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CSDS: End-to-End Aerial Scenes Classification With
Depthwise Separable Convolution and an
Attention Mechanism

Xinyu Wang ', Liming Yuan

Abstract—Compared with natural scenes, aerial scenes are usu-
ally composed of numerous objects densely distributed within
the aerial view, and thus, more key local semantic features are
needed to describe them. However, when existing CNNs are used
for remote sensing image classification, they typically focus on
the global semantic features of the image, and especially for deep
models, shallow and intermediate features are easily lost. This
article proposes a channel-spatial attention mechanism based on a
depthwise separable convolution (CSDS) network for aerial scene
classification to solve these challenges. First, we construct a depth-
wise separable convolution (DS-Conv) and pyramid residual con-
nection architecture. DS-Conv extracts features from each channel
and merges them, effectively reducing the number of necessary
calculations, and the pyramid residual connections connect the
features from multiple layers and create associations. Then, the
channel-spatial attention algorithm causes the model to obtain
more effective features in the channel and spatial domains. Fi-
nally, an improved cross-entropy loss function is used to reduce
the impact of similar categories on backpropagation. Comparative
experiments on three public datasets show that the CSDS network
can achieve results comparable to those of other state-of-the-art
methods. In addition, visualization of feature extraction results
by the Grad-CAM algorithm and ablation experiments for each
module reflect the powerful feature learning and representation
capabilities of the proposed CSDS network.

Index Terms—Channel-spatial attention, convolutional neural
network (CNN), depthwise separable convolution (DS-Conv), scene
classification.

I. INTRODUCTION

EMOTE sensing and Earth observation, also called Earth
R vision, are important branches and applications of com-
puter vision and image understanding [1]-[3]. With the rapid
development of this field and the widespread use of satellite
sensing technology in everyday life, aerial scene classification
has received increasing attention [4] as an important application
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that has influenced the development of many fields, such as land
use and land cover [5], [6], urban design [7], and vegetation
surveying and mapping [8].

A. Image Characteristics of Aerial Scenes

Aerial scene classification is challenging due to the charac-
teristics of the sampled images.

1) Useless Background Information: The key object of the
sample usually determines the label of the remote sensing image.
However, there are often objects and areas in the image that
have nothing to do with the actual label; these objects and
areas are considered background information. Because remote
sensing images are affected by factors, such as angle of view,
illumination changes, and terrain [9], [10], it can be difficult
to accurately locate key subjects within them. Therefore, to
highlight the key objects and suppress redundant background
information, local key features must be extracted to enhance
the semantic representation of the aerial image. Research has
shown that deeper network structures can be used to extract
more semantic features with key information [11], [12].

2) Distribution of Key Objects: Remote sensing image acqui-
sition is different from the plane acquisition of natural images,
in part, because the position of the subject in the image is
often random. In addition, due to the effect of gravity, the main
direction angle of the key object in a natural scene image is
often 90° with the ground. In contrast, the main direction angle
of the key object in an aerial scene image can change greatly [see
Fig. 1(b)]. Finally, due to the large shooting height and angle of
aerial scenes, the distribution of key objects is different from the
central distribution observed in natural scene images (see Fig. 1).
These characteristics increase the difficulty in understanding
remote sensing images. Some studies have shown that methods
that are robust to changes in direction are usually suitable [3],
[13], [14].

3) Complex Spatial Distribution: Aerial scenes typically
contain many elements that have nothing to do with the true
label of the image or many key elements that are either densely
or diffusely scattered and randomly arranged at any position in
the image [see Fig. 1(c)]. In contrast, because the key objects in
natural images are centrally distributed, spatial structure infor-
mation and key features are easier to capture. One effective way
to simplify the extraction of key discriminative features from
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Fig. 1. Natural scene image (left) and aerial scene image (middle and right). (a)
Different background information. (b) Different object distribution. (c) Different
spatial arrangement.

aerial images is to extract deep features while retaining some
low-level features [15]-[17].

With the rapid development of deep learning technology,
many proposed convolutional neural network (CNN) models
have achieved impressive results in different fields. For aerial
scenes, deep learning has demonstrated powerful feature ex-
traction capabilities through the application of a number of
classic CNN network, such as VGGNet, AlexNet [9], and
GoogLeNet [10]. Certain improved networks have also achieved
state-of-the-art performance [10], [13], [18], [19]. The success
of CNN models demonstrates that deep features can be used to
better describe images than traditional handcrafted features and
midlevel features [2], [20], [21]; nevertheless, some problems
remain.

1) Loss of Low-Level Features: Some commonly used CNN
models, such as VGGNet and AlexNet, cannot retain shallow
features during the training process. Unlike the deep semantic
features used in scene classification, shallow features are not the
key points that determine the final classification performance.
However, retention of these features can help with extracting
more discriminative features and improve classification perfor-
mance. Some recently proposed methods for retaining low-level
features are not end-to-end solutions and are, thus, difficult to
adapt to different tasks and datasets [21], [22].

2) Weaknesses in Main Semantic Features: Due to the way
they are obtained, remote sensing scenes usually contain dif-
ferent types of land cover. As shown in Fig. 2, from a human
perspective, the characteristic information of the tennis court is
the main basis for recognition, and other objects or backgrounds,
such as grass and parking lots are secondary or irrelevant
information [23]. However, traditional CNNs tend to focus on
global semantics, making it difficult to extract the key features
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Fig. 2. Global and local semantics in an image of a tennis court.

of aerial scenes, which may reduce the ability to represent the
scene and make it impossible to be accurately classified [11].

B. Motivation and Objectives

To solve the abovementioned problems, this article proposes
a CNN for the classification of aerial scene images. The goals
include the following.

1) Enhanced Local Key Feature Representation: Current
CNN models are not sufficient for the representation of lo-
cal semantic features. Due to the complex object distribution
and spatial arrangement of remote sensing images, our model
should demonstrate an improved ability to perform key feature
extraction.

2) Fewer Calculations: Although increasing the number of
CNN layers can improve the model’s ability to express the
depth semantic features of the image, more calculations will
be required, resulting in high training costs and overfitting
problems. Therefore, our model should minimize the amount
of calculations and the number of parameters while ensuring
efficient image feature extraction.

3) Retention of Features From Different Levels: Deep CNN
models usually cannot retain shallower features, which could
otherwise improve the discriminative power of the model. How-
ever, many existing solutions for retaining these shallow features
are not flexible end-to-end architectures. Our model involves an
end-to-end network for protecting different levels of function-
ality and effectively improving feature propagation and model
classification performance.

In summary, we propose a new depth-separable convolution
and residual connection network (CSDS) based on channel—
spatial attention to achieve these goals. The research described
in this article mainly includes the following aspects.

1) An end-to-end CNN model for aerial scene classifica-
tion is proposed. Given that remote sensing scene image
datasets are not large scale and the images therein contain
complex semantic relations, our proposed CSDS uses a
pyramid residual connection and a depthwise separable
convolution (DS-Conv) architecture.In the spatial domain,
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pyramid residual connection blocks can extract multilayer
features and establish associations, making full use of
limited samples. DS-Conv realizes decoupling channel
correlation and spatial correlation, improves convolution
efficiency, and greatly reduces the number of model train-
ing parameters and calculations.

2) A channel-spatial attention mechanism is used to improve
the ability to extract key features for improving the overall
accuracy (OA) of classification by suppressing the weights
of secondary features.

3) The original cross-entropy function often only considers
the highest index of a single category, easily leading to
poor model generalization and overfitting. To reduce the
impact of similar categories on the classification results,
a cross-entropy loss function with a label smoothing con-
straint is added. This enables the model to focus on the loss
of multiple categories, effectively suppress overfitting, and
improve generalization.

The rest of this article is structured as follows. Section II
introduces some related developments in the field. Section III
introduces the proposed CSDS network in detail. Section IV
reports and analyzes the relevant experimental results. In Sec-
tion V, an ablation experiment is performed, and some network
details are visualized. Finally, Section VI concludes this article
and explains future research directions.

II. RELATED WORK
A. Aerial Scene Classification

Based on the feature extraction method, remote sensing image
classification algorithms can be roughly divided into low-level,
middle-level, and deep feature extraction algorithms.

Some early research methods were mainly based on the ex-
traction of low-level features, such as color (color histogram [9],
[24], [25]), structure (scale-invariant feature transformation
(SIFT) [26]), and texture (local binary pattern [27]). In addition,
methods that fuse a variety of handcrafted features have achieved
good results with images containing hyperspectral or spatial
structure information [28], [29]. However, as the complexity
of the remote sensing images increases, these low-level features
become unable to assist in distinguishing categories.

Methods based on the extraction of middle-level features
obtain global features by encoding the extracted local features
and include bag-of-visual words [30], potential latent semantic
analysis (PLSA) [31], and latent Dirichlet allocation [32]. How-
ever, these methods rely on a large amount of prior information
and loose key local features and are, thus, not very suitable for
remote sensing images.

Since 2010, deep learning methods (which, as the name
implies, are based on deep features) have undergone rapid devel-
opment. One group of deep learning methods, CNNs, has made
remarkable achievements in a number of research fields, includ-
ing aerial image scene classification [22], [33]-[36]. Compared
with low- and middle-level features, deep features can better
express the internal information within remote sensing images.

Remote sensing image classification methods based on deep
learning can be divided into fine-tuning models, fully trained
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models, and convolutional feature extractors. Because CNNs
require a large number of parameter weights during training,
the sample size of aerial images is usually small. Therefore,
fine-tuning methods tend to reuse models trained on larger
target datasets (such as ImageNet) and incorporate changes to
some experimental parameter settings. Some methods based on
fine-tuning models have achieved good results [22], [37], [38].
Fully trained models are usually designed based on or outright
use currently existing models for directly training with aerial
image datasets (AIDs). The newly designed CNN model can
extract features from aerial scenes, leveraging improvements
to or redesigns of the classic convolutional neural algorithm
to adapt to different remote sensing datasets. For example,
DABNet [18] and PBNet [39] effectively solve the problem
of difficult remote sensing image feature extraction due to the
complex imaging principle, angle, and terrain, allowing them
to outperform better than some existing CNNs [10], [13], [19].
Using a CNN as a feature extractor is another commonly used
classification strategy; two examples include GLDBS [40] and
TEX-Nets [41], which fuse deep features extracted from multi-
ple convolutional layers. Although these methods are sometimes
better than current CNN models, they are unable to describe local
features and key objects.

B. Depthwise Separable Convolution

The CNN, proposed by LeCun et al. [42] in 1998, has been
applied to numerous research field with remarkable results,
particularly in the field of computer vision, where it has greatly
surpassed traditional object classification and recognition algo-
rithms [43]. In recent years, many deep learning-based meth-
ods have been used in remote sensing image processing. Hu
et al. [22] used a pretrained CNN model as a feature extractor,
comparing and verifying the impact of different layers on clas-
sification performance. Xu et al. [44] used a pretrained CNN
model to extract features and fuse them with multilayer features
to increase the global feature weight. Cheng et al. [45] proposed
a feature extraction method named BoCF that constructs a
visual vocabulary from the convolutional features of pretrained
CNN s for aerial scene image classification. However, the better-
performing CNN models usually rely on very large numbers of
parameters and calculations, and very deep structures. In recent
years, to improve efficiency and reduce costs, lightweight net-
works, such as MobileNet and ShuffleNet, have been produced.
Notably, these models use DS-Conv, proposed by Sifre and
Mallat[46], a convolution method that can effectively reduce the
scale and number of parameters and calculations of the network
while ensuring its accuracy. The general convolution operation
is based on the joint mapping of channel correlation and spatial
correlation of the 3-D filter (width, height, and channel) [47].
Different from traditional convolution, DS-Conv performs de-
coupled channel correlation and spatial correlation, which helps
reduce computational complexity. Because CNNs often pro-
duce parameter redundancy, the accuracy loss from DS-Conv
is minimal [46]. In the remote sensing field, Zhang et al. [48]
used MobileNetV2 as the backbone and introduced channel
attention to extract deep features and improve performance in
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Fig. 3. Overall structure of the proposed CSDS model.

HSRRS image classification. Huang et al. [49] used light-CNN
to extract features from the remote sensing image and obtained
good accuracy, and an effective network scale and parameters.

C. Attention Mechanisms

The attention mechanism is an algorithm that can simulate hu-
man understanding and perception of images. It can quickly and
accurately focus on the target object while suppressing useless
information [23]. The development of the attention mechanism
has provided new ideas for the field of remote sensing image
research. Zhang et al. [50] used a saliency sampling strategy to
extract the key features of remote sensing images. Hu et al. [26]
fused the features of salient regions with key points to classify
scene images. However, early saliency detection methods based
on texture information cannot capture all key information well.
Recently, some studies have proposed methods that can adap-
tively extract key attention features. Mnih et al. [51] combined
the attention mechanism with a recurrent neural network, which
reduced the difficulty of image feature extraction. Wang et
al. [52] used the product of feature maps and attention weights
to obtain high-level features describing image information, and
proposed a recurrent attention network for scene classification.
Haut et al. [53] used generated attention masks to multiply the
corresponding regions to obtain attention features. However,
these methods only add attention weights to a single domain and
do not comprehensively consider channel and spatial domains.
For the first time, Woo et al. [54] added attention weights to
both the channel and spatial dimensions, which enabled the
network to fully learn the key features of the images and achieved
impressive results in classification tasks. However, due to the
serious shortage of remote sensing image samples, the feature
extractors in existing studies were typically pretrained models
whose internal structure is difficult to change at will, thus
limiting the development of scene classification.
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Fig. 4.

Changes in the convolution modules.

III. PROPOSED METHOD

As shown in Fig. 3, the proposed CSDS network consists
of attention layers, DS-Conv with pyramid residual connection
layers, and a classifier containing a loss function based on label
smoothing. To simplify model construction and visualization,
we base the CSDS network on the structure of Xception [47]
and divide it into three parts: 1) entry flow, 2) middle flow,
and 3) exit flow. It should be noted that the overall size of
the proposed network is much smaller than that of Xception.
The Xception architecture consists of 36 convolutional layers
that form the feature extraction base of the network, structured
into 14 modules [47]. The original Xception model contains
a large number of repeated linear stack convolution modules;
we remove some redundant layers to obtain a smaller model and
change the convolution module to a structure with pyramid resid-
ual connections, as shown in Fig. 4. Then, the channel-spatial
attention module is added to better extract key features. The
improved CSDS structure contains 13 convolutional layers and
three attention layers, forming ten modules as the basis for fea-
ture extraction. Except for the first and last convolution modules,
the seven remaining convolution modules are all pyramid resid-
ual connection structures and use an improved cross-entropy
loss function with label smoothing for final classification.
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Fig. 6. Structure of the pyramid residual unit. Its execution order is BN —
Conv—BN — ReLU—Conv — BN.

A. Feature Extraction Backbone

A very deep neural network has difficulty converging from the
beginning and must contend with network degradation [55]. To
solve these problems, we use the pyramid residual connection
unit [56] in the network, shown in Fig. 5, where X; represents
the input to the residual unit, and X, represents the output
of the residual unit. F' and H represent the residual operation
and shortcut connection, respectively: if identity mapping is
present, then H(X;) = X;. The mathematical meaning of the
basic residual unit is as follows:

Xip1 = F (X3, W) + X (1)

Shortcut connections increase the depth of the network to
a certain extent and improve the deep feature extraction abil-
ity of the network, and the diversity of advanced attributes
while adding a reasonable number of parameters, accelerating
the training efficiency, and effectively suppressing the network
degradation problem [56]. The pyramid residual unit can be
considered an improvement to the residual connection unit,
offering greater advantages and better performance to the model
structure, while deleting the last ReLU [57]. Batch normalization
(BN) [58] is required before the first convolution operation
in the residual pyramid unit. Han er al. [56] demonstrated
that a large number of ReLUs will reduce the performance of
the model; therefore, unnecessary ReLUs are deleted, and the
ReLUs between the two convolution modules are retained to
ensure nonlinearity. Adding the BN layer before convolution can
improve the capabilities of the network structure and speed up
convergence. The order of execution can be described as BN —
Conv—BN — ReLU—Conv — BN (shown in Fig. 6). Note that
we replace the standard convolution with DS-Conv, which helps
to further reduce the number of parameters and calculations.

DS-Conv can be divided into two parts: 1) depthwise con-
volution and 2) point-by-point convolution (1x 1 convolution).
Fig. 7(b) shows the feature map processing steps. First, the input
image is decoupled from its channel and spatial correlations
through depthwise convolution, and each channel is convolved
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Fig. 7. Comparison of standard convolution and DS-Conv structures.

separately. Then, the features of each channel are combined
through a 1x 1 standard convolution.

DS-Conv effectively reduces the number of parameter calcu-
lations. A standard convolution operation [see Fig. 7(a)] can be
defined as follows:

M
Gi=S H, Ki+bi=12... N )

i=1

where H; is the ith mapping in input feature map H of size
Dinput X Dinput> G is the ith mapping in output feature map G
of size Doutput X Doutput> and b; is the bias of Gj. K]’« is the ith
slice in the jth kernel, and the mathematical symbol - represents
the convolution operation. The number of input channels and
the number of output channels are M and NV, respectively. If the
size of the standard convolution kernel K is k x k, then the total
number of parameters P; and number of calculations F can be
expressed as

Pr=kxkxMxN
Fi =k xkxMxN X Doyput X Doutput- 3)

As shown in Fig. 7(b), the complete feature extraction pro-
cess for DS-Conv is divided into two steps. The first step is
a depthwise convolution based on a single channel, expressed
as follows:

GQZHzKJ+b]77’7J:17277M (4)

where K; is the jth depthwise convolutional kernel; it only

filters the input channels without combining them to create
new features. Therefore, the second step is the generation of
the final features through a standard 1 x 1 convolutional layer
connection [47], [59]. The overall number of parameters P»
and calculations F5 of DS-Conv are obtained by combining the
abovementioned two steps and can be expressed as

Po=kxkxM+MxN
F2 =k xkx Doutput X Doutput x M
+Doutput X Doulpu[ x M x N. ®))
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Then, the ratio of the number of calculations for the conven-
tional convolution to that of the DS-Conv can be expressed as

B_ 1,1
P N k2
Fy 1 1
HoN @ ©

These simple calculations show that DS-Conv contains fewer
parameters and calculations than the standard convolution.
Therefore, this convolution method can reduce storage space re-
quirements, computation time, and hardware computing power
requirements.

B. Channel-Spatial Feature Attention Block for Feature
Refinement

If the residuals connect features from different layers, the
extracted feature parameters will be redundant. The attention
mechanism can selectively focus on the main object in the
image and extract key features while removing redundant in-
formation [23]. To improve the model’s ability to adaptively
extract key features and enrich the diversity of advanced features,
Woo et al. [54] proposed an attention module based on channel
and spatial dimensions (CBAM). The most important aspect of
this module is that it considers both the channel and spatial
information, and can adapt to any network structure. For remote
sensing images with small category differences and complex
spatial structures, CBAM can suppress unimportant, redundant
background information, and secondary objects, and extract
discriminative features that are conducive to the final classifica-
tion. Therefore, we add the CBAM module to the CSDS model
structure. To make full use of the fusion of the channel-spatial
attention module and the residual unit without adding a large
number of parameters, the attention mechanism is only added
to the last residual module of each flow.

1) The attention unit for the channel dimension in CBAM is
shown in Fig. 8(a). Under the joint action of the global
AvgPool and MaxPool, input feature F' with dimension
H x W x C will output two weights Fg, and Fg,, with

dimensions 1 x 1 x C.Then, the channel attention feature
M, € RE*1*1is generated by a shared multilayer percep-
tron (MLP). To further reduce the number of parameters,
the activation size of the hidden layer in the MLP is set to
R x1x 1 and the reduction rate is 7. The channel feature
M. is multiplied with the original feature F' to obtain the
final feature F’. Then, M, can be expressed as

M.(F)

o (MLP (AvgPool(F"))

+MLP (MaxPool(F)))

=0 (Wi (Wo (FS)) + Wi (Wo (Fia)))
(7

whcere o represents the sigmoid operation, Wy €
R+*C W, € RCX%, and the weights W, and W in the
MLP are shared.
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Fig. 8. Architecture of the channel—spatial attention module (CBAM).

2) The attention unit for the spatial dimension in CBAM is
shown in Fig. 8(b). The channel feature map F’ outputs
Fye and Fg, through the AvgPool and MaxPool oper-
ations. Then, a concat connection is implemented, and
dimensionality reduction is performed through a convolu-
tion operation. The weights after dimensionality reduction
generate the spatial attention features through the sigmoid
function. Finally, the feature of the module and the input
feature F’ are multiplied to obtain the final feature M,

which can be expressed as
M,(F) = o (f™" ([AvgPool [F]; MaxPool [F]]))
= o (/77 ([Fai Fawl)) @®

where f7*7 represents a standard convolution operation
with a convolution kernel size of 7 x 7. Woo et al. [54]
showed that the model achieves the best performance by
placing the channel attention module before the spatial
attention module.

The channel-spatial attention module obtains relevant atten-
tion mapping through the two independent channel and spatial
dimensions, and assigns adaptive weights to different features.
The number of parameters is very small, which saves overhead
and reduces the risk of overfitting.

C. Cross-Entropy Loss Function Based on Label Smoothing

When the features of key objects in different images are iden-
tical or their similarity is high, the CNN model will experience
overfitting and become more prone to classification errors. Label
smoothing can be used to constrain and modify the cross-entropy
loss function, thus helping improve the accuracy of classification
for similar categories and the generalizability of the model.

When a CNN model is used for image classification tasks,
the softmax function is generally implemented in the classifier
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layer to calculate the probability of each category in the dataset
according to the “hard” label. In multiclassification tasks, the
category vector is expressed in a one-hot form: for a dataset
of n categories, the probability can be regarded as an array of
length n, where the probability of the correct category is 1 and
that of the incorrect categories is 0. In this way, there is an
absolute nonone or zero relationship between the real category
and other categories, and the probability gap is maximized. How-
ever, according to the bounded gradient, the CNN model can
easily experience overfitting, limiting the generalizability of the
category. The original cross-entropy loss function is corrected by
label smoothing so that “hard” labels are transformed into “soft”
labels. Each category has a certain probability; the probability of
the positive category is the largest, and the probabilities of other
categories decrease in order according to the correlation with
the positive category. The original softmax function formula is
as follows:
efTw

= ©
Z ef Ty
=1
where pj represents the probability of each category in Ay,
wy, represents the corresponding weight and deviation, and f
represents the feature vector. According to the “hard” category
label, the expected value of the minimization of the cross-
entropy between the actual category y; and the corresponding
probability py is calculated by backpropagation

K

Loss = fz yrlog pr
k=1

(10)

yr. 1s “1” for the correctly classified class and “0” otherwise. vy,
is expressed as

e = {1,if(k:x) an

0,if(k # ).

It can be seen that the original cross-entropy loss function does
not consider the loss of the wrong label but allows the model to
learn in the direction of the largest difference. Remote sensing
datasets tend to be small and contain many similar categories;
thus, the original loss function is insufficient for addressing all
sample characteristics. For example, in remote sensing image
classification tasks, the UC Merced (UCM) dataset contains
2100 labeled samples, only half of which may be used for train-
ing, and is characterized by an uneven sample distribution. This
makes the model prone to prediction bias and overfitting, which
causes difficulties in correctly distinguishing similar categories.

As a regularization strategy, label smoothing reduces the
output difference between positive and negative samples by
using the hyperparameter «, and soft-one hot to add noise and
constrain the loss function. The cross-entropy loss relationship
between the corrected real label yt® and the corresponding
probability py is

yeS =k (1 —a) + au(K) = { - Z/JrKal/f[(Z i?fé(];): !

12)
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where K represents the total number of categories, k is the index
of a particular category, and u(K) obeys a uniform distribution
with respect to the K classes. Now, the new loss function can
be expressed as

K
Loss' = —Z yrSlog pr =
k=1

a
=—(l—-a+a/K)logy, — E};llogpk.

(1 — ) = Loss, if (k = x)
ok Loss, if (k # x)

13)

Label smoothing allows the cross-entropy loss function to not
only evaluate the loss of the correct category but also reduce the
difference with the wrong category, which helps improve the
generalizability of the model to remote sensing datasets with
small differences between classes.

IV. EXPERIMENTS AND ANALYSIS
A. Dataset Description

We used three public remote sensing scene image datasets,
the UCM dataset [60], the AID [10], and the NWPU-RESISC45
Dataset (NWPU) [9], to verify the classification performance of
the proposed CSDS network. Table I shows the basic information
of the datasets.

1) UC Merced Land-Use Dataset (UCM): The UCM
dataset [60] consists of 2100 images and 21 categories, each
category containing 100 256 x 256 pixel images. It is the first
publicly available remote sensing image dataset, and all samples
were captured with a civilian satellite platform. Therefore, the
data are integrated as a common dataset in aerial scene classifi-
cation tasks. Examples from the dataset are shown in Fig. 9.

2) AID: The AID [10] dataset is larger and has richer in-
terclass diversity than the UCM dataset, consisting of 30 cat-
egories and 10 000 images (220-420 per category) measuring
600 x 600 pixels each. The dataset was initially collected from
different regions of the world at different spatial resolutions
and times, resulting in a more difficult classification task. Some
example images are shown in Fig. 10.

3) NWPU-RESISC45 Dataset (NWPU): The NWPU dataset
is a new large-scale image dataset released by Northwestern
Polytechnical University [9]. It consists of a total of 45 categories
and 31 500 images, 700 images per class at a resolution of
256 x 256 pixels. This dataset was collected from more than
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TABLE I
BASIC INFORMATION OF THE THREE DATASETS

dataset #classes #images Image size Sp ati'a] Resolution Color space Tra?nir?g r?tio
per class (in meters) settings
UC Merced 21 100 256%256 0.3 50%, 80%
AID 30 220-400 600%600 0.5-8 RGB 20%, 50%
NWPU 45 700 256%256 0.2-30 10%, 20%
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100 regions around the world, has a variety of spatial resolutions
and similar categories, and represents a more challenging clas-
sification task than the UCM and AID datasets. Some example
images are shown in Fig. 11.

B. Experimental Details

Training-to-test set ratio: To fairly compare the proposed
method with other experimental methods, we stipulate that the
training-to-test set ratio should be the same as that used in most
previous experiments [9], [10], [20], [33], [61]-[63]. Table I

shows the training-to-test set ratio for each dataset. We consider
two different training-to-test set ratios to fully evaluate the
proposed CSDS network.

Model initialization: In the CSDS network, the parameters
of the Xception model pretrained on ImageNet are used as the
initialization parameters of the depth-separable convolutional
layer, and the other network layer parameters are initialized
randomly. All offset parameters are initially set to 0.001.

Training process: All images are resized to 299 x 299 pixels
as the input, and the batch size is set to 16. The Adam optimizer is
implemented for parameter optimization, and the initial learning
rate is set to 0.001. If the training loss does not decrease for
five consecutive epochs, the learning rate is divided by 10, and
training continues until the network converges.

Other experimental details: In this work, all our algorithms
are implemented by the TensorFlow framework. All the imple-
mentations are evaluated on a workstation with a Xeon(R) Gold
5222 CPU and 64 GB memory, and a GeForce RTX2080Ti GPU
was used for hardware acceleration.

C. Accuracy Evaluation Indices

The OA, average accuracy (AA), Kappa coefficient (Kappa),
F1 score (F1), and confusion matrix (CM) are used in the
experiment to describe the performance of the proposed CSDS
network. The OA represents the performance of the model in
predicting the image category and is calculated as the number
of correctly classified images in the test set divided by the total
number of test images, with a range from 0 to 1. The AA is
the accuracy averaged across all scenario classes in the test set.
The F1 is the harmonic average of precision and recall, with
a maximum value of 1 and a minimum value of 0. The CM
represents the actual classification result for each category. Each
item x;; in the matrix is the ratio of the ith predicted class to
the jth true class. The CM can be directly visualized through
information tables to quickly analyze misclassifications between
different categories.

To obtain true and reliable experimental results, we randomly
divide the three datasets according to the training-to-test set
ratio and repeat the experiment ten times. The average value
and standard deviation are calculated as the final experimental
results for the proposed CSDS network.

D. Experimental Results

Table II shows the classification performance of the CSDS
and Xception networks in terms of the OA and Kappa for the
three datasets at two different training-to-test set ratios.

Table II shows that the performance of CSDS is significantly
better than that of Xception. The best performance is obtained
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TABLE II
COMPARISON OF THE OA AND KAPPA VALUES OF THE CSDS AND XCEPTION
NETWORKS
Datasct CSDS Xception
OA(%) Kappa(%) OA(%) Kappa(%)
UCM50% 98.48 98.28 92.76 92.57
UCM80% 99.52 99.39 94.40 94.21
AID20% 94.29 93.39 86.12 85.96
AID50% 96.7 96.21 90.14 89.76
NWPU10% 91.64 91.43 81.64 80.93
NWPU20% 93.59 93.27 84.79 84.12

98. 48
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Fig. 12.  Performance comparison of CSDS and Xception. (a) AA. (b) FI1.

with the UCM dataset, with OA and Kappa values of 99.52% and
99.39%, respectively. With the AID and NWPU datasets, which
are more difficult to classify, the performance of CSDS also far
exceeds that of Xception. The OA values of the CSDS network
are 5.72%, 8.17%, and 10.0% higher, respectively, than those of
Xception with the smaller training ratio. In addition, when the
training-to-test ratio of the three datasets is small, the advantages
of CSDS are more prominent, illustrating the effectiveness and
superiority of the proposed method.

The AA and F1 results are shown in Fig. 12. In Fig. 12(a), the
AA values of the CSDS are all higher than those of Xception
for the three datasets and the two different training-to-test set
ratios. On the larger AID and NWPU dataset, the improved
performance of CSDS is more obvious. With the smaller train-
ing ratio, the AA of CSDS is 8.10% and 9.89% higher than
that of Xception, respectively. The F1 performance of the
CSDS method, shown in Fig. 12(b), is also good, especially on
AID20%, AID50%, NWPU10%, and NWPU20%, with scores
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TABLE III
EXPERIMENTAL RESULTS ON THE UCM DATASET (—: NOT REPORTED)

Training-to-test set ratio

Method 50% 0%
PLSA(SIFT) [10] 67.55+1.11  71.38+1.77
BoVW(SIFT) [10] 73.48+1.39  75.52+2.13
AlexNet [10] 93.98+0.67  95.02+0.81
VGGNet-16 [10] 94.14+0.69  95.21£1.20
GoogLeNet [10] 92.70+£0.60  94.31+0.89
CaffeNet [10] 93.98+0.67  95.02+0.81
TEX-Net with VGG [41] 94.22+0.50  95.31+0.69
D-CNN with AlexNet [13] — 96.67+0.10
Fine-tuned GoogLeNet [37] — 97.1
Two-Stream Fusion [26] 96.97+0.75  98.02£1.03
SPP with AlexNet [19] 94.77+0.46  96.67+0.94
Gated attention [64] 94.64+0.43  96.12+0.42
CCP-net [65] — 97.52+0.97
Fusion by addition [20] — 97.42+1.79
DSFATN [61] — 98.25
Deep CNN Transfer [22] — 98.49
MIDC-Net [66] 95.41+0.40  97.40+0.48
DFAGCN [44] — 98.48+0.42
Inception-v3-CapsNet [34] 97.59+0.16  99.05+0.24
Backbone (Xception) [47] 92.76+0.31  94.40+0.15
CSDS (ours) 08.48+0.21  99.52+0.13
" UCM(50%) o 8
, . w3 33 %
= UCM(80%) g oo 28 _ % £
S 2 ~ : : IN
= a ‘;:
s 3 =8 H 3
xg\: vg - wg; :g\l N E
5@&@"\%@&5&“c’ci-eé@*@&%@i*é&‘oé < &\oi S < Qcigvi\o@ &
FTFVES T T TS TS T F SO
YOO TS PO N TS & O
E e & LTS & RS
A ﬁ«“‘ S o 19 \oé‘boé
D 0@‘1&?@“'
& &

Fig. 13.  Comparison of the accuracy of different methods in the UCM dataset
(for those with an accuracy greater than 90%).

8.17%,6.55%, 10.06%, and 8.8% higher than those of Xception,
respectively.

1) Experiments on the UCM Dataset: The classification per-
formance of the proposed CSDS and other state-of-the-art meth-
ods on the UCM dataset is shown in Table III. To facilitate
visualization of this comparison, we provide a histogram for
methods with a classification accuracy greater than 90% in
Fig. 13.

1) The CSDS network has the highest OAs under the two

training-to-test ratios, 98.48% and 99.52%.

2) The improvements of the CSDS model are prominent for
the large (80%) than for the small training-to-test set ratio
(50%).

3) Methods based on deep features are better than those based
on handcrafted features [10] in aerial image classification.
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Fig. 14. CM of the UCM dataset for a 50% training-to-test set ratio (only interclass misclassifications greater than 0.01 are displayed).

4) Deeper and wider networks, such as the fine-tuned
GoogleNet [37], demonstrate powerful feature learning
capabilities and achieved good classification results.

5) Xception, which serves as the backbone of CSDS, has
good performance with this dataset but is still outper-
formed by our method and some other multifeature fusion
methods.

The possible reasons for these findings are as follows.

1) Although existing CNNs tend to retain deeper features,
CSDS retains features from multiple levels, especially
shallow features.

2) By including channel—-spatial attention, CSDS extracts
more important weight information from the channel and
spatial domains.

3) Transfer learning provides more parameter weights for the
model, thereby improving classification performance.

4) Handcrafted feature-based models are unable to extract a
large amount of spatial information from remote sensing
images, and the feature learning ability is poor, which
affects the classification accuracy. Deep features can en-
hance the semantic representation of aerial images.

5) A deeper and wider network can extract more global
features, thereby improving the classification results.

6) Although the backbone Xception model has a deeper ar-
chitecture than the CSDS model, it easily extracts features
through a pure linear stacked convolution module, which
affects the classification accuracy.

Fig. 14 shows the classification CM of the UCM dataset at a
training-to-test set ratio of 50%. Twenty categories exceeded
94%, and half reached 100% accuracy; however, the “dense
residential” and “medium residential” categories yielded large
errors, possibly because they consist of highly similar spatial
structures and objects.

2) Experiments on the AID Dataset: The classification per-
formance of the proposed CSDS and other state-of-the-art
methods on the AID dataset is shown in Table IV. The his-
togram in Fig. 15 shows methods with an accuracy greater
than 80%.

1) The CSDS network performs best under both training-to-
test set ratios, with OA values of 94.29% for the 20% ratio
and 96.70% for the 50% ratio.

2) Comparing Tables III and IV shows that the same method
achieves better classification accuracy with UCM than
with AID.

3) Our proposed CSDS and other state-of-the-art meth-
ods [9], [34], [41], [66] outperform the baseline
method [10] at both training-to-test set ratios.

4) As the number of categories increases, the classification
accuracy of Xception drops substantially.

The possible reasons for these findings are as follows.

1) The UCM dataset is small, which can easily lead to model
overfitting, comparatively, the AID dataset has more cat-
egories and training samples. Furthermore, a dataset with
small differences between classes is more suitable for
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TABLE IV
EXPERIMENTAL RESULTS ON THE AID DATASET (—: NOT REPORTED)

Training-to-test set ratio

Method 0% 0%
PLSA(SIFT) [10] 56.24+0.58  63.07x1.77
BoVW(SIFT) [10] 62.49+0.53  68.37+0.40
AlexNet [10] 86.86+£0.47  89.53+0.31
VGGNet-16 [10] 86.59+0.29  89.64+0.36
GoogLeNet [10] 83.44+0.40  86.39+0.55
CaffeNet [10] 86.86+£0.47  89.53+0.31
TEX-Net with VGG [41] 87.32+0.37  90.00+0.33
D-CNN with AlexNet [13]  85.62+0.10  94.47+0.12
SPP with AlexNet [19] 87.44+0.45  91.45+0.38
Two-Stream Fusion [26] 92.32+0.41  94.58+0.25
Fusion by addition [20] — 91.87+0.36
MIDC-Net [66] 88.51£0.41  92.95+0.17
Gated attention [64] 87.63+£0.44  92.01+0.21
DFAGCN [44] —_ 94.88+0.22
TFADNN [67] 93.21£0.32  95.04+0.16
Inception-v3-CapsNet [34]  93.79+0.13  96.32+0.12
Backbone (Xception) [47] 86.12+0.28  90.14+0.52
CSDS (ours) 94.29+0.35  96.70+0.14
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Fig. 15.  Comparison of the accuracy of different methods in the AID dataset
(for methods with an accuracy greater than 80%).

verifying the proposed method. Therefore, the improve-
ment in the latest state-of-the-art methods is more obvious.

2) Due to the complexity of the AID dataset, simple networks
cannot achieve a suitable performance, with classification
accuracies less than 90%. However, methods based on
feature fusion, such as two-stream fusion, can provide
more features needed for network training to achieve better
results.

3) The CSDS network has a pyramid residual connection that
can retain more features, and the channel—spatial attention
module can improve the network’s ability to learn local
semantic features. Therefore, the proposed method has
the best effect on the more complex AID dataset.

The CM of the AID dataset for a training ratio of 20% for
the CSDS network is shown in Fig. 16 . The CSDS achieved
a classification accuracy of more than 90% for 80% of the
30 categories, while beaches, parking lots, and sparse houses
were classified at 100% accuracy. Some categories with similar
spatial distributions of key objects, such as “sparse residential,”
“medium residential,” and “dense residential” categories, were
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TABLE V
EXPERIMENTAL RESULTS ON THE NWPU DATASET (—: NOT REPORTED)

Training radio

Method 0% 0%
BoVW(SIFT) [9] 41.72+0.21  44.97+0.28
AlexNet [9] 76.69+0.21  79.85+0.13
VGGNet-16 [9] 76.47+£0.18  79.79+0.15
GoogLeNet [9] 76.19£0.38  78.48+0.26
BoCF [45] 82.65+0.31  84.32+0.17
Fine-tuned VGG-16 [9] 87.15£0.45  90.36%0.18
Fine-tuned AlexNet [9] 81.22+0.19  85.16+0.18
Fine-tuned GoogLeNet [9]  82.57+0.12  86.02+0.18
Triple networks [68] — 92.33+0.20
D-CNN with AlexNet [13]  85.56+0.20  87.24+0.12
SPP with AlexNet [19] 82.13+0.30  84.64+0.23
Two-Stream Fusion [26] 80.22+0.22  83.16x0.18
MIDC-Net [66] 86.12+£0.29  87.99+0.18
Gated attention [64] 84.94+0.22  86.62+0.22
DFAGCN [44] — 89.29+0.28
TFADNN [67] 87.78+0.11  90.86+0.24
Inception-v3-CapsNet [34]  89.03x0.21  92.60+0.11
Backbone (Xception) [47] 81.64+0.32  84.79+0.26
CSDS (ours) 91.64+0.16  93.59+0.21

also classified with very high accuracies (100%, 96%, and 94%,
respectively). This shows that our proposed method can accu-
rately extract and learn key features for similar categories. How-
ever, the classification accuracy for the “school” and “square”
categories are relatively low, 68% and 80%, respectively. The
“school” and “commercial” categories are easily confused due
to their similar distributions of characteristics, and “square”
images are often misclassified as “parks” and “churches” images
due to the presence of similar objects, such as vegetation and
houses. Fortunately, the proposed method achieves accuracies
much higher than 49% and 67%, respectively, reported in [10].
Thus, this method still has a positive effect on the classification
of highly similar categories.

3) Experiments on the NWPU Dataset: NWPU is the most
challenging dataset to classify. From Table V and Fig. 17, the
following can be observed.

1) The CSDS network achieved the best accuracy rates,

92.70% and 94.58%, under training-to-test set ratios of
10% and 20%, respectively.

2) Inception-v3-CapsNet performed better than the baseline
method but was outperformed by our CSDS.

3) Our proposed CSDS outperforms all baseline methods [9]
and the three latest methods [13], [34], [66] for both
training-to-test set ratios. Inception-v3-CapsNet [34] also
outperformed other methods.

4) The performance of our proposed CSDS on the NWPU
dataset is significantly higher than that of the backbone
Xception network.

The possible reasons for these findings are as follows.

1) For samples past a certain size, deep learning methods are
more advantageous than middle- and low-level feature-
based methods, and achieve better overall accuracy.

2) Although Inception-v3-CapsNet [34] mainly utilizes mul-
tiscale information from within images, the extraction
and utilization of key features are limited. Therefore,
compared with the proposed CSDS, it demonstrates worse
performance.
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Fig. 16. CM of the AID dataset for a training-to-test set ratio of 20% (only interclass misclassifications greater than 0.01 are shown).
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(for methods with an accuracy greater than 75%). 2) Although our model is much smaller than the other three

models, it still outperforms them in classifying remote
sensing images (as shown in Tables III-V).

Fig. 18 shows the CM when using CSDS at a training rate of The possible reasons for these findings are as follows.
10%. Among them, 33 of the 45 categories have classification 1) Using pyramid residual connections not only reduces the
accuracies higher than 90%. “Palace” and “church” are easy model size but also allows features and parameters to be
to confuse because the two have extremely similar structural reused, enhances the feature learning ability of the model
features. However, compared with 56% and 47% [9], 67% and and establishes connections with shallower features. Fur-

72% still made substantial progress. thermore, the use of DS-Conv does not add an excessive
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Fig. 18.

number of parameters as the model depth increases; in
other words, incorporation of pyramid residual connec-
tions ensures the model’s ability to extract deep features
while minimizing the increase in the number of parameters
and calculations.
Channel—spatial attention enhances the ability of CSDS to
learn local key semantic features in complex remote sens-
ing images. Studies have shown that when local feature
representation is enhanced, even if many of the convolu-
tional layers are reduced, the network can still produce
good results [69].
The attention module does not substantially increase the
computational burden because it can be regarded as a
variant of the fully connected layer. Additionally, the depth
separable convolution reduces the number of calculations
from the perspective of decoupling. Increasing the depth of
the network does not increase the number of parameters
to an adverse degree. This allows the network to obtain
better feature extraction capabilities while mitigating the
effect of increasing the number of parameters.
Compared with the original Xception model, the CSDS
has fewer layers and includes multiple attention modules.
While reducing the number of parameters by half, we
increase the model’s ability to extract local features.
Prediction time: Table VII shows the prediction time for a
single image from each of the three datasets. The prediction
time of CSDS is significantly shorter than that of both the three
CNN [9] models widely used in aerial scene classification and
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3)

4)
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TABLE VII
COMPUTATION TIMES (IN SECONDS) OF DIFFERENT METHODS WITH THE
THREE DATASETS
Method UCM(50%) AID(20%) NWPU(10%)
AlexNet [9] 0.772 0.865 1.7
VGG-16 [9] 1.315 1.790 2.251
Inception-v3 [9] 0.051 0.068 0.074
Xception [47] 0.036 0.047 0.053
CSDS (ours) 0.011 0.029 0.044

Xception. These results demonstrate that the reduction of the
model parameters was beneficial in improving the prediction
time. The CSDS model guarantees a classification accuracy with
much fewer parameters than the other models shown in Table V.
The difference in the number of parameters between Xception
and Inception-v3 is not large, but the prediction speed of the
former is greater by an average of 0.017 s, which shows that
DS-Conv is faster than standard convolution.

V. DISCUSSION
A. CSDS Ablation Experiment

‘We conduct ablation studies with the AID and NWPU datasets
to further demonstrate the performance of the CSDS network.
Table VIII presents the classification performance of the CSDS
network and its different parts.

Even without the attention module, the CSDS net-
work outperforms most methods (compare Table VIII with
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TABLE VIII
CSDS ABLATION STUDY RESULTS

Without . .
Dataset  channel-spatial Without . W_1t_hout. CSDS
. label smoothing pyramid residual
attention
AID (20%)  91.80+0.11 93.23+0.32 92.16+£0.26  94.29+0.35
AID (50%)  94.85+0.32 96.24+0.21 95.8240.17  96.70+0.14
NWPU (10%) 89.10+0.41 90.14+0.26 89.23+0.21  91.64+0.16
NWPU (20%) 90.37+0.20 92.79+0.35 91.5240.18  93.59+0.21
Average 91.53 93.10 92.18 94.06
6.0
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Fig. 19. Loss function images with the AID dataset (training-to-test set ratio

20%). (a) CSDS without pyramid residual connection unit. (b) CSDS.

Tables III-V). Table VIII shows that the attention module in-
creases the performance of the CSDS by an average of 1.57%;
this may be because channel-spatial attention enhances the
representation of the main object features in the image. The
loss function with label smoothing increases the classification
accuracy by 0.86% on average; because label smoothing corrects
the loss function, the generalization ability of the CSDS model
is improved. The pyramid residual connection unit increases
the accuracy by 1.88% on average, confirming that this unit
improves the generalizability of the CSDS model while also
helping to accelerate the convergence of the network model and
improve the fitting effect [56], as shown in Fig. 19.

The figure shows the loss function images of the CSDS trained
50 times on the AID dataset (training-to-test set ratio 20%)
with and without the pyramid residual connection unit. The
oscillation in the loss function is reduced, and the convergence
speed is very high.

B. Attention Maps on CSDS

Fig. 20 shows the attention map generated with the
Grad-CAM algorithm, with the key feature area highlighted.
Four categories are the most difficult to classify: 1) church, 2)
airplane, 3) palace, and 4) square. The CSDS network with the
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Fig. 20. Original images and attention maps. (a) Original scene images.
(b) Attention maps without the channel-spatial attention. (c) Attention maps
with the channel-spatial attention.

channel-spatial attention module extracts the key features of
these scenes and accurately captures the key objects without
being affected by other objects and background information.
Even for the categories church, palace, and square, which are
prone to classification errors, the CSDS network still accurately
extracts the features of key areas. Therefore, the attention map
fully illustrates the effectiveness of channel—spatial attention and
the powerful image feature learning ability of CSDS. Channel—
spatial attention can be used to effectively locate and extract the
main objects and key local features in remote sensing images
and increase the weight of decision classification information,
thereby improving the final accuracy of the CSDS.

VI. CONCLUSION

Remote sensing images have complex spatial distributions
and multiscale semantic relations, but these key semantic fea-
tures cannot be extracted by traditional CNNs constructed with
linear superposition. Therefore, this article proposes an end-to-
end framework named CSDS to solve these problems. First,
the CSDS model is a deep network that includes a pyramid
residual unit and depth separable convolution, which reduce the
number of calculations and parameters, prevent overfitting, and
effectively extract multilayer spatial information. Second, the
channel-spatial attention module in the network obtains highly
effective local feature representation, increasing the weights
of main features while suppressing the weights of secondary
features. Finally, the cross-entropy loss function based on label
smoothing considers the relationship between different classes
to reduce the impact of classes with similar features on the scene
image classification results. The proposed CSDS achieves better
performance than other methods on three public remote sensing
image classification datasets. To further verify the feature ex-
traction and classification performance of CSDS, we generated
an attention map based on the Grad-CAM algorithm and showed
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the results visually. Although good results were achieved with
the model, for some categories with very similar characteristics,
the effect still needs to be improved. Future work will consider
the integration of multiple features, the addition of self-attention
mechanisms, and enhancement of the convolution modules to
further improve the network learning capabilities.
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