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Automatic Extraction of Green Tide From GF-3
SAR Images Based on Feature Selection and

Deep Learning
Haifei Yu , Changying Wang , Jinhua Li, and Yi Sui

Abstract—Efficient and accurate monitoring of green tide is
of great significance to marine disaster prevention and marine
environment protection. A method is proposed in this article for
the automatic extraction of the green tide from Chinese Gaofen-3
(GF-3) satellite synthetic aperture radar (SAR) images, which
is based on feature selection and deep learning. In this article,
since SAR images contain rich polarization information, we first
employ H/A/α decomposition and other methods for the extrac-
tion of high-dimensional features from GF-3 SAR images. Second,
a novel feature selection method for SAR images is designed by
using the Bhattacharyya distance and the Separability index, which
can select the optimal features subset with a strong ability for
recognizing green tide and without correlation between features
from the high-dimensional features of SAR. Then, to alleviate
the model training burden and improve the prediction efficiency,
a lightweight semantic segmentation network, called Mobile-
SegNet, is designed based on MobileNets and SegNet. Finally, the
selected optimal features and their labels are sent to Mobile-SegNet
for training and obtaining the automatic recognition model of
green tide, and in turn, the automatic extraction of green tide is
achieved through model prediction. To verify the effectiveness of the
proposed green tide extraction method, GF-3 SAR remote sensing
images taken in 2020 that covered the Yellow Sea are collected
and used in the green tide extraction experiment. The results show
that the proposed method is available for an effective reduction of
the feature dimension required for green tide extraction, and the
improvement of the accuracy and efficiency of green tide detection.
The overall accuracy, F1-score, mean intersection over union, and
the kappa coefficient of the proposed method reached 99.52%,
95.76%, 92.19%, and 0.92, respectively.

Index Terms—Deep learning, feature selection, Chinese
Gaofen-3 (GF-3) synthetic aperture radar (SAR), green tide
extraction, remote sensing.
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I. INTRODUCTION

S INCE 2007, large-scale green tide disasters have broken
out in the Yellow Sea for 13 consecutive years, which

not only breaks the balance of the marine ecosystem but also
has negative impacts on the related industries such as marine
fisheries and tourism [1], [2]. Satellite remote sensing charac-
terized by the advantages of synchronization, large range, and
rapid observation, presents an essential means for green tide
monitoring [3]. Among them, synthetic aperture radar (SAR)
can realize all-day and all-weather earth observation due to its
lower sensitivity to cloud, rain, and fog, which has attracted
more and more attention all over the world [4]. In 2016, the
first self-developed C-band multipolarized SAR satellite of
China, Gaofen-3 (GF-3) satellite, was successfully launched,
which started to collect data on a regular basis. GF-3 satel-
lite is characterized by high resolution, large imaging width,
high radiation accuracy, and multiple imaging modes, which
has been widely used in marine monitoring [5], [6], disaster
monitoring [7], [8], resource exploration [9], [10], and other
fields.

A large number of studies have shown that SAR images
have the ability to extract green tide. Li et al. [11] proposed an
image analysis method based on gray value and experimentally
found that this method could effectively extract green tide from
RADARSAT-1, ENVISAT-ASAR, and ALOS-PALSAR data.
Shen et al. [12] proposed new green tide detection indexes for
Co-polarization (HH/VV) and Cross-polarization (HV/VH) of
RADARSAT-2 images, respectively. Cui et al. [13] employed
the images from ENVISAT-ASAR and HJ-1A/B to monitor the
process of green tide outbreak in the Yellow Sea and found
that the average difference between the two kinds of remote
sensing images is 15%. Yu et al. [14] presented a green tide
automatic detection method based on adaptive thresholds for
GF-3 SAR images and pointed out that HV is more suitable
for the extraction of green tide than HH due to the lower noise
level of the former. Song et al. [15] comprehensively used the
Markov random field (MRF) and the small univalue segment
assimilating nucleus to extract green tide from RADARSAT-2
images, thereby improving the extraction accuracy by 18%
compared with the independent utilization of MRF. Geng et al.
[16] selected the features of GF-3 SAR images with the help
of the importance score and extracted green tide information by
using Random Forest algorithm.
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It can be seen that the methods for green tide extraction based
on SAR images are mainly divided into threshold segmentation
and machine learning classification at present. The former is
simple in principle and fast in implementation, which, however,
cannot make full use of the hidden information of images. In
practice, it is difficult to find the optimal segmentation threshold
due to the fact that threshold segmentation methods are suscepti-
ble to speckle noise and uneven gray distribution in SAR images
[11]. While machine learning can be used to extract useful rules
and knowledge from a large amount of incomplete random data
[17]. Although traditional machine learning classification meth-
ods for green tide extraction can achieve high automation, they
still show some disadvantages, such as complex implementation
steps, too many hyperparameters, and great influence of human
factors, moreover they usually require a combination of multiple
machine learning algorithms to obtain better extraction results.
In addition, some researchers extract green tide with the help of
data mining [3], object-oriented segmentation [4], and level-set
segmentation [18], etc. Although these methods exhibit high
extraction accuracy for the green tide, they usually need post-
processing of the extraction results, resulting in low efficiency.
And like threshold segmentation and machine learning methods,
they do not take into account the rich semantic information in
SAR images. In conclusion, most existing methods fail to obtain
good extraction results for large-scale green tide monitoring
tasks.

In recent years, semantic segmentation technology based on
deep learning has gradually become the mainstream method
to solve the problem of the automatic interpretation of high-
resolution remote sensing images due to its strong adaptability,
high accuracy, and high automation [19], which is increasingly
applied to SAR image processing, such as ground objects clas-
sification [17], [20], [21], target recognition [22], [23], and
information extraction [24], [25]. However, SAR images are
under-explored in the field of green tide semantic segmentation.
Despite the increasingly available GF-3 SAR images, there are
no large-scale and well-annotated green tide dataset now, which
may hinder the further development of green tide semantic
segmentation with GF-3 SAR images by using deep learning to a
certain extent. Besides, the complex imaging mechanism makes
SAR images contain rich information, but the high-dimensional
features of SAR images are easy to cause the curse of di-
mensionality, which aggravates the learning burden of network
models, wastes time-space cost, and computing resources. The
optimization of high-dimensional features can effectively reduce
the redundancy between features and improve the classification
efficiency [16]. In response to the above problems, taking GF-3
dual-polarization SAR images as the data source, in this article,
we propose a novel green tide automatic extraction method for
GF-3 SAR images based on feature selection and semantic seg-
mentation. The main contributions of this work are summarized
as follows.

1) Combined with the Bhattacharyya distance (BD) and the
Separability index (SI), a novel feature selection method
for SAR remote sensing images is proposed, which can
select the feature subset with the strongest ability to distin-
guish target ground objects from high-dimensional feature

Fig. 1. Red box shows the green tide study area.

space of SAR images, and the features in the subset have
low or no correlation.

2) Based on MobileNets and SegNet, we designed
a lightweight semantic segmentation network in an
encoder–decoder structure, called Mobile-SegNet. The
network mainly employs the depthwise separable convo-
lution for the reduction of parameter scale of the model and
adopts the down-sampling indices for connecting encoder
and decoder to transmit spatial information and strengthen
weak green tide boundary.

3) A novel green tide automatic extraction method is pro-
posed for GF-3 SAR images by combining with the above
feature selection method and Mobile-SegNet network.

4) We constructed a standard semantic segmentation dataset
to advance green tide extraction by SAR images. The
dataset contains 2694 hand-labeled 256 pixels × 256
pixels GF-3 SAR images with a 25-m resolution and 26
bands.

The rest of this article is organized as follows. Section II
briefly introduces the study area, data source, and data pre-
processing. Section III introduces the proposed automatic ex-
traction method of the green tide in detail. Section IV gives
the green tide extraction experiment, the result analysis, and
discussion. Finally, Section V concludes this article.

II. DATA

A. Study Area and Data Source

Green tide is the major marine disaster affecting the coast
of the Yellow Sea in China, which mainly occurs from May to
August every year [26]. The area of this article focuses on is the
coastal waters of Qingdao, China, with the coordinates range of
119°–121.5°E and 34°–36°N, as shown in Fig. 1. In this article,
we collect GF-3 SAR level-1A (L1A) data as the experimental
data, including six dual-polarization (VH/VV) images taken
from late May to early July in 2020, as shown in Fig. 2. The
imaging mode of experimental data is the standard strip with
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Fig. 2. GF-3 SAR images. Red box shows the region of interest (ROI).

TABLE I
BASIC INFORMATION OF GF-3 SAR IMAGES

a spatial resolution of 25 m and an imaging width of 130 km.
Table I lists the basic information of each image.

Note: ASC and DEC denote the ascending and descending
trajectories, respectively, and both height and width are in pixels.

B. Data Pre-Processing

1) Raw Data Calibration and Format Conversion: The GF-3
SAR data collected are the L1A product, i.e., the single look
complex (SLC) images. Due to the existence of various error
sources, there are radiation errors in them. To accurately reflect
the echo signal of ground objects, the radiometric calibration is

carried out on the SLC images. After that, the calibrated SLC
images are converted into the polarization scattering matrix (S2)
which can be interpreted by using the computer.

2) Polarization Matrix Conversion: The polarization scatter-
ing matrix reflects the scattering information of different linear
polarization states. The S2 of the VHVV dual-polarization image
is expressed as follows:

S2 =

(
0 0
svh svv

)
(1)

where svh represents that electromagnetic waves transmitted and
received are V-polarized and H-polarized, respectively, while svv
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represents that both the transmitted and received electromag-
netic waves are V-polarized.

The polarization scattering vector (K2) can be obtained by
vectorizing S2 based on the Lexicographic basis, i.e.,

K2 = [svh, svv]
T (2)

where the superscript T refers to the matrix transpose.
Then, the polarization covariance matrix (C2) can be ex-

pressed as follows:

C2=K2K
∗T
2 =

⎛
⎝

〈
|svh|2

〉
〈svhs∗vv〉

〈svvs∗vh〉
〈
|svv|2

〉
⎞
⎠=

(
cvh creal

cimag cvv

)
(3)

where the superscript ∗ represents the complex conjugate; cvh,
cvv, creal, and cimag stand for the VH polarization component,
VV polarization component, real part, and imaginary part of C2,
respectively.

3) Filtering of SAR Images: To suppress the speckle noise
and enhance the interpretability of ground objects in SAR im-
ages, the refined lee filter (RLF) [27] available to effectively
preserve the polarization information is utilized to filter C2.
RLF can not only suppress the noise of the main diagonal of
C2 but also filter its subdiagonal, thereby effectively solving
the problem that the noise of the subdiagonal elements of C2 is
neither a multiplicative model nor an additive model.

4) Geocoding and Orthorectification: To eliminate any geo-
metric errors that may have been introduced by the imaging, the
rational polynomial coefficient attached to the GF-3 metadata
file is employed for the geometric correction of images, and then
the Geocoded-Ellipsoid-Corrected (GEC) L2 images are gener-
ated. After that, the global digital elevation model provided by
ENVI [28] is used for the orthorectification of the GEC images
before the generation of the Geocoded-Terrain-Corrected (GTC)
L3 images.

5) Making Labels: Based on the optical images obtained
from the coastal zone imager (CZI) of the Haiyang-1C (HY-1C)
satellite in the same area and at the adjacent time, the position and
shape of green tide in ROIs are roughly determined. After that,
the ENVI software is used for the manual visual interpretation
of 12 ROIs in the GF-3 SAR GTC images, thus obtaining the
ground truth labels, as shown in Fig. 3.

III. METHOD

The new method for the automatic extraction of green tide
from GF-3 SAR images proposed in this article has three stages,
as shown in Fig. 4. The first stage, i.e., the feature analysis stage,
mainly consists of data pre-processing, feature extraction, and
feature selection of GF-3 SAR images. The second stage, i.e., the
model training stage is used to divide and enhance the dataset,
and to obtain the automatic recognition model of the green tide
by training the Mobile-SegNet network. The last stage is the
green tide extraction stage, as the final practical application
stage, it is able to automatically extract the green tide from
unlabeled GF-3 SAR images through model prediction.

Fig. 3. Examples of visual interpretation (zone2). (a) Input: GF-3 GTC image
(taken on 2020-06-02 02:10:55 UTC, 25-m resolution). (b) Process: artificially
interpreted green tide shape. (c) Output: ground truth label. (d) Reference: HY-
1C CZI image (taken on 2020-06-02 02:50:21 UTC, 50 m resolution).

A. Feature Extraction

The change of tone in SAR images mainly depends on the
backscattering of ground objects. Each received backscattering
echo will be converted into an electrical signal by the radar,
which is then recorded in a specific gray tone as a digital pixel
with a specific digital number used to represent the bright-
ness [29]. Roughness is the main factor affecting radar backscat-
tering [15]. The surface of seawater is smooth, which mainly
produces surface scattering, indicating that the backscattering
ability of seawater is weak. On the contrary, the rough surface
of green tide mainly produces volume scattering, which provides
it with a strong backscattering ability [14]. The backscattering
intensity of green tide is higher than that of seawater, resulting
in the fact that green tide is brighter than seawater in SAR
images, which makes it possible to extract the green tide from
the seawater. However, the degree of this brightness difference
in various features of SAR image is inconsistent, therefore, we
have to extract as many features of SAR image as possible before
optimization.

1) Polarization Features: Polarization information is the
most basic feature of polarimetric SAR (PolSAR), which reflects
the scattering mechanism of targets. With the assistance of the
pixel information expert of SAR software [30], S2 is transformed
into real part feature (Realvh and Realvv), imaginary part feature
(Imagvh and Imagvv), amplitude feature (Ampvh and Ampvv),
phase feature (Phasevh and Phasevv) as well as backscatter
coefficient feature (DBvh and DBvv). The formulas of amplitude,
phase, and backscatter coefficient are as follows:

Amp =
√
r2 + i2 (4)

Phase = arctan

(
i

r

)
(5)

DB =
(
r2 + i2

)× Q

32767
× 1

k
(6)

where r and i represent the real part and imaginary part of each
pixel in the S2 complex image, respectively; Q and k represent
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Fig. 4. Flow of automatic extraction of the green tide from GF-3 SAR images.

the scale factor and calibration coefficient given in the GF-3
metadata file, respectively [31].

2) Decomposition Features: Cloude and Pottier [32] pro-
posed the H/A/α decomposition method. This method is a
PolSAR target decomposition method based on eigenvalues and
eigenvectors [33], which is available to effectively explain the
radiation and scattering characteristics of target ground objects.
The decomposition of C2 can be expressed as follows:

C2 =

2∑
i=1

λici =λ1e1e
∗
1 + λ2e2e

∗
2 (7)

where λi and ei refer to the real eigenvalue and eigenvector of
C2, respectively; ci represents an independent covariance matrix
with rank 1, denoting a scattering mechanism (VH or VV), and
its corresponding λi represents the intensity of this scattering
mechanism [34]. Cloude and Pottier defined three parameters
(H, A, and α) [16], [32] to simplify the analysis of the physical
information provided by decomposition.

The polarimetric entropy H (HAaentropy) represents the ran-
domness of scattering phenomenon, which can be expressed as

H = −
2∑

i=1

(
λi

λ1 + λ2
log2

λi

λ1 + λ2

)
. (8)

The anisotropy A (HAaanisotropy) reflecting the relatively
important secondary scattering mechanism can be expressed as

A =
λ1 − λ2

λ1 + λ2
. (9)

The scattering angle α (HAaalpha) reflects the average scat-
tering mechanism from surface scattering to dihedral angle
scattering, which can be expressed as follows:

α =

2∑
i=1

(
λi

λ1 + λ2
cos−1 (ei)

)
. (10)

The eigenvalue λ (HAalambda) [30] refer to the mean real
eigenvalue of the polarization covariance matrix, which can be
expressed as follows:

λ =
λ1 + λ2

2
. (11)

Besides, the combined parameters of the polarimetric entropy
and the anisotropy [16], [35] are as follows:⎧⎪⎪⎨

⎪⎪⎩

CHA = H ×A
CH1SA = H × (1−A)
C1SHA = (1−H)×A
C1SH1SA = (1−H)× (1−A)

. (12)

3) Index Features: Sentinel-1 dual-polarized water index
proposed by Jia et al. [36] can effectively enhance the water
characteristic in dual-polarization SAR images and eliminate
the existence of the nonwater such as soil and vegetation, which
is defined as

BMindex = ln (10× cvh × cvv) . (13)

Besides, band sum (BMsum), band difference (BMsub), and
band ratio (BMratio) are our custom index features based on the
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Fig. 5. Examples of 26-dimensional features extracted from GF-3 SAR images (zone10). (a)–(d) are cvh, cvv, creal, and cimag, respectively, (e)–(n) DBvh,
DBvv, Ampvh, Ampvv, Phasevh, Phasevv, Realvh, Realvv, Imagvh, and Imagvv, respectively, (o)–(r) BMindex, BMsum, BMsub, and BMratio, respectively, (s)–(v)
HAaentropy, HAaalpha, HAaanisotropy, and HAalambda, respectively. (w)–(z) are CHA, CH1sA, C1sHA, and C1sH1sA, respectively.

backscattering coefficient, which are defined as follows:⎧⎨
⎩

BMsum = DBvh +DBvv

BMsub = DBvh −DBvv

BMratio = DBvh/DBvv

. (14)

The 26-dimensional features extracted from GF-3 SAR im-
ages are shown in Fig. 5. In order to facilitate the subsequent
computer interpretation and green tide extraction, the RLF,
the geocoding, and the orthorectification are performed on all
features.

B. Feature Selection

Feature extraction is the premise of PolSAR image classi-
fication. Too small feature dimension may not be enough to
reflect the characteristic of ground objects and make it difficult
to achieve the expected classification effect; however, in the case
that the feature dimension is too large, it may be prone to the
curse of dimensionality [22]. Blind fusion of all features will re-
sult in data redundancy, which not only reduces the classification
accuracy but also increases the computational cost. Therefore,
how to choose the optimal features from the high-dimensional
feature space becomes particularly important. Based on the BD
[37], [38] and the SI [39], we propose a feature selection method
for GF-3 SAR images in this article, as shown in Fig. 6.

Fig. 6. Flow of the feature selection method based on BD and SI.

1) Feature Selection Method: BD reflects the degree of dis-
persion between two statistical samples, which can be calculated
by the following equation:

BD =
1

4

(μ1 − μ2)
2

σ2
1 + σ2

2

+
1

2
log2

(
σ2
1 + σ2

2

2σ1σ2

)
(15)
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where μ1, σ1, and μ2, σ2 denote the mean and the standard
deviation of the two categories on a feature, respectively. The
larger the BD value of features, the higher the degree of dis-
persion between ground objects, and the better the divisibility;
and the smaller the BD value of features, the higher the simi-
larity between ground objects, and the harder it is to separate
them [40].

SI indicates that when the number of classification categories
is two or higher, if the distance between the mean values of a
feature is greater than that of the standard deviation, this feature
is considered to have good divisibility, which can be calculated
by the following equation:

SI =
|μ1 − μ2|
σ1 + σ2

. (16)

In general, the features with SI values between 0.8 and 1.5 are
beneficial to the classification, and in the case that the SI value
of a feature is greater than 2, it indicates that this feature can
almost separate all categories completely [35].

Considering that in the case of multidimensional features as
well as good divisibility of ground objects, the independent
utilization of SI for feature selection may not effectively remove
the redundancy between features, therefore, it is not easy to
obtain the optimal features. In this case, we use both BD and SI
to select the optimal features from the high-dimensional feature
space of GF-3 SAR images. We set the threshold of BD and SI
to 1.0 and 0.8, respectively. Mark the feature set with a BD value
greater than 1.0 as BFBD, and that with SI value greater than 0.8
as BFSI. According to the maximum principle of BD and SI, the
better feature sets X and Y are selected through the following
equations:

X = BFBD ∩BFSI (17)

Y = BFBD ∪BFSI. (18)

Obviously, because X is a subset of Y, there are two kinds
of quantitative relations between the features contained in X
and Y. If X and Y contain the same number of features, then
let the optimal feature set BFBDSI = X = Y. When the number
of features contained in Y is more than X, it means that the
correlation of features in Y has to be removed. The principal
component analysis (PCA) [41] is employed to obtain the op-
timal 3-D features YPCA˙B1, YPCA˙B2, and YPCA˙B3 from Y in
this article, then let BFBDSI = {YPCA˙B1, YPCA˙B2, YPCA˙B3}.

2) Result Analysis of Feature Selection: According to the
process shown in Fig. 6, ten ROIs (zone1, zone3, zone4, and
zone6–zone12) are selected for the feature selection analysis.
By calculating the BD and the SI of green tide and seawater
in 26-dimensional features, the ability of different features to
distinguish the two kinds of ground objects is judged, with the
calculation results shown in Fig. 7.

It is evident from Fig. 7 that different features have differ-
ent abilities to distinguish green tide from seawater, besides,
both BD and SI have excellent ability to eliminate the features
with poor ability to distinguish two target categories, such as
the real and imaginary parts of C2, as well as the phase, the

Fig. 7. Distribution histogram of BD and SI.

real part, and the imaginary part converted from S2. BFBD =
{BMindex, BMsum, BMratio, Ampvh, Ampvv} can be selected
from the BD distribution map through the threshold of 1.0,
while BFSI = {BMindex, BMsum, Ampvh, Ampvv, DBvh, DBvv,
cvh, cvv, HAalambda} can be selected from the SI distribution
map through the threshold of 0.8. It can be seen that there
are strong correlation feature combinations in BFSI: (1) cvh,
cvv, and BMindex, which is directly calculated by cvh and cvv;
(2) DBvh, DBvv, and BMsum, which is directly calculated by
DBvh and DBvv. Although cvh, cvv, DBvh, and DBvv failed
to appear in BFBD, the nondirect related features BMindex,
BMsum, and BMratio contained in BFBD could be used to reflect
them.

Obviously, the ability of BD to eliminate redundancy is more
potent than that of SI. However, on the other hand, SI may be
able to better guarantee the integrity of features. Therefore,
both BD and SI show comparative advantages, and it is of
practical significance to combine the two indexes for feature
selection. The intersection result and union result of BFBD and
BFSI are X = {BMindex, BMsum, Ampvh, Ampvv} and Y =
{BMindex, BMsum, BMratio, Ampvh, Ampvv, DBvh, DBvv, cvh,
cvv, HAalambda}, respectively. It is clear that Y contains more
features than X. After that, the PCA algorithm converts the better
feature set Y to the optimal feature set BFBDSI = {YPCA˙B1,
YPCA˙B2, YPCA˙B3}, as shown in Fig. 8.

C. Mobile-SegNet

Considering the multidimensional features and large data
scale of SAR remote sensing image, we use MobileNets to
improve SegNet and design a lightweight semantic segmen-
tation network Mobile-SegNet to achieve model compression
and improve the operation speed while ensuring high accuracy.
MobileNets [42] is a lightweight convolutional neural network
for mobile devices, in which the standard convolution layer is
replaced by the depthwise separable convolution layer composed
of depthwise convolution and pointwise convolution, thereby
reducing the parameter quantity and computation cost, as shown
in Fig. 9.
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Fig. 8. Examples of the PCA results(zone10). (a) First principal component
YPCA˙B1. (b) Second principal component YPCA˙B2. (c) Third principal com-
ponent YPCA˙B3. (d) False color composite image of YPCA˙B1, YPCA˙B2, and
YPCA˙B3.

Fig. 9. Structure of the standard convolution layer (left) and the depthwise
separable convolution layer (right).

The pointwise convolution is essentially a standard convolu-
tion with a convolution kernel size of 1× 1, which is responsible
for merging features extracted by depthwise convolution. The
calculation amount of the standard convolution layer (3 × 3
Conv) is expressed as follows:

F × F ×M ×N ×K ×K (19)

where F and K refer to the size of feature map and convolution
kernel, respectively, M and N represent the number of input
channels and output channels, respectively. In the meantime,
the calculation amount of the depthwise separable convolution
layer (3 × 3 depthwise Conv + 1 × 1 Conv) is expressed as
follows:

F × F ×M ×K ×K + F × F ×M ×N × 1× 1. (20)

Although the output results of the standard convolution layer
and the depthwise separable convolution layer are identical,
compared with the standard convolution layer, the calculation
amount of the latter is reduced by (1/N+1/K2) times.

Similar to SegNet, Mobile-SegNet is also a symmetric shape
semantic segmentation network in an encoder–decoder struc-
ture. The encoder is used for the effective data compression
and extraction of deep abstract features from the input image.
While the decoder is responsible for the gradual recovery of
the feature map output by the encoder to the original size of
the input image. A Softmax classifier is connected behind the
decoder to obtain the category probability information of each
pixel, thereby outputting the segmentation results.

SegNet [43] shown in Fig. 10 uses the first 13 layers of VGG16
[44] as the encoder, including the standard convolution layer and
the max-pooling layer, among them, the standard convolution
layer consists of convolution, batch normalization, and ReLU
activation function. And the decoder of SegNet consists of the
up-sampling layer and the standard convolution layer.

In Mobile-SegNet, the encoder adopts the first 23 layers of
MobileNets, including the standard convolution layer and the
depthwise separable convolution layer, and the decoder uses the
decoder of SegNet, as shown in Fig. 11.

Different from SegNet which uses max-pooling for image
down-sampling, Mobile-SegNet sets the strides of the convolu-
tion contained in the standard convolution layer and the depth-
wise convolution contained in depthwise separable convolution
layer as 2 to achieve the image down-sampling. As can be seen
from Figs. 10 and 11, unlike the five times down-sampling of
VGG16, MobileNets has only four times down-sampling, in
this case, the image information loss of the encoder in Mobile-
SegNet is less than that in SegNet. In order to compensate for
the image detail loss caused by the down-sampling, and further
reduce the number of training parameters, we only set a standard
convolution layer after each up-sampling of the feature map
to improve the geometric shape of the object in the decoder.
In addition, the down-sampling indices of Mobile-SegNet are
designed, which is similar to the pooling indices of SegNet.
As a separate path, the down-sampling indices can record the
spatial information during the down-sampling of the encoder and
transfer it to the decoder for assisting the up-sampling, thereby
reducing the training parameters and improving the smoothness
of the image edge.

IV. EXPERIMENTS AND ANALYSIS

In order to verify the effectiveness of the proposed method, the
green tide extraction experiment was carried out following the
process shown in Fig. 4. For one thing, the semantic segmenta-
tion network SegNet and Res-SegNet [45] based on VGG16 and
ResNet50 [46], respectively, are used as the comparison network
of the designed Mobile-SegNet. For another, the backscattering
coefficient, as a commonly used gray feature in SAR image
classification, is constructed into a 2-D feature set FDB= {DBvh,
DBvv}. We employ the 4-D feature set FBDSI = X = {BMindex,
BMsum, Ampvh, Ampvv} and FDB as the comparison features
of the 3-D feature set BFBDSI screened by our method. We
gain three models through the training of Mobile-SegNet on
BFBDSI, FBDSI, and FDB. Similarly, we can also get three
models each from SegNet and Res-SegNet. Therefore, nine
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Fig. 10. Structure of SegNet semantic segmentation network.

Fig. 11. Structure of Mobile-SegNet semantic segmentation network.

TABLE II
DATASET PARTITION

green tide extraction models (M1–M9) were obtained in this
experiment.

A. Experiments Settings

1) Dataset Partition and Enhancement: The 12 ROIs are
cropped into subimage samples using a window size of 256
pixels × 256 pixels and a step size of 256 pixels. The ROIs
of zone1, zone3, zone4, and zone6-zone12 were cut into 2452
samples, 80% of which were randomly selected for model
training, and the remaining 20% were used for validation during
training. The ROIs of zone2 and zone5 were cut into 242
samples, all of which were used for model prediction, as shown
in Table II. The training set and verification set are enhanced
by geometric transformation, including horizontal flip, vertical

flip, and diagonal flip, in this manner to avoid overfitting in the
process of model training, as shown in Fig. 12.

2) Experimental Environment and Related Settings: The ex-
periments are implemented in a computer with the configuration
of Intel Core i7-8750H CPU (2.20GHz) and NVIDIA GeForce
GTX 1060 GPU (6GB). In this article, we adopt TensorFlow
2.1 (GPU version) [47] as the deep learning framework. And
CUDA10.0 and CuDNN7.6 are selected for GPU parallel calcu-
lation and GPU acceleration, respectively. During the training
process, the batch size and the number of epochs are set to 4 and
100, respectively. All models adopt the Adam [48] optimizer at
the learning rate of 0.001 and use the cross-entropy as the loss
function. The cross-entropy is defined as follows:

Loss = − 1

n

n∑
i=1

(yi × ln a) + (1− yi) ln (1− a) (21)

a = P (yi = 1 |xi ) (22)

where n denotes the number of classification categories, and a
represents the probability that the label category of xi is yi = 1.

3) Accuracy Evaluation Metrics: For the binary classifica-
tion problem, the confusion matrix is shown in Table III. In
this article, the positive/true case is green tide, while the nega-
tive/false case is seawater. We utilize four metrics based on the
confusion matrix, including the overall accuracy (OA), F1-score,
the mean intersection over union (MIoU), and the kappa coeffi-
cient, to compare the performance of Mobile-SegNet, SegNet,
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Fig. 12. Example of dataset enhancement.

TABLE III
CONFUSION MATRIX OF BINARY CLASSIFICATION PROBLEM

and Res-SegNet on three feature sets of BFBDSI, FBDSI, and
FDB.

The overall accuracy refers to the percentage of the pixels
that were correctly classified in all pixels [49], which can be
calculated as follows:

OA =
TP + TN

TP + FP + TN + FN
. (23)

The precision represents the correct pixels over the prediction
results, and the recall represents the correct pixels over the labels
[50], which can be calculated as follows:

Precision =
TP

TP + FP
(24)

Recall =
TP

TP + FN
. (25)

And F1-score refers to the harmonic mean of precision and
recall, which can be used to measure the accuracy of the binary

classification model, expressed as follows:

F1 =
2× Precision× Recall

Precision + Recall
=

2TP

2TP + FN + FP
. (26)

MIoU is also known as the Jaccard coefficient, and the higher
the value of MIoU, the better semantic segmentation perfor-
mance [21], as defined by the following equation:

MIoU =
1

n

n∑
i=1

(
TPi

TPi + FPi + FNi

)
. (27)

Kappa coefficient is a powerful metric for the coincidence
degree between two images, which can be expressed as:

Kappa =
OA − Pe

1− Pe
(28)

where Pe denotes the proportion of misclassification caused by
accidental factors [51], which is defined as

Pe =

n∑
i=1

[(TPi + FNi)× (TPi + FPi)]

(TP + FP + TN + FN)2
. (29)

B. Experiments Results

1) Model Training Results: Fig. 13(a)–(c) shows the accu-
racy of SegNet, Res-SegNet, and Mobile-SegNet during the
training and verification of the three feature sets with the change
of epoch, respectively, and Fig. 13(d)–(f) illustrates their loss
with the change of epoch.
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Fig. 13. Accuracy and loss curve of model training.

TABLE IV
COMPARISON OF MODEL PERFORMANCE

It can be seen that the accuracy and loss of all models tend to be
flat after training 20 epochs, and all models gradually reach the
convergence state with the increase of training epoch. It is worth
noting that the verification accuracy and loss of BFBDSI on the
three networks are almost the same as the training accuracy and
loss. However, the verification accuracy and loss of FDB on the
three networks are quite different from the training accuracy and
loss, and the verification accuracy and loss of FBDSI on SegNet
and Mobile-SegNet are also different from the training accuracy
and loss. Therefore, BFBDSI is superior to FDB and FBDSI in
terms of the applicability of features to networks.

Table IV shows a comparison of the performance of the three
networks on the three feature sets in terms of model training time,
prediction time, and parameter scale. It can be seen that SegNet
has the most parameters of up to 364 MB, which is followed by
Res-SegNet with 196 MB. Mobile-SegNet is the lightest with
only 65 MB, that is, about one-sixth of SegNet. Overall, the

training time and prediction time of the model decrease with
the reduction of network parameters. In each network, FBDSI

takes the longest time for training, whereas the training time of
BFBDSI and FDB is fewer and similar. In a single network, the
prediction time of different feature sets does not change much,
which is, however, proportional to the feature dimension of the
feature set. From the perspective of time cost and space cost, the
Mobile-SegNet network outperforms SegNet and Res-SegNet.

2) Green Tide Extraction Results: The nine models trained
by the three networks on three feature sets are utilized for the
prediction of the test set, respectively, and the predictions are
restored to the shape of zone2 and zone5 by splicing, thereby
obtaining the final green tide extraction results, as shown in
Fig. 14.

By calculating the accuracy evaluation metrics, we quanti-
tatively analyzed the green tide extraction results. As shown
in Table V, when using SegNet to train FDB, the accuracy of
FDB can reach the highest value, and those for OA, F1-score,
MIoU, and Kappa are 98.67%, 86.24%, 78.92%, and 0.73,
respectively; when using Res-SegNet for training FBDSI, the
accuracy of FBDSI can reach the highest value, and those for OA,
F1-score, MIoU, and Kappa are 98.69%, 86.45%, 79.03%, and
0.73, respectively. However, OA of FDB and FBDSI in their best
performance is less than 99%, and Kappa is less than 0.8. In this
experiment, regardless of which network BFBDSI is on, OA can
still reach more than 99%, and Kappa is more than 0.8, indicating
the better classification effect. Therefore, compared with FBDSI

and FDB, BFBDSI has a stronger ability to distinguish green tide
from seawater and a better network adaptability.

The highest OA value in Table V is 99.53%, which comes from
M1 (BFBDSI + SegNet), while the highest value of F1-score,



YU et al.: AUTOMATIC EXTRACTION OF GREEN TIDE FROM GF-3 SAR IMAGES 10609

Fig. 14. Green tide extraction results.

TABLE V
ACCURACY EVALUATION OF GREEN TIDE EXTRACTION RESULTS



10610 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 15. Green tide extraction results of the red box in zone2. (a) Label, (b) BFBDSI + SegNet, (c) BFBDSI + Res-SegNet, (d) BFBDSI + Mobile-SegNet,
(e) FBDSI + SegNet, (f) FBDSI + Res-SegNet, (g) FBDSI + Mobile-SegNet, (h) FDB + SegNet, (i) FDB + Res-SegNet, (j) FDB + Mobile-SegNet.

MIoU, and Kappa are 95.76%, 92.19%, and 0.92 respectively,
which all come from M7 (BFBDSI +Mobile-SegNet). Besides, it
can be seen from Table IV that Mobile-SegNet is superior to Seg-
Net in terms of time and space. Therefore, from the perspective
of comprehensive conditions, the green tide extraction ability
of M1 is the strongest among nine models. In other words, in
the three kinds of networks, Mobile-SegNet is the most suitable
network for green tide extraction on BFBDSI.

C. Analysis and Discussion

The goal of lightweight networks lies in the reduction of
the model size and the improvement of the model speed while
maintaining the model performance. At present, the lightweight
network can be divided into two directions, one is to compress
the trained complex model to obtain the small model, and the
other is to design and train the small model directly. The Mobile-
SegNet designed in this article belongs to the latter, which
is a low-weight and efficient semantic segmentation network.
The major difference among the Mobile-SegNet network, the
SegNet, and Res-SegNet network used for comparison is the en-
coder. Specifically, the encoders of both SegNet and Res-SegNet
use the standard convolution for deep feature extraction and use
max-pooling for image down-sampling. However, the encoder
of Mobile-SegNet uses the depthwise separable convolution for

deep feature extraction and realizes down-sampling using the
depthwise separable convolution.

Generating thumbnails corresponding to images is the main
function of down-sampling. Although the max-pooling down-
sampling is able to reduce the estimated mean shift due to the
parameter error of the convolution layer to a certain extent,
the estimation variance increases due to the limited size of the
pooling neighborhood, which may lead to the loss of some infor-
mation extracted by convolution. When the standard convolution
is executed, the receptive field and channel will be considered
at the same time. While the depthwise separable convolution
considers the receptive field first and then the channel, realizing
the separation calculation of the receptive field and channel,
which makes the required parameters and computation of the
depth separable convolution much less than those of the standard
convolution.

However, for the small-scale network model, in the case that
the standard convolution is replaced by the depthwise separable
convolution, the model size will be significantly reduced and
the operation speed will be greatly improved, but the ability of
the model may become less ideal [52]. As can be seen from
Table V, Figs. 15 and 16, for feature sets FBDSI and FDB, the
models obtained by Mobile-SegNet are suboptimal, which may
be due to the compromise between the accuracy and speed of
Mobile-SegNet network.
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Fig. 16. Green tide extraction results of the red box in zone5. (a) Label, (b) BFBDSI + SegNet, (c) BFBDSI + Res-SegNet, (d) BFBDSI + Mobile-SegNet,
(e) FBDSI + SegNet, (f) FBDSI + Res-SegNet, (g) FBDSI + Mobile-SegNet, (h) FDB + SegNet, (i) FDB + Res-SegNet, (j) FDB + Mobile-SegNet.

The network structure depth of Mobile-SegNet, SegNet, and
Res-SegNet are 22 layers, 37 layers, and 53 layers, respectively.
The residual block can strengthen the transmission of upper and
lower information flow and improve the feature reuse rate [46],
[50]. Res-SegNet introduced the residual block on the basis of
SegNet to expand the network depth, but it may not be available
to extract deeper semantic features for the green tide in an
irregular shape.

The speckle noise, generated by the defects of the coherent
principle on which SAR imaging is based, is inevitable, but it
can be suppressed by using the methods, such as wave filtering
and wavelet transform [14]. Although we have performed the
RLF on SAR data in experiments, there is still some noise that
cannot be eliminated. In the areas with dense noise distribu-
tion, the brightness of the seawater covered by noise will be
improved, thereby reducing the discrimination between green
tide and seawater. These noises may be presented in different
ways on different feature images, and the band superposition
of different features in the feature set will further amplify the
negative impact of noise, resulting in a complex background in
green tide extraction. In the process of green tide information
extraction, the complex backgrounds interfere with the network
model perception of the multiscale contextual features (semantic
information), which increases the difficulty of network learning.

As can be seen from Fig. 15, for scattered and small green tide
targets, the extraction results of feature set FBDSI and FDB on
the three kinds of networks all show apparent missing detection
and false detection, which makes it unable to accurately express
the distribution of green tide. However, the extraction results
of BFBDSI on the three networks are good, and there is little

difference from the visual point of view. It can be seen from
Fig. 16 that for densely distributed and large green tide targets,
the extraction results of feature set FBDSI and FDB on the three
kinds of networks are hollowed out and fragmented in varying
degrees, and the final extraction results are not completely due
to the loss of green tide details. In contrast, BFBDSI is available
for a complete interior, clear outline, and fine edge of green
tide patches on these three networks. Under the coexistence
of complex background and multiscale green tide, the feature
set provided by our feature selection method can effectively
improve the representation ability of semantic information of
green tide and fully reflect the typical characteristics of the green
tide.

In the field of green tide monitoring using SAR images,
most researchers choose full-polarization SAR data containing
more information, whereas dual-polarization SAR has a wider
strip width than full-polarization SAR, which can satisfy the
requirement of wide ocean area monitoring. However, there are
few research works made on dual-polarization SAR at present.
In view of this, we will pay more attention to and discuss the
temporal-spatial distribution of green tide in coastal areas and
the application of dual-polarization SAR in the future study.

V. CONCLUSION

SAR images show high resolution and high timeliness, but
in the meantime, they produce massive data and face “data
disaster.” When sending the high-dimensional feature data of
SAR images into the deep learning model for training blindly,
it will not only result in a higher learning burden of the model
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but also a huge waste of time, space, and computing resources,
which makes it difficult to achieve the ideal effect of green
tide extraction. In this article, we propose an automatic green
tide extraction method for GF-3 SAR images based on feature
selection and deep learning, in this manner to provide a tech-
nical support for coastal green tide monitoring and promote
the application and development of GF-3 satellite. According
to the study, sending the optimal features data screened from
high-dimensional features into the semantic segmentation net-
work can effectively avoid the impact of redundant features on
the model, thus significantly reducing the learning burden and
training cost of the model, which improves the efficiency of
green tide detection while ensuring high accuracy.

The proposed feature selection method is available for a
reduction of the required feature dimension and data amount of
GF-3 SAR images in green tide extraction. It can be seen from the
results that the selected optimal features available to effectively
reflect the real situation of the target ground objects not only
outperformed the traditional features, such as backscattering co-
efficient but also show strong adaptability to different semantic
segmentation networks. Mobile-SegNet, a lightweight semantic
segmentation network designed in this article, can obtain the
rich spatial information and context features from GF-3 SAR
images with high noise and weak boundary, which has good
extraction ability for both large and small patches of green
tide. The experiments show that Mobile-SegNet outperformed
SegNet and Res-SegNet in terms of parameter scale, execution
efficiency, and segmentation accuracy.
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