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Abstract—The synthetic aperture radar (SAR) interferometric
coherence can complement optical data for the estimation of
crop growth parameters, but it has not been yet investigated for
predicting crop yield. Many studies have used machine-learning
methods, such as neural networks, random forest, and Gaussian
process regression, to estimate crop yield from remotely sensed
data. However, their performance depends on the amount of
available ground truth data. This study proposed Gaussian kernel
regression for rice yield estimation from optical and SAR imagery
using a limited amount of ground truth data. The main objective
was to investigate the synergetic use of Sentinel-2 vegetation indices
and Sentinel-1 interferometric coherence data through Gaussian
kernel regression for estimating rice grain yield. The prediction
accuracy was assessed using in situ measured yield data collected
in 2019 and 2020 over Xinghua county in Jiangsu Province,
China. In all cases, Gaussian kernel regression outperformed the
probabilistic Gaussian regression and Bayesian linear inference.
With the independently used optical and SAR data, a better
prediction accuracy was achieved with the optical red edge
difference vegetation index (RDVI1) (r2 = 0.65, RMSE= 0.61 t/ha)
than with the interferometric coherence (r2 = 0.52 and RMSE =
0.79 t/ha).The highest prediction accuracy can be achieved by com-
bining RDVI1 with interferometric coherence at the heading stage
(r2 = 0.81 and RMSE = 0.55 t/ha). The results suggest the value
of synergy between satellite interferometric coherence and optical
indices for crop yield mapping with Gaussian kernel regression.

Index Terms—Gaussian regression, kernels, optical vegetation
indices (VIs), SAR interferometric coherence, Sentinel-1, Sentinel-
2, yield.

I. INTRODUCTION

R ICE is one of the most staple food crops feeding about
half of the world population [3]. Rising global demand
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for agricultural production places growing pressure on agro-
ecosystems and the food chain as a whole, generating a new
scenario for agricultural policy and scientific study. Rice has
been extensively cultivated, especially in China, to provide
food for the growing population. China, being the largest rice
producer globally, contributed 23% of the total of 19.26 billion
tons of rice production worldwide from 1994 to 2016 [6].
Rice crop yield prediction that is prompt and accurate before
harvesting plays a role in rice decision-making, development,
forecasting grain market prices, and ensuring food security
[8], [9]. The accurate and detailed rice yield mapping can
also help locate areas associated with low grain yield, guiding
farmers in their decision-making when selecting proper land
management practices. Experienced agronomists can achieve a
rough yield estimate based on agrometeorological models by
compiling survey information during the growing season. Al-
though agrometeorological model based estimates are difficult
for the reconciliations with field observations and consume time
and energy. Estimates based on field experience, however, are
arbitrary and not relevant to large-scale issues. The application of
remote-sensing (RS) data to agriculture and crop production has
been popular, especially based on predictive empirical models.
It is possible to efficiently and quantitatively estimate crop
yield by such data [12], [13]. In recent times, the availability
of RS imagery enables accurate crop monitoring, improved
understanding of the effects of farming practices, and early
warnings of low yields [14], [15]. A broad range of RS data
and related products are available. The most suitable type will
rely on the classification of crops, modeling of vegetation, and
understanding water dynamics [16]. In this respect, it is a unique
means of providing daily visits to large areas with information
on crop status, spatially explicit, and temporally resolved yield
maps to be extracted. Most research works on the use of RS
data for crop yield estimation rely on visible and infrared sen-
sors, such as advanced high-resolution radiometers, Landsat, or
spectroradiometers with moderate resolution imaging (MODIS)
[17]. Unfortunately, because of the dispute between temporal
resolution and spatial resolution, satellite data methods using
these data types have limited potential for high-resolution yield
estimation. More recently, high temporal and spatial resolution
data are freely available from the constellations of Sentinel-1
and Sentinel-2 of the European Space Agency (ESA) under the
Copernicus program [18]. These data types open a new opportu-
nity for high-resolution crop monitoring activity, although their
capacity has not been fully established.
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Both optical and synthetic aperture radar (SAR) vegetation
indices (VIs) have been extensively used for crop yield es-
timation [19], [20]. Among the used indices, the normalized
difference vegetation index (NDVI) values get saturated at
dense vegetation resulting in loss of sensitivity to vegetation
parameters. In comparison, the enhanced vegetation index (EVI)
improves the sensitivity over dense vegetation overcoming the
problem of saturation in NDVI. It alleviates the problem of
atmospheric and soil background noise [21]. Rice grain showed
a positive relationship with backscatter coefficients at the end
of the tillering stage and a negative relationship at the end of
the grain filling stage. The correlations at late growth stages
are not strong enough to produce a highly accurate yield esti-
mate [22]. Most recent studies also focused on the combined
exploitation of optical and SAR imagery data for improved
yield estimation. Improved yield estimations were reported from
the combined usage of optical (MODIS time series) and mi-
crowave (vegetation optical depth) data from soil moisture active
passive [17].

SAR data have unique advantages in the remote prediction
of crop yield because SAR imagery is accessible independent
of weather conditions and can complement optical data under
adverse weather conditions. For the highest efficiency, SAR data
with rich structural information can be combined effectively
with optical data with high spectral information about the given
target [23]. However, backscatter coefficients derived from SAR
imagery are prone to saturation problems at dense vegetation as
optical indices. Most recent studies showed that the interfero-
metric coherence derived from SAR could be effectively used
for soil moisture and vegetation parameter estimation [24]. The
interferometric coherence, which represents a cross-correlation
product calculated from two coregistered complex SAR images
over a small window of pixels, can complement the optical
indices. Interferometric coherence has an opposite trend with
optical indices and backscatter coefficient for vegetation over
the growth stages [11], [24]. In this study, we propose a novel
fusion approach for exploiting interferometric coherence from
Sentinel-1A and optical indices from Sentinel-2A data collec-
tions for the problem of yield predictions. Direct exploitation of
these RS data types for yield prediction in itself is challenging. In
this regard, different machine-learning techniques have been de-
veloped and improved yield estimation accuracy [3], [19], [25],
[26]. The estimation methods are selected based on the tradeoff
between the performance in terms of given target parameters,
interpretability of results, and computational time. The most
extensively used crop yield prediction methods include multiple
linear regression, random forest, and neural network [27], [28].
Previous studies have shown that Gaussian process regression
(GPR) outperforms other machine-learning approaches for yield
prediction.

Gaussian-process-based regression predictions are based on
Gaussian distribution assumptions, resulting in a solution that
can be encoded as a mean vector and covariance matrix. How-
ever, the predictor variable is usually nonlinear observations with
high uncertainty. In this case, the standard Gaussian-process-
based regression with covariance functions is a poor choice.
Due to the uncertainty in observations, the limited number and

sensitivity of observations to some part of the state vectors
impact the predictions of the Gaussian-process-based regression
model [29]. In these cases, approaches based on sampling are
preferred. Samples from the posterior probabilistic density func-
tions (pdf) are drawn as a solution, allowing the solution to be
nonnormal multimodal. The probabilistic Gaussian regression
model is derived by Bayesian formulation from the standard
Gaussian regression model. For the probabilistic Gaussian, we
used Markov chain Monte Carlo (MCMC) as a sampling method
to generate random samples from the posterior pdf. The sam-
pling priors in MCMC act as an extra constraint on the inference
which enables to limit the solution space [30].

In this study, we introduced two Gaussian-based regression
approaches, Gaussian kernel regression based on kernel values
as weighing functions, and PGPR based on MCMC sampling.
The two Gaussian-based approaches were compared with their
linear extension, Bayesian linear inference regression to relate
SAR and optical derived metrics with field-measured crop yield.
Thus, the objectives of this study were as follows:

1) to identify the optimal growth stage for which the selected
optical indices and interferometric coherence can be used
for the prediction of yield;

2) to determine if the combination of interferometric coher-
ence and optical indices will improve the estimation of
crop yield using selected regression models; and

3) to validate the estimation performance of Gaussian kernel
regression models with limited ground truth samples and
to compare with other Bayesian regression methods.

II. DATA AND PREPROCESSING

A. Study Area and In Situ Datasets

The study was conducted in Xinghua County, Jiangsu
province (114° 38’ 00” E-122° 00’’ 00”’ E, 30° 00’ 00”’−35° 30’
00” N), China, as shown in Fig. 1. The study area is characterized
by hot and rainy summers, cold and rainy winters, and dry and
windy springs. Rice and wheat are the major cereal crops grown
in the study area. Rice cultivation begins around the end of May
to the end of October. The sampling was done over 60 points in
2019 and 2020 crop seasons. Over two transects were selected
for vegetation sampling at each sampling field, including plant
height, leaf area index, dry biomass, and grain yield through
destructive and nondestructive methods.

Rice growing in Xinghua was during the yellow maturing
stage at the end of September. Yield sampling measurements
were performed for the 2019 and 2020 rice seasons in parallel
with Sentinel-1/2 acquisitions over the reference plots. About
120 sample points were established over Xinghua, and the
coordinates of each plot were traced using a global positioning
system (GPS) Trimble Geoxh receiver.

B. RS Data

The Sentinel-1A SAR data from the European radar C-band
imaging system is collected from June to September of each
field trip year. The data used were collected by a single lookup
complex in interferometry width mode with a 250-km swath
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Fig. 1. Location map of the study area in Jiangsu province, China. Also shown is the map for rice fields extracted from Sentinel-2 imagery with the OCSVC
method (OCSVM).

width. After range-Doppler terrain correction, a 10-m square
pixel size was achieved. Sentinel-1A imagery has VV and VH
polarizations and a 12-day repeat cycle. Sentinel-2 sensor carried
a multispectral instrument (MSI) with 13 available bands and
spectral range of 0.4–2.4 μm. The Sentinel-2 MSI imagery has
four bands in 10 m, six bands in 20 m and three bands in 60 m.

All Sentinel images were acquired on similar dates and
downloaded from Copernicus Open Access Hub.1 We applied a
range of preprocessing procedures to derive the interferometric
coherence from Sentinel-1A SAR imagery using each of the
downloaded raw SAR images. The main preprocessing steps
included S1-tops splitting, orbit file implementation, S1-back
geocoding, coherence estimation, S1-tops deburst, multilook-
ing, speckle filtering, and range to Doppler correction. Each step
was implemented using the ESAs SNAP software.2 Sentinel-2
images were acquired in the form of fixed cartographic
geometry at level-1C with a coordinate system of WGS84
in the UTM projection. The main preprocessing procedures
done on Sentinel-2 include atmospheric correction, radiometric
calibration, and thermal noise removal. After preprocessing, an
RGB composite was created to increase separation among the
land cover types for interpretation of the data. From the stack of
both Sentinel-1A and Sentinel-2A imagery, we created the RGB
composite with images at different dates and polarizations. The
RGB composite with field-measured GPS points was used to
extract rice fields (see Fig. 2). The extraction of rice fields for the
whole study area was done using our field visit in combination
with the RGB composite from Sentinel-1 and Sentinel-2 imagery
and one-class support vector classification (OCSVC) [31].

1[Online]. Available: https://scihub.copernicus.eu/dhus/#/home
2[Online]. Available: http://step.esa.int/main/download/

C. Used VIs and Features Selection

As a proxy for observed photosynthetically active radiation
relative to total biomass, optically derived indices have been
widely used for yield estimation problems [32], [33]. Above-
ground biomass (AGB) at each specific growth stage can be
an indicator of the expected yield. Different VIs have different
strengths for the estimation of plant growth parameters and yield.
For example, soil and atmospheric noise can be alleviated using
EVI, which can reduce the background signal noise by subtract-
ing the blue reflectance band [21], [32]. The early saturation
problem common in NDVI can be reduced by using RDVI, as
the red edge vegetation band is highly sensitive to AGB than the
infrared index in NDVI [23], [34]. The optical saturation, soil,
and atmospheric noise can also be alleviated by fusing optical
indices with SAR-derived parameters. In this study, different
optical indices and SAR interferometric coherence were selected
and analyzed for the estimation of yield at different growth stages
(see Table I). The suitability of both optical and SAR indices
varies at different growth stages and combination scenarios.
Studies have shown that VIs are more sensitive to crop growth
parameters and yield than the raw spectral bands [35], [36].
However, VIs become saturated from medium to dense vege-
tation. We proposed joint exploitation of SAR interferometric
coherence and optical VIs to solve the problem of spectral
saturation at dense vegetation. The interferometric coherence
has an opposite trend with VIs complementing the VIs to be
used at dense vegetation [11]. Accordingly, we used a regression
tree for piecewise linear estimation of variable importance and
associations for different SAR interferometric coherence and
optical indices at different growth stages. The calculated variable
importance (VIMP) was used to select the optimal indices and
growth stages for the estimation of yield. VIMP for xv variable

https://scihub.copernicus.eu/dhus/#/home
http://step.esa.int/main/download/
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Fig. 2. (a) Interferometric coherence VH from Sentinel-1A, August 2,2019 and (b) RDVI1 from Sentinel-2A MSI data, September 5, 2020 extracted over rice
fields in Xinghua county.

TABLE I
REFERENCES AND EQUATIONS OF VIS USED IN THIS STUDY

is the difference between the error of the prediction when xv is
noised up and the error of the prediction otherwise. VIMP helps
to explain the difference between prediction error under noise
and without noise. What can be called a random assignment of
the left–right daughter node corresponds to a variable noise. To
determine the paired importance and association between two
variables, we consider the joint VIMP of a pair of variables
(xv, xw) in a binary tree (t). Let t = (v, w) and write xt to indicate
(xv, xw). The paired VIMP for xt is the difference between
prediction error when xt is noised up versus the prediction error
otherwise [37]. The fit resemble MATLAB function was used
for the calculation of variable importance, and predAssociation
MATLAB function was also used for paired importance and
association calculation. Paired importance and association are
the predictive measures that yield the predictive measure of
associations across selected indices at each specific growth
stage. The inferred strength of the relationship between paired
predictors (indices) was used to combine SAR interferometric
and optical indices at the optimal growth stage. The combination
of VIs and SAR interferometric coherence was used as input for

the regression models. First, we computed the unbiased predictor
importance score for all selected VIs and coherence_VH & VV.
Second, VIs with the highest predictor importance score were
chosen to be used as input for the selected regression models.
Finally, the best performing indices from each sensor type were
combined and used as input for the proposed regression models.

III. PROPOSED REGRESSION METHODS

A. Bayesian Linear Regression

For a formal linear regression of a given data, the goal is to find
the slope and intercept of for linear equation. From a Bayesian
perspective, our goal is not to find the point estimate for the
slope and intercept. Instead, we should calculate the posterior
distribution for the slope and the intercept, given the data. For
linear regression model given as

y = β0 + β1x. (1)

Here, β0 is the y-intercept and β1 is the slope. Our goal is to
calculate the posterior distribution for β0 and β1 given the data.
First, we obtained the likelihood of these parameters by using the
Gaussian sampling distribution assumption, which is the built-in
function in python SciPy.Stats. The likelihood is the probability
distribution of observed yi conditioned on the current model
parameters (β0, β1, and σ), and feature xi. P(yi | xi, β0, β1) gives
the likelihood of the parameters by the Gaussian distribution
assumption of yi and xi. The prior distribution is the current
distribution of the parameters (β0, β1) with the observed xi and
yi, without any Gaussian or binomial distribution assumption.
Having the likelihood and priors of β0 and β1, we learned the
posterior distribution of these parameters for newly observed
xi+1 and yi+1 pairs, p(β0, β1)|prior (β0, β1),xi, yi). Baye’s rule
(parameter estimation) tells us how to calculate the posterior
distribution with our parameters and given data:

p (β◦, β1y1, y2, . . . , yN ) ∝ p (β◦, β1) p (y1, y2, . . . , yNβ◦, β1) .
(2)
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There are N data points, and so there are N y-values in the
dataset, called (y1, y2, …,yN). This describes our beliefs about
the connection between the data and the parameters, without
which it would be impossible to learn anything from the data.
If we knew the true values of β0 and β1, then we would predict
the y-values to be scattered around the straight line. Expressly,
we will assume that each point departs from the straight line by
an amount εi, which has a (N(0, σ2)) probability distribution.
For now, we will assume σ, the standard deviation of the scatter
is known. In approximate notation, this can be written as

yi ∼ N(β0 + β1x1, σ
2). (3)

It is implied that all the data values are independent (given
the parameters). Therefore, the likelihood can be written as a
product of normal densities, one for each data point

p ((y1, y2, . . . , yn)β0, β1)

=

N∏
i=1

1

σ
√
2π

exp

[
− 1

2σ2
(yi − (β0 + β1xi))

2

]
. (4)

The above analytical results made the unrealistic assumption
that the scatter’s standard deviation was known. In practice, σ
usually needs to be estimated from the data as well. Therefore,
we should include it as an extra unknown parameter in the
Bayesian framework. Our parameters are now β0, β1, and σ.
Using the same data and likelihood as before. For Bayesian
regression with parameter and data x, we can predict the new
datax′ by calculating the posterior predictive distribution, which
is just the probabilistic distribution for x′ given x

p(x′|x)
∫

p (θ |x′|x) dθ
∫

p (θx) p (x′|x, θ) dθ. (5)

The first term inside the integral is posterior, and therefore,
the whole integral is an expectation value with respect to the
posterior distribution.

B. Bayesian Formulation From GPR

GPR models are nonparametric kernel-based probabilistic
models. The mean vector of this joint distribution is generally as-
sumed to be a zero vector, and the covariance matrix is obtained
using the covariance function defined over a pair of input values.
Using the training set ((xi, yi); i = 1, 2, …,n), where x ∈ Rd and
yi ∈ R , drawn from an unknown distribution. A GPR model
addresses the question of predicting the values of a response
variable ynew, given the new input vector xnew, and the training
data. The GPR model establishes a relation between the input
x ∈ RB and the output variable y ∈ R of the form ŷ = f(x) =∑N

i=1 αik(xi,x)+α◦ where (xi)
N
i=1 is the derivative ratio used

in the training phase, α0εR is the weight assigned to each one
of them, α0 is the basis in the regression function, and k is a
function evaluating the similarity between the test data and all
N training samples.

GPR is an infinite collection of random variables, any subset
of which has a Gaussian distribution. A realization of the Gaus-
sian process is a modeling of a function, f∼Gp(m(x), k(x, x′).

Depending on the type of data, we can fit different covari-
ance functions with the Gaussian process. For GPR, the kernel
function k is used for checking the similarity between the test
and training samples. In this study, the automatic relevance
determination vector kernel was used

k (x, x′) = ηexp

⎡
⎣−

(
x− x′2

)
2ρ2

⎤
⎦ (6)

where η and ρ are the unknowns for the hyperparameters of
the covariance functions. Equation (1) generates covariance
matrices from the prior with no data, or Gp prior is sampled
here.

To make predictions with probabilistic GPR (PGPR), we stand
from the Bayes formula, which is stated as follows:

Pr(θ|y) ∝
N∏

i = 1

Pr (yiθ) Pr (θ) (7)

where θ is unknown to be determined from Gp prior, Pr(yiθ)
is the likelihood, and Pr(θ|y) is the posterior. The posterior
predictive distribution is given by

Pr (ynewy) =

∫
Pr(ynew |θ) Pr (θy) dθ (8)

where Pr(θy) is the posterior and Pr(ynew|θ) is the likelihood.
ynew, prediction from, can be derived as follows:

Pr(ynew|xnew, y, x) = N (μnew,Σnew) (9)

whereμnew is the mean vector andΣnew is the covariance matrix
and both of which are determined from the covariance functions.
Having the posterior and likelihood, the MCMC method is used
to generate the posterior distributions from random samples
and to generate the hyperparameter values. The implementation
of Gaussian-based regression algorithms was done in Python
programing language.

C. Gaussian Kernel Regression

GPR attempts to approximate the target output f(x) where
X ∈ Rd by interpreting it as a probability distribution function.
It addresses predicting the values of response variables using
the training set drawn from the unknown distribution and given
the new input vector. A detailed description of GPR and its
application for RS data can be found in most prominent studies
[38]–[40], and here, we provide a Gaussian-kernel-based re-
gression on which kernel values are used to derive weights and,
finally, to use them to predict outputs from the given inputs [41].
A kernel function must be symmetrical and mathematically this
property can be expressed as

k (−u) = k (+u) . (10)

The symmetric property of the kernel function enables its
maximum value max(k(u)) to lie in the middle of the curve.
The area under the curve of the function must be equal to one.
Mathematically, this property is expressed as∫ +∞

−∞
k (u) du = 1. (11)
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Fig. 3. Illustration of a Gaussian kernel function.

Values of the kernel function cannot be negative, i.e., k(u)≥0
for all −∞<u<+�. The graph of the Gaussian function has a
symmetric property of “bell curve” shape, which coincides with
the symmetric property of a kernel function (see Fig. 3). The fun-
damental calculation behind kernel regression is to estimate the
weighted sum of all observed y values for a given predictor value
xi. Kernel regression estimates each point using a weighted local
sample that is centered around the point of interest. The local
sample is weighted using a kernel function that possesses several
useful properties. A kernel function defines each observation’s
weight within a (typically) symmetric predetermined bandwidth
[42]. Unlike other regressions that make no distinction of where
the data are located when estimating the conditional expectation,
kernel regression will estimate the point of interest using a
bandwidth. Before introducing the kernel estimators, we first
derive a kernel function. Considering x our point of interest, we
can write an indicator function such that data fall within a range
h (our bandwidth) around x

nx =

n∑
i=1

1

{
x− h

2
≤ xi ≤ x+

h

2

}
. (12)

The corresponding probability of falling in this box (centered
on x) is thus nx/n. This indicator function can be rewritten as

nx =

n∑
i=1

(
1

2

)
1

{∣∣∣∣xi − x

h

∣∣∣∣ ≤ 1

}
. (13)

This function is better known as a uniform kernel (Table II)
and is more commonly written as

k(ϕ) =

{
1/2, if |ϕ| ≤ 1

0, otherwise
(14)

where k(ϕ) is defined as (xi−x)
h , and represents how local the

observation xi is relative to x.
In this study, the Gaussian kernel is chosen to calculate kernels

for the given data points. The expanded form of the Gaussian

TABLE II
COMMONLY USED SECOND-ORDER KERNEL FUNCTIONS

kernel equation is

k (x) =
1

h
√
2π

e−0.5( x−xi
h )

2

(15)

where xi is the observed data point, x is the value where kernel
function is computed, and, h is called the bandwidth. The band-
width in the kernel regression is used as a smoothing parameter
since it controls variance and bias in the output. Kernels are
developed at each value of xi and used to estimate the weighted
sum of all observed y values for a given single predictor xi.
Three inputs are required to construct a kernel curve around
the given data points. Observation data point (xi), the value
of bandwidth (h), and linearly spaced series of data points
that include observed data points. The kernel values are scaled
between 0 and 1 and used as weights. The following equation is
used to scale the kernel values between 0 and 1

wi =
ki∑n
i=1 ki

(16)

where wi is the weight for input, and i and n are the number of
data points.

A bandwidth h of the kernel may alter the density estimate, and
it can accordingly affect the goodness of fit of the density func-
tion to the unknown underlying target [43]. When the distance
between the data point and the query point is 0, the function
produces its highest value; however, as the distance between
the data point and the query point increases, the weight value
decreases exponentially. When performing kernel regression,
we will compute the weighted average across all training points
using (16). However, only data points close to the query will have
a major impact on the output. In this study, we consider applying
a kernel of locally adaptive bandwidth obtained by iteratively
computing the optimal bandwidth using the kernel bandwidth
optimization method. Given [xi]

N
i = 1 be our data. Let the kernel

with bandwidth h be kh(t). Then, we compute a formula

Ch =
∑
i,j

∫
kh (x− xi) kh (x− xi) dx− 2

∑
i�=j

kh (xi − xj) .

(17)
We compute h that minimizes Ch. The method estimates a

bandwidth that minimizes the expected loss between the ker-
nel estimate and the unknown underlying function from the
observed data.
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Fig. 4. Summary of the method used in this study for the estimation of rice
grain yield at field scale.

D. Statistical Metrics for Evaluating Model Performance

As described in Section II and Fig. 4, the field visits for a
sampling of yield parameters were done over Xinghua County
in 2019 and 2020. Field measured yield samples collected in
2019 and 2020 were divided into training and validation samples
for the chosen regression models. The performance analysis of
selected machine-learning methods (Gaussian kernel regression,
PGPR, and Bayesian linear regression) for the retrieval of rice
grain yield measurements was evaluated through the root-mean-
square error (RMSE) and squared correlation coefficient (r2),
which were calculated as

r2 =

∑n
i (xi− x̄)2(yi − ȳ)2∑n

i (xi− x̄)
∑n

i (yi − ȳ)
(18)

RMSE =

√∑
i (yi − y,i)

2

n
(19)

where yi and and y,i are the ground truth measurement and
estimated yield variables, respectively, for point i, and ȳ is the

Fig. 5. Temporal variation of (a) AGB, (b) PWC, (c) interferometric coherence
VH & VV, and (d) VIs NDVI1, EVI, RDVI1, RDVI2, and NDWI.

TABLE III
CALCULATED VIMP AS A PREDICTIVE MEASURE FOR SELECTED SAR

INTERFEROMETRIC COHERENCE AND OPTICAL INDICES

arithmetic means of estimated variables, and n is the number
of sample points. A good retrieval result contains a low RMSE
value and a high correlation coefficient.

IV. RESULTS

A. Trends of VIs and Feature Importance Score

Optical indices for the three main growth stages followed sim-
ilar trends of AGB (see Fig. 5). The interferometric coherence
(γ) showed a consistent relationship with plant water content
(PWC) with a continuous increase until August 2019. After
August 2019, the interferometric coherence and PWC showed
a consistent decline. The interferometric coherence and optical
indices had different responses to crop growth parameters at
different growth stages. The paired predictive importance of
the selected parameters for the prediction of yield at different
growth stages was indicated in Table III. The unbiased predictor
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Fig. 6. Predictor importance estimation comparison. (a) Predictor importance comparison among selected spectral bands. (b) Predictor importance comparison
for selected optical indices and interferometric coherence VH and VV.

importance estimates showed that NDWI and EVI showed the
most important predictive value at the jointing stage. The in-
terferometric coherence and RDVI1 variables resulted in higher
performance at the booting stage. Overall, the highest predictive
score was observed using interferometric coherence and RDVI1
variables at the heading stage. The higher comparative predictive
score infers the predictor variables’ strength with selected SAR
and optical derived metrics. The predictor importance estimation
comparison scores ranked stagewise from the heading stage
(highest), then the booting stage and jointing stage (lowest) (see
Table III).

B. Relationship of Yield With Selected Indices

SAR and optical vegetation descriptors have shown high
sensitivity to AGB and PWC. Among the identified growth
stages, the highest feature importance score in percentage was
archived at the heading stage. Comparing Vis with spectral
bands, we found a higher predictor importance score for VIs
than the spectral bands (see Fig. 6). EVI, RDV11, and RDVI2
resulted in the highest predictive importance score in comparison
to spectral bands. We observed a lower MSE improvement value
of spectral bands than VIs. The best performing VIs RDVI1,
RDVI2, and Coherence_VH resulted in a predictor importance
score>0.4, which is higher than that of the spectral bands. Doing
correlation between SAR and optical vegetation descriptors with
yield parameters resulted in a relatively best correlation with
optical RDVI1 (r2 =0.29 followed by interferometric Coherence
r2 = 0.23. The best performing interferometric Coherence and
RDVI1 parameters were combined, and give the best predictive
feature with a sum of Coherence, and RDVI1 r2 = 0.41, and with
the multiplication of Coherence with RDVI1, r2 = 0.24 both at
the heading stage (see Fig. 7).

C. Estimation of Yield by Regression Algorithms

The optical index (RDVI1) from Sentinel-2 and interferomet-
ric coherence from Sentinel-1A was used as input for Bayesian
linear regression to predict yield at different growth stages. From
the independently used parameters, the best performance was

Fig. 7. Relationship between field-measured yield data and various VIs
derived from Sentinel-1A SAR and Sentinel-2A MSI data at heading stage.

achieved using RDVI1 metrics with r2 = 0.48 and RMSE =
0.78 t/ha followed by interferometric coherence with VH polar-
ization (r2 = 0.47 and RMSE = 0.89 t/ha) both at the heading
stage. From the combined metrics (interferometric coherence
and RDVI1), the best statistical results were achieved with a sum
of RDVI1and interferometric coherence (r2 = 0.57 and RMSE
= 0.76 t/ha) than the product of interferometric coherence and
RDVI1 (r2 = 0.54 and RMSE = 0.83 t/ha) (Table IV).

Selected optical and SAR vegetation descriptors were used
as input for the PGPR regression workflow to estimate yield at
various growth stages. Table III shows that the interferometric
coherence from Sentinel-1A SAR data generally has strong
yield predictive capacity at both booting and heading stages
(VIMP = 34%, at the booting stage, and VIMP = 44%, at
heading stage). RDVI1 outperformed other selected optical and
SAR vegetation descriptors, especially at the heading stage with
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TABLE IV
YIELD ESTIMATES DERIVED USING RDVI1 & INTERFEROMETRIC COHERENCE_VH OF DIFFERENT GROWTH STAGES USING GAUSSIAN KERNEL,

PGPR, AND BLI MODELS

VIMP = 45% (see Table III). The RDVI1 and interferometric
coherence at VH polarization, which was sampled at the heading
stage and independently used as input for PGPR, resulted in
higher r2 and lower RMSE. The statistical results derived using
the RDVI1 (r2 = 0.52 and RMSE = 0.81 t/ha) were higher
than from interferometric coherence (r2 = 0.52 and RMSE =
0.91 t/ha) at the heading stage. A combination of coherence
and RDVI1 used as input for PGPR improved the estimation
performance than those independently used metrics (see Ta-
ble IV). Among the combination predictive metrics, the highest
and the lowest RMSE was achieved using a sum of RDVI1 and
interferometric coherence (r2 = 0.77 and RMSE = 0.78 t/ha)
than the multiplication of interferometric coherence and RDVI1,
with r2 = 0.63 and RMSE = 0.77 t/ha, both at the heading
stage.

The highest prediction accuracy was achieved using the Gaus-
sian kernel regression algorithm than other used regression
models in this study. EVI, NDWI, RDVI1, and interferometric
coherence were used as input for Gaussian kernel regression
at different growth stages to predict yield. The highest r2 and
lowest RMSE were achieved using RDVI1, r2 = 0.65, and
RMSE = 0.61 t/ha followed by coherence, with r2 = 0.52 and
RMSE = 0.79 t/ha. The combined parameters from coherence
and RDVI1 resulted in the overall best prediction accuracy for
all growth stages and regression algorithms. Gaussian kernel
regression with a sum of Coherence at VH polarization and
RDVI1 parameters resulted in the highest prediction accuracy
with r2 = 0.81 and RMSE= 0.55 t/ha followed by multiplication
of Coherence and RDVI1 parameter with r2 = 0.71 an RMSE
= 0.71 t/ha (see Fig. 8). The predictive capacity of the used
parameters (VIs) and GPR model were poor at early growth
stages (jointing stage) than those at later growth stages (booting
and heading stages). Fig. 9 shows the map of rice grain yield
estimated with the best performance parameter, which is a sum
of interferometric coherence and RDVI1 with Gaussian kernel
regression.

V. DISCUSSION

A. Growth Stage-Specific Predictive Parameters for Grain
Yield Estimation

Different growth stage information must be considered for
more accurate yield predictions, as crop growth parameters vary
at different phenological stages and have different contributions
for yield prediction [13], [44]. We have done three field visits at
different rice growth stages, and all sampling points are assumed
to have homogenous phenological stages as field management
activities, and environmental conditions are assumed to be sim-
ilar. Due to their sensitivity to important crop growth indicators
like crop phenology, AGB, and LAI, optical indices have been
extensively used for the prediction of yield. Optical indices
suffer a saturation problem from medium to high LAI, and
biomass conditions and being a big limitation for using these
data types [21], [45]. SAR data are considered to complement
optical data types, especially for saturation issues, which are
prevalent in using optical data types at later growth stages.
However, backscatter coefficients derived from SAR imagery
also suffer saturation problems from medium to high LAI and
biomass conditions [46]. The interferometric coherence, which
represents a cross-correlation product calculated from coregis-
tered complex SAR images, has an opposite trend with optical
indices [47]. The formulation of yield in plant growth greatly
depends on the synchronicity of PWC and accumulated biomass
at each specific growth stage [17], [48]. In this regard, the
interferometric coherence, which follows the trends of the PWC
and selected optical index (RDVI1), which follows the trends
accumulated biomass over the growth stage can be combined
for the prediction of yield. Transformed VIs can reduce part of
noise caused by different perturbing factors, such as atmospheric
conditions, topographic illuminations, sensor calibration, and
soil background. VIs are taken as a means to remove or reduce
these perturbing effects from the raw spectral bands. VIs have
often been preferred over the usage of spectral bands in that they



ALEBELE et al.: ESTIMATION OF CROP YIELD FROM COMBINED OPTICAL AND SAR IMAGERY 10529

Fig. 8. Comparison of measured and predicted rice crop yield using Gaussian kernel regression (a) sum of interferometric coherence and RDVI1, (b) product of
interferometric coherence with RDVI1, both (a) and (b) at booting stage, (c) sum of interferometric coherence and RDVI1, (d) product of interferometric coherence
with RDVI1, both (c) and (d) at heading stage.

simplify data analysis into a single metric while at the same time
they are normalizations that help to reduce data errors due to poor
viewing geometry or hazy atmosphere [49]. The normalization
also allows for easier comparison across different sensors. This
study focused on the joint exploitation of VIs and interferometric
coherence for rice yield estimation.

Optical indices and interferometric coherence have different
responses to plant growth parameters at different growth stages
resulting in different variable importance scores to predict yield.
The calculated VIMP from the piecewise linear regression tree
reveals that NDWI (26%) and EVI (24%) were the highest
VIMP at the jointing stage than other optical indices and the
interferometric coherence. The better results of NDWI and EVI
at the jointing stage can be explained by the high sensitivity of
EVI and NDWI to high biomass conditions. Due to the favorable
growth conditions in the study area, most of the observed LAI
were more than 3, and due to this, NDVI and other selected
optical indices saturated early, resulting in less VIMP score for
the prediction of yield. The EVI is an optimized index designed
to enhance the vegetation signal in high-biomass regions with
enhanced sensitivity by decoupling the canopy background sig-
nal and reducing the effect of atmospheric and soil background
noise.

On the other hand, NDWI lost its sensitivity at later growth
stages for LAI more than 4.5 [45]. At the booting and head-
ing stage, relatively higher VIMP scores were observed using
RDVI1 than other indices derived using visible and NIR bands.
The red-edge bands are affected by other leaf and canopy
parameters (e.g., leaf chlorophyll content and leaf angle dis-
tributions) across growth stages than the visible and NIR bands
[45]. Using the interferometric coherence, we observed high
sensitivity at the booting and heading stage. The interferometric
coherence at VH polarization resulted in a higher VIMP score
than the interferometric coherence at VV polarization. However,
the correlation of interferometric coherence with crop growth
parameters and yield needs further investigation.

B. Comparison of Predictor Variables

Among the identified growth stages highest VIMP score was
observed at the heading stage using RDVI1 and interferometric
coherence at VH polarization (see Table III). This result con-
forms with previous findings, which reveal the high sensitivity of
optical indices for yield parameters at later growth stages though
saturation still exists at this stage [50]. This study hypothesized
that the interferometric coherence related to PWC and RDVI1,
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Fig. 9. Map of rice grain yield estimated by the sum of interferometric
coherence and RDVI using Gaussian kernel regression.

which can explain the AGB at each specific growth stage, can be
related to yield. The interferometric coherence, which is taken
as an indicator for the changes to AGB water uptake dynamics,
predicted yield with r2 = 0.52 and RMSE = 0.79 t/ha using
Gaussian kernel regression. RDVI1, which is more sensitive to
AGB change at each specific growth stage, predicted yield with
r2 = 0.65 and RMSE = 0.61 t/ha using PGPR. The good predic-
tion accuracy, achieved from the interferometric coherence, can
be explained by the sensitivity of coherence to crop phenology,
soil moisture, and irrigation levels in the fields [11].

The optical indices suffer from a saturation problem, espe-
cially after the vegetative growth stage [34], [50]. The synergetic
metric from the two parameters has complementary information
and can be effectively used to predict yield. Using data across
optical and microwave spectral ranges can enhance crop yield
estimation capability beyond what can be achieved using an
individual sensor [17]. Among the used metrics, the proposed
sum of RDVI1 and Coherence at VH polarization outperforms
with r2 = 0.81 and RMSE = 0.56 t/ha and is followed by the
product of interferometric coherence at VH polarization and
RDVI1 with r2 = 0.71 and RMSE = 0.71 t/ha. We contend
that this accuracy level is parallel or better than the previous
major findings that relied upon deep learning and machine-
learning techniques [34], [50]. The best statistical results from
combined metrics suggest that interferometric coherence and
RDVI1 metrics contain complementary information worth ex-
ploiting jointly. The combination parameter sum of RDVI1 and
interferometric coherence resulted in higher statistical results
than other used parameters for all used regression models (see
Table IV). The disparity between Sentinel-2 derived indices and
the interferometric coherence, which showed the opposite rela-
tionship at the peak growth stage (see Fig. 5), can be explained
by the reason for providing complementary information, which
is worth exploiting. The interferometric coherence is a measure
of cross-correlation between master and slave SAR images 0

(low) to 1 (high) and is sensitive to PWC, crop structure, crop
phenology, and soil moisture content [47]. Having information
on the AGB (RDVI1), water content change, and soil moisture,
interferometric coherence can facilitate obtaining a useful model
for crop yield estimation.

C. Advantage of Kernel and Probabilistic Gaussian
Regression

In this study, we tested the PGPR model, which is developed
from standard GPR based on probabilistic theory and MCMC
random sampling techniques [54]. Our proposed PGPR has a
conditional property that can answer the question “for the given
one value, what do we expect for unobserved values under
the multivariate normal.” The prediction in PGPR is improved
even with a limited amount of ground truth data as PGPR uses
maximum posterior distribution (MAP) for the prediction of
a new point on which the posterior pr(θy)dθ form Gaussian
distribution and the observed ynew|θ as a likelihood. The PGPR
used in this study is based on a Bayesian formulation from
standard GPR using MCMC for generating random samples of
parameter values from the posterior distributions [55], [56]. Our
results suggest that PGPR based on MCMC sampling to quantify
the hyperparameters’ uncertainty resulted in satisfactory pre-
diction accuracy greater than or equal to the accuracy of other
related studies that used standard GPR based on sampling from
covariance functions. Bayesian MCMC is drawn as a solution
to quantify the uncertainty of the hyperparameters to be nonnor-
mal multimodal than the GPR based on covariance functions.
The uncertainty, limited sensitivity, and a limited number of
observations used for training and validation impact the predic-
tion accuracy of nonprobabilistic and nonparametric regression
models used so far. In the training phase, GPR can maximize
the likelihood with respect to the given target data [57]. The
estimated likelihood helps to solve the uncertainty and limited
sensitivity of the training inputs, which allows the GPR methods
to exploit the priors in the prediction regression (see Fig. 10)
[54], [58]. The role of priors in PGPR is to limit the solution
space and act as an extra constraint on the inference, limiting the
solution space. Yield estimates using different VIs and proposed
algorithms agreed with ground validation samples. The used VIs
and combination of indices (RDVI1+Coherence_VH) provided
prediction uncertainty for yield estimation. These uncertainties
are useful to draw a conclusion about the quality of retrievals
and used inputs. It is worth noting that the used training input
is the only factor that influences the prediction uncertainties of
the used models. If the used training input is similar or judged
to be similar, the resulting prediction uncertainties are reduced
because we are working with similar input features. As a result,
prediction uncertainty must be viewed as a qualitative variable
connected with used training input [59]. The advantage of using
MCMC with probabilistic Gaussian regression proposed in this
study is to derive the uncertainty of the posterior distributions
with random samples so that optimal hyperparameter values can
be derived (see Fig. 10).

Most prominent studies for crop yield estimation from RS
data using Gaussian-based regression algorithms have reported
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Fig. 10. Posterior distribution of the estimated hyperparameters (left), and posterior uncertainties for the estimated parameters values with MCMC sampling
(right) for probabilistic GPR.

Fig. 11. Estimated kernel values from Gaussian kernel regression at different
data points.

satisfactory accuracies [27], [28]. However, most of the existing
studies relied on large geographic areas with a high amount
of inputs for training and validations. Nonlinear kernel-based
regression has been used for crop yield estimation from RS
data from yield samples nationwide [17]. In this study, we
proposed a method for crop yield estimation based on kernels
and their weights with a limited amount of ground truth data. We
tested the efficiency of Gaussian kernel regression with ground
truth validation data collected in 2019 and 2020. The proposed
Gaussian kernel regression has better performance than other
kernel-based regression methods used so far. Kernel values are
used to derive weights to predict outputs from given input based
on (13) and (14) as indicated in Fig. 11. The derived kernels
and weights are used for predicting each data point using other
observed data values, allowing the Gaussian kernel regression
model to have high interpretability for the understanding of

data characteristics [51], [52]. The capability of the Gaussian
kernel regression model to capture spatiotemporal patterns from
spatiotemporal data through the application of Gaussian kernel
function with kernel curves, which are built for each data points
(xi) as a mean and the bandwidth (h) as a standard deviation,
which is as in the case of Gaussian distributions [26], [53].

VI. CONCLUSION

Gaussian kernel regression and PGPR derived from Bayesian
formulation of standard GPR were used to estimate yield from
Sentinel-1A interferometric coherence and Sentinel-2A VIs.
This study investigated the capacity of interferometric coherence
to complement the information from optical data. From the
piecewise linear estimation of variable importance, the best
score was observed at the heading stage (RDVI1 45% and
interferometric coherence_VH 44%) and used as input for the
regression models. Our results demonstrated the capability of
Gaussian kernel regression for crop yield prediction with a
limited amount of ground truth data r2 = 0.81 and RMSE =
0.51 t/ha). We found that MCMC-based random sampling for
the estimation of best hyperparameters improved the estimation
performance of PGPR. Optical indices and SAR backscatter
coefficients had a limitation of saturation after the booting stage.
In contrast, the interferometric coherence can be used at the
later growth stages. It can be concluded that the Gaussian kernel
regression with a sum of RDVI1 and interferometric coherence
metrics can be of particular interest for an operational crop yield
prediction.
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