (4), and enhancing the representation coeffi-
cients for fast spectral clustering. Given an HSI in matrix form
X ∈ RD×N and E subsets Xe ⊆ X of dimensions D ×Me,
with Me = ρNe, we will show the complexity of each stage
before establishing the total complexity of Algorithm 2. Specif-
ically, in the first stage, we acquire the segmentation map m̃
for an HSI. Such a procedure involves computing PCA over
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Fig. 4. False-color images and ROIs for the three real remote sensing images
used in our experiments.

Fig. 5. Running time (in seconds) as a function of the ρ parameter.

X to retrieve only the three principal components, which takes
O(N), and performing SLIC superpixels [40], which also has
linear time complexity O(N). The second stage requires to
execute Algorithm 1, which has O(ρN2

e ) time complexity over
E subsets; then, the overall complexity of this stage will be
O(ρmax(N2

1 , . . . , N
2
E)). The third stage entails solving (4),

which is a LASSO problem that can be efficiently computed
in O(M2 N) using the LARS algorithm [43]. Finally, in the last
stage, the 2-D convolution takes O(N) as Ks � N and, since
for the spectral clustering we only need the k largest singular val-
ues, we can use the truncated SVD, which takes O(k2 N). Thus,
the overall complexity of this stage is O(k2 N). Therefore, the
complexity of Algorithm 2 will be dominated by the complexity
of the third stage; hence, it will run in O(M2 N) = O(ρ2 N3),
where ρ ∈ (0, 1).

IV. EXPERIMENTAL EVALUATION

In this section, we show the performance of SC-SSC1 for
unsupervised HSI classification. The sparse optimization prob-
lem in (4) is solved by the LASSO version of the LARS al-
gorithm [43] implemented in the SPAMS package [44]. All the
experiments were run on an Intel Core i7 9750H CPU (2.60 GHz,
six cores), with 32 GB of RAM.

1Code available at: https://link.carloshinojosa.me/SC-SSC.

A. Setup

1) Datasets: The proposed subspace clustering approach
(SC-SSC) was tested on three well-known HSIs2 with different
imaging environments (see Fig. 4). The Indian Pines hyperspec-
tral dataset has 145 × 145 pixels and 200 spectral bands in the
range of 0.4–2.5 μm and includes 16 land-cover classes. The sec-
ond scene, Salinas, has 512 × 217 pixels and 204 spectral bands
in the range of 0.24–2.40 μm and includes 16 land-cover classes.
The third scene, University of Pavia, comprises 610 × 340 pixels
and has 103 spectral bands with spectral coverage ranging from
0.43 to 0.84 μm and includes nine classes.

As mentioned in Section II, most SSC-based methods for HSI
are inefficient and have a large memory dependence; hence, they
suffer from out-of-memory problems during their execution. In
order to make a fair comparison with such nonscalable methods,
we separately take a frequently used ROI of these datasets for
evaluation, as done in several previous works [19], [20], [23]. We
show the selected ROIs in Fig. 4. The Indian Pines ROI has a size
of 70 × 70 pixels, which includes four main land-cover classes:
corn-no-till, grass, soybeans-no-till, and soybeans-min-till. The
Salinas ROI comprises 83 × 83 pixels and includes six classes:
broccoli-1, corn-senesced, lettuce-4wk, lettuce-5wk, lettuce-
6wk, and lettuce-7wk. Finally, the University of Pavia ROI is
composed of 200 × 200 pixels and includes all the classes (nine)
as in the full image: asphalt, meadows, gravel, trees, metal sheets,
bare soil, bitumen, bricks, and shadows. For all experiments, we
reduce the spectral dimensions of each image using PCA to
D = 0.25L, where L is the number of spectral bands. Then,
we rearrange the data cube to form a matrix X ∈ RD×N and
normalize the columns to have unit �2 norm.

2) Baselines and Evaluation Metrics: We compare our ap-
proach with several methods and separate them into four cat-
egories: SSSC-based methods, nonscalable SSC-based meth-
ods, unsupervised-deep-learning-based methods, and tradi-
tional clustering methods. Specifically, under the SSSC-based
methods, we compare our approach with the algorithms: SSC-
OMP [29], SSSC [28], ESC-FFS [36], and SR-SSC [34]. Under
the nonscalable SSC-based methods, we compare our approach
with the algorithms: S-SSC [23], ORGEN [33], 3DS-SSC [19],
and EGCSC [20]. We also show the results with SSC as an addi-
tional reference. For the sake of completeness, we also compare
our approach with VAE [45], AE-GRU [45], AE-LSTM [45],
and the 3D-CAE [46], which fall under the unsupervised-deep-
learning-based methods, and the K-means [47], fuzzy c-means
(FCM) [48], FCM_S1 [49], and FCM_S2 [49], which are tradi-
tional clustering methods.

To compare the clustering performance of our model, we
rely on five standard metrics: user’s accuracy (UA), average
accuracy (AA), overall accuracy (OA), Kappa coefficient, and
normalized mutual information (NMI) [50], [51]. In particular,
UA, AA, OA, and Kappa coefficient can be obtained employing
an error matrix (a.k.a confusion matrix) [50]. UA represents
the clustering accuracy of each class, while AA is the mean of
UA, and OA is computed by dividing the number of correctly

2[Online]. Available: https://link.carloshinojosa.me/hsi_scenes

https://link.carloshinojosa.me/SC-SSC
https://link.carloshinojosa.me/hsi_scenes


HINOJOSA et al.: FAST AND ACCURATE SIMILARITY-CONSTRAINED SUBSPACE CLUSTERING ALGORITHM FOR HSI 10779

Fig. 6. Analysis of influence of parameters ρ,E, and Ks in Algorithm 2. Each row presents the 3-D bar plot of ρ versus E, Ks versus E, and ρ versus Ks for
each dataset, and the evaluation is given by the overall accuracy with values between 0 and 1. The plot ρ versus E shows how the OA changes when the number of
selected representative data points varies concerning the number of segments E. Ks versus E depicts how the OA is affected by the number of spectral segments
and the kernel size used in the 2-D convolution to enhance the sparse coefficient matrix. Finally, ρ versus Ks shows the change in OA when the number of selected
representative data points varies, and a specific kernel size is used in the 2-D convolution.

Fig. 7. Land cover maps on the Indian Pines (IP), Salinas Valley (SA), and University of Pavia (PU) Full images. The proposed method is compared with
traditional clustering algorithms (K-Means and FCM_S1) and scalable SSC-based state-of-the-art methods.
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Fig. 8. Land cover maps of (first row) Indian Pines ROI, (second row) Salinas ROI, and (last row) the University of Pavia ROI. The proposed method is compared
with nonscalable methods.

classified pixels by the total number of reference pixels. UA,
AA, and OA values are presented in percentage, while Kappa
coefficients and NMI values range from 0 (poor clustering) to 1
(perfect clustering). We also compare the methods in terms of
clustering time.

B. Parameter Analysis and Tuning

In this section, we investigate the impact of the parameters
ρ,E, and Ks in Algorithm 2. We conduct different experiments
varying each parameter, with the others fixed. During simula-
tions, we observe that the parameter ρ has a direct impact on
the execution time of the proposed method. Fig. 5 presents
the running time of SC-SSC for all the datasets. As shown,
increasing ρ directly increases the running time; however, the
most significant increment in time is given by the number of
spectral pixels N , i.e., the size of the HSI, as observed with
the differences in time between the curves. As we analyze in
Section III-C2, this behavior is expected since the computational
complexity of the algorithm is O(ρ2 N3).

In our experiments, the parameters were varied be-
tween the following values: ρ ∈ {0.2, 0.25, 0.3, 0.35}, E ∈
{100, 300, 500, 700, 900, 1100, 1300, 1500, 1700, 1900}, and
Ks ∈ {3, 5, 8, 16}. The parameter ρ determines the number of
the selected most representative data points within each of theE
segments, and Ks is the kernel size used in the 2-D convolution.
Fig. 6 shows the performance of the proposed method with
a different combination of the parameters for all the datasets,
where the overall accuracy is shown between 0 and 1. By
analyzing Fig. 6, we observe that the precision mainly changes
with values of ρ and E. Also, Ks = 8 provided good results for
the three images. In practice, an adequate balance when selecting

TABLE I
SELECTED PARAMETERS IN ALGORITHM 2 FOR EACH HSI

TABLE II
ABLATION STUDY

The configuration shown in bold (Experiment VI) corresponds to our proposed approach.

the parameters ρ, E, and Ks is crucial to obtain the best perfor-
mance. The selection of the best parameters often varies with
the dataset’s size; however, an effective way to select them is by
using a grid search. Empirically, we found that the suitable values
of ρ and E can be found in the range [0.2, 0.3] and [500, 1000],
respectively. Furthermore, ρ = 0.3, E = 700, and Ks = 8 are
good starting points. According to the empirical study, we
provide a group of the best parameter setting in Table I.

C. Ablation Studies

We conduct six ablation experiments to investigate different
configurations for the proposed workflow in Fig. 3. Specifi-
cally, we compare our proposed subspace clustering algorithm’s
performance when incorporating/excluding PCA, superpixels,
and the 2-D convolution. Table II present the results obtained
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from the different combinations in terms of OA and NMI for
the three tested images. We observed that using superpixels to
extract spatial similarities improves the clustering performance
for the three tested images in all the cases, which evidence
the importance of the neighboring spatial information in our
workflow. Also, using superpixels and the 2-D convolution
(Experiment II) leads to the second-best result, while only using
2-D convolution (Experiment III) does not lead to a significant
clustering improvement. Finally, Experiment VI corresponds to
our proposed approach, where we show that we achieve the best
results in terms of OA and NMI when using the three operations,
as described in the workflow in Fig. 3 or Algorithm 2.

D. Visual and Quantitative Results

1) Comparison With Scalable Methods: We compare the per-
formance of SC-SSC with the scalable approaches: SSC-OMP,
SSSC, ESC-FFS, and SR-SSC. Fig. 7 and Table III present the
visual and quantitative evaluation results, respectively, on the
full HSIs shown in Fig. 4. In the table, the best results are shown
in bold, and the second-best is underlined. We observed that the
proposed SC-SSC method outperforms the other approaches in
terms of OA, Kappa, and NMI score from both qualitative and
quantitative results. Although the proposed method is not the
fastest one, it provides high clustering performance in a shorter
amount of time than other methods.

2) Comparison With Nonscalable Methods: We present the
obtained land cover maps on the Indian Pines, Salinas, and
the University of Pavia ROIs in Fig. 8, where we compare
the performance of our SC-SSC method with the nonscalable
methods: SSC, S-SSC, ORGEN, and 3DS-SSC. The quantitative
evaluations corresponding to the OA, Kappa, NMI, and Time
with the nonscalable clustering methods are reported in Table IV.
From Table IV, it can be observed that, in general, the proposed
SC-SSC method performs better than others. Specifically, SC-
SSC achieves an OA of 93.14% and 99.42%, in only 1.63 and
2.06 s, for the Indian Pines and Salinas dataset, respectively,
which are remarkable results for unsupervised learning settings.
Similarly, for the University of Pavia ROIs, it is observed from
Table IV that the proposed SC-SSC achieves the best clustering
performance in all the accuracy evaluation metrics, among all
the other algorithms.

3) Comparison With Unsupervised-Deep-Learning-Based
Methods: For the sake of completeness, we compare the pro-
posed SC-SSC method with unsupervised-deep-learning-based
methods based on autoencoders (AEs) for HSI clustering. Three
of them were proposed in [45] (VAE, AE-GRU, and AE-LSTM),
and the 3D-CAE method was proposed in [46], which is based
on a 3-D convolutional AE. Note that we only compare our
method with totally unsupervised deep learning approaches to
make a fair comparison. Table V shows the quantitative results
in terms of the NMI score. In the table, the best result is shown
in bold font, and the second-best is underlined. As observed,
our method obtains an NMI score of 0.601, 0.892, and 0.643
on Indian Pines, Salinas, and University of Pavia full HSIs,
respectively, corresponding to the highest clustering scores.

TABLE III
CLUSTERING PERFORMANCE OF THE COMPARED METHODS ON THE INDIAN

PINES, SALINAS, AND THE UNIVERSITY OF PAVIA DATASETS (FULL IMAGES)

4) Comparison With Traditional Clustering Methods: We
further compare our proposed approach with traditional
centroid-based clustering methods, such as K-means [47],
FCM [48], and FCM with spatial information (FCM_S1 and
FCM_S2) [49]. Such methods are based on the fact that similar
data points generate clusters in the feature space. These algo-
rithms optimize the clusters by giving initial clustering centers
and continuously updating their location until minimizing the
sum of squared errors. Table VI shows the quantitative evaluation
results. Furthermore, in Fig. 7, we show the clustering maps
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TABLE IV
CLUSTERING PERFORMANCE OF THE COMPARED METHODS ON THE INDIAN

PINES, SALINAS, AND THE UNIVERSITY OF PAVIA ROIS

TABLE V
QUANTITATIVE COMPARISON WITH UNSUPERVISED-DEEP-LEARNING-BASED

METHODS IN TERMS OF NMI SCORE

TABLE VI
QUANTITATIVE COMPARISON WITH TRADITIONAL CLUSTERING ALGORITHMS

IN TERMS OF OA

obtained by the K-means and the FCM_S1 algorithms. Table VI
and Fig. 7 show that such traditional clustering methods do not
perform well on the real HSIs used in this work. In general,
such methods are sensitive to noise and get easily stuck in a
local optimum. On the other hand, our method is more robust to
the noise present in the real HSI and achieves higher clustering
performance.

V. CONCLUSION

In this work, we presented a new subspace clustering algo-
rithm for unsupervised classification of HSIs, which is efficient
and takes advantage of HSIs’ neighboring spatial information to
boost the clustering accuracy. Our method considers the spatial
similarity among spectral pixels to select the most representative
ones, such that all other adjacent points can be well repre-
sented by those pixels in terms of the sparse representation cost.
Then, the obtained sparse coefficients matrix is enhanced by
filtering the coefficients, and a fast spectral clustering algorithm
gives the segmentation. Through simulations using traditional
test HSIs, we demonstrated the effectiveness of our proposed
method for fast HSI classification, obtaining remarkable high
clustering performance compared with state-of-the-art SSC
algorithms and even novel unsupervised-deep-learning-based
methods.
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