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Abstract—Automatic target recognition of synthetic aperture
radar (SAR) images has been a vital issue in recent studies. The
recognition methods can be divided into two main types: traditional
machine learning methods and deep-learning-based methods. For
most traditional machine learning methods, target features are ex-
tracted based on electromagnetic scattering characteristics which
are interpretable and stable. However, the extraction process of
effective recognition features is often complex and the computa-
tional efficiency is low. Compared with the traditional methods,
the deep learning methods can directly learn the high-dimensional
features of the target to obtain higher target recognition accuracy.
However, these algorithms have poor generalization performance
and are difficult to explain. In order to comprehensively consider
the advantages of the two kinds of methods, this article proposes
a novel method for SAR target classification based on integration
parts model and deep learning algorithm. First, part convolution
and modified bidirectional convolutional-recurrent network are
used to extract local feature of target through parts model which
is calculated based on attribute scattering centers. Then, modified
all-convolutional networks are used to extract the global feature
of the target. The final classification result is achieved through
decision fusion of local and global features. Experimental results on
the moving and stationary target acquisition and recognition show
the superiority of the proposed method, especially under complex
conditions. Besides, a brief analysis of target key parts with part
occlusion method is given, which is helpful to the interpretability
of the deep learning network.

Index Terms—Attribute scattering center (ASC) model, deep
learning, part model, synthetic aperture radar (SAR), target
classification.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) has strong applicability
in both military and civilian fields with the advantages of

all-time, all-weather, long-range, and high-resolution imaging
ability [1], [2]. Because of its various advantages, SAR is widely
used in the field of remote sensing image target detection [3]–
[6], target recognition [7], [8], terrain classification [9], change
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detection [10], and so on. In these applications, automatic target
recognition (ATR) plays an important role in SAR civil and
military fields. A standard SAR–ATR system consists of three
main parts proposed by the MIT Lincoln Laboratory: detection,
discrimination, and classification [11]. The purpose of target
classification is to automatically classify each input target image
which is obtained by target detection and discrimination.

SAR target classification methods can be divided into two
main types: traditional machine learning methods and deep-
learning-based methods. Traditional machine learning methods
mean recognize targets through manually extracted target fea-
tures and traditional classifiers such as support vector machine
[12] and sparse-representation-based classification (SRC) [13].
Some commonly used target features include geometric features
[14], transform domain features [15], and electromagnetic scat-
tering features [16]. Among the traditional methods, the target
classification methods based on attribute scattering center (ASC)
model [17] have received much attention in recent years. The
model is based on the electromagnetic scattering characteristics
of the target and can reflect the local structure of the target.
The traditional target recognition method combines the struc-
tural characteristics of the target closely when calculating the
target features, which is interpretable. Its shortcomings are also
obvious, mainly reflected in the complexity of feature design,
low computational efficiency, and low recognition accuracy.

In recent years, deep learning techniques applied in many
technical fields have made a breakthrough [18], [19], making
deep learning a valuable choice for SAR target classification
[20]. For example, convolutional neural network (CNN) [21]
can learn complex features from the original image with con-
volution layers and pool layers. VGGNet [22], ResNet [23],
and DenseNet [24] are the major CNN architectures which are
always used as backbone structures in SAR image interpretation
methods [25]. Besides CNN, RNN [26] is another major type of
deep network. Long short-term memory (LSTM) [27] is one of
the most popular architectures in RNNs. This structure is widely
used in the research of multiview SAR images [28]. At present,
there are three main research targets of deep-learning-based
SAR image target recognition methods: aircraft target [29], ship
target [30], and vehicle target [31]. All these researches need
the support of abundant target data. The moving and stationary
target acquisition and recognition (MSTAR) dataset [32] serves
as a benchmark for SAR vehicle target classification algorithms
evaluation and comparison. Many pieces of research based on
deep learning are carried out on this dataset because of its
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standardized data format and various operating conditions. The
advantage of deep learning method is that it can automatically
learn the high-dimensional features of the target, and does not
need the complex work of artificial feature extraction. Moreover,
in the same training and testing environment, a higher target
recognition accuracy can be obtained. However, compared with
the traditional methods, the deep learning model is not inter-
pretable enough. At the same time, the robustness of the model
is insufficient.

Through the analysis and comparison of the above two kinds
of methods, we believe that the performance of SAR image
target recognition algorithm can be further improved by fusing
traditional features and deep learning model.

A. Related Work

In the traditional recognition methods, the method based on
electromagnetic scattering features is a research focus. This type
of method reflects the specific structure of the target and de-
scribes the scattering center of SAR image from the perspective
of SAR imaging. Theoretical and experimental analysis shows
that the high-frequency scattering response of complex target
can be well modeled as the sum of the response of multiple ASCs
[33]. Therefore, the reflection behavior model of the target can be
described by ASCs, which can be used as candidate features for
target recognition [34]. Chiang et al. [35] proposed a Bayesian
method to establish a one-to-one correspondence between two
sets of ASCs and used a posteriori probability to evaluate their
similarity. Dungan et al. [36] used the least trimmed square
Hausdorff distance to match the scattering center sets. Fu et
al. [37] proposed a novel template matching-based aircraft
recognition method with scattering structure feature to improve
classification accuracy in SAR images. Ding et al. [38] proposed
a hierarchical fusion method of the global and local features for
SAR ATR. SRC is used to process global features, and local
descriptors are calculated by ASC. Hungary algorithm is then
used for target matching. It can be found from the above literature
that traditional methods need complex feature extraction and
classifier design, which is inefficient in the use of large-scale
data.

Different from traditional recognition methods, the deep
learning method does not consider the electromagnetic scat-
tering characteristics of the target and learns high-dimensional
target features directly through the network. Chen et al. [39]
first proposed a fully all-convolutional network (A-ConvNet)
for SAR vehicle target classification which replaces all the fully
connected layers with convolutional layers. Shang et al. [40]
also proposed a network structure named M-net for vehicle
target classification. The network is trained with a two-step
method which can reduce the training time and make the training
more stable. The structure of convolutional highway unit is
proposed in [41], which enables the network to obtain deeper
feature expression. When the training data is reduced to 30%,
it can still maintain good target classification performance. In
[42], a transfer-learning-based method is proposed, which makes
knowledge learned from sufficient unlabeled SAR scene images
transferrable to labeled SAR target data. It can be seen from the

above research results that deep learning method can achieve
higher classification accuracy, but a large number of network pa-
rameters and the limited number of training samples are easy to
cause overfitting. Therefore, data augmentation and parameters
transfer are needed to improve the network robustness. However,
at present, the construction of deep-learning-based SAR image
target recognition algorithm lacks the guidance of target elec-
tromagnetic scattering characteristics. The performance of the
algorithm will decline significantly under complex conditions.

According to the existing literature, the fusion methods can
be divided into three main strategies: early feature fusion (EFF),
late feature fusion (LFF), and decision level fusion (DLF) [43].
Eff refers to fusion using low-level features calculated based on
original data and LFF refers to fusion using higher level features.
The level of the feature is defined based on the depth of the
network used. DLF means that the output probability of each
fused method is averaged to obtain the final output probability.
Cui et al. [44] proposed an updated learning method for SAR
unlabeled target recognition based on the decision fusion of
CNN and other assistant classifiers. Zhang et al. [45] proposed a
feature fusion framework based on ASC feature and deep learn-
ing feature for the first time. The bag of visual word (BOVW)
model and discrimination correlation analysis are introduced in
the article. The proposed method proves superior effectiveness
and robustness under different operation conditions.

B. Contributions

In order to combine the advantages of traditional methods
and deep learning methods, we propose a novel method for SAR
target classification based on the integration of ASC parts model
and deep learning model. Compared with recent SAR target
classification methods, the main contributions of the article are
as follows:

1) We propose a novel parts model for SAR target based on
ASC model. The parts are calculated based on electro-
magnetic scattering characteristics of target local struc-
ture which are the basis of the whole target recognition
algorithm. Part convolution (Part Conv) operation is intro-
duced based on parts model, which creatively transforms
the traditional electromagnetic scattering features into the
data that can be calculated by convolution neural network.

2) Modified bidirectional convolutional-recurrent network
(MBCRN) is proposed to extract local feature of targets
based on the sequence of electromagnetic scattering fea-
tures which synthesizes the scattered target parts. Besides,
a global feature extraction architecture based on modified
A-ConvNets is proposed. A decision fusion strategy is in-
troduced to fuse the results achieved from local feature ex-
traction and global feature extraction which improves the
classification result compared with every single branch.

3) We innovatively use the part occlusion method to analyze
the key parts that affect the target recognition results.
The visualization results can clearly show the knowledge
learned by our method for different types of targets. In
addition, the results are consistent with our expert knowl-
edge, which further shows the rationality of our method.
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Fig. 1. Overall structure of proposed integration method.

We carry out a lot of experiments and the experimental results
show the superiority of the proposed method which achieves
higher classification accuracy than the method used in [45].
Different from their previous work, our method combines dis-
crete ASCs into target parts to better reflect the local structural
characteristics of the target. Compared with the BOVW model,
target parts model contains more electromagnetic scattering
information and provides support for the interpretability analysis
of the algorithm.

The rest of this article is organized as follows. Section II
gives the detailed structure of proposed method and the total
training process. Section III presents the experimental results of
proposed method compared with recent algorithms and gives
a brief analysis on target key parts which are important for
classification. Finally, Section IV concludes the article.

II. METHODOLOGY

The overall structure of the proposed method is shown in
Fig. 1. The detailed process of the target classification method
is described in this section. In Section II-A, we first introduce the
target parts extraction method based on ASC model. Sections II-
B II-C show the methods of local feature extraction with parts
model and global feature extraction with deep learning model,
respectively. Decision fusion method based on these two kinds
of features is described in Section II-D. Section II-E gives total
training and test process.

A. Target Parts Extraction With ASC Model

ASC model is widely used in target recognition field. The
model assumes that the backscattering of a target can be well
approximated as a sum of responses from individual scattering
centers as given in the following:

E (f, ϕ; Θ) =

q∑
i=1

Ei (f, ϕ; θi) (1)

Fig. 2. Target parts extraction process based on ASC model.

where q is the total number of individual scattering centers. For
an individual ASC, the backscattered field is parameterized as a
function of frequency f and aspect ϕ:

Ei(f, ϕ; θi) = Ai·
(
j
f

fc

)αi

· exp[−j
4πf

C
(xi cosϕ+yi sinϕ)]

· sinc
(
2πf

C
Li sin (ϕ−ϕ̄i)

)
· exp(−2πfγi sinϕ)

(2)

where fc is the radar center frequency and C is the propagation
velocity of electromagnetic wave.

The Θ = {θi = [Ai, αi, xi, yi, Li, ϕ̄i, γi]}(i = 1, 2, . . . , q)
in (2) is the parameter set in which (xi, yi) are the spatial
locations, Ai is the relative amplitude, αi denotes the frequency
and geometry dependence, Li and ϕ̄i represent the length and
orientation of the distributed ASC, respectively, and γi is the
aspect dependence of the localized ASC. The seven parameters
in ASC model can be predicted by many parameter optimization
algorithms. In this article, genetic algorithm [46] is adopted for
ASC calculation.

After parameters prediction, we can extract target parts im-
ages based on ASC results according to the following process
shown in Fig. 2. We use a BMP2 target in the MSTAR dataset
for presentation.

First, the K-means clustering method [47] is applied to select
scattering centers belonging to different parts. The clustering
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Fig. 3. Parts extraction result of a vehicle target. (a) Original image. (b)–(f)
Different parts.

Fig. 4. Positions of target parts on original image. (a) Original image. (b)–(f)
Position of each target part.

object of K-means is the seven parameters of each ASC. Then,
the clustering algorithm divides the original ASCs into multiple
sets. For each scattering centers cluster, we calculate the recon-
structed image based on the predicted parameter set as in (3):

ER (f, ϕ; ΘR) =

p∑
i=1

ERi (f, ϕ; θRi). (3)

ER denotes the reconstructed data in the frequency domain by
the extracted ASCs. ΘR = {θRi}(i = 1, 2, . . . , p) is the pre-
dicted parameter set. p represents the scattering centers number
in certain cluster. Then, two-dimensional (2-D) inverse Fourier
transform is applied to ER to gain the reconstructed part image.

Fig. 3 shows parts extraction result of a vehicle target in
MSTAR dataset with the parts number set to 5. Fig. 4 shows the
positions of target parts extracted in Fig. 3 on original image. It
can be seen from the figure that the target parts extracted by this
method cover the main area of the target. For BMP 2 target, the
main recognition feature is that the turret is in the middle and
rear. It can be seen from Fig. 4 that parts (b) and (f) constitute
the main structure of the turret.

Fig. 5. Detailed structure of local feature extraction method. “FC” means fully
connected layer.

Fig. 6. Simple illustration of the convolution process and result.

B. Local Feature Extraction With Part Conv and MBCRN

As shown in Fig. 1, local feature extraction method is mainly
composed of two parts: Part Conv and MBCRN. The detailed
structure of local feature extraction method is shown in Fig. 5.

Since ASC model provides the physical and geometric de-
scription of the target, the reconstructed parts images reflect the
distribution of different attribute features of the target. From the
reconstructed image, we can know the position and structure
of each part of the target. In order to integrate that informa-
tion into the algorithm, we need to transform those descriptive
features into network recognizable features. According to our
understanding of convolution operation in deep learning, it
can extract specific features according to different convolution
kernels. Fig. 6 shows a simple calculation process and result of
convolution. The convolution kernel is a component structure
of the original image. It can be seen from the figure that the
convolution result highlights the characteristics of the structure
corresponding to the convolution kernel in the original figure,
including the shape and position. That is to say, through this
operation, we can convert the descriptive information of a cer-
tain structure at a location in the original map into visualized
information that can be recognized by the network. Therefore,
using the reconstructed parts images as the convolution kernels
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Fig. 7. Part convolution results of a vehicle target. (a) Original image. (b)–(f)
Part convolution results with different parts kernels.

to convolute with the corresponding SAR image can extract the
local attribute features of the image. We call this process Part
convolution.

During this process, we first cut the reconstructed parts images
to 65×65. Then, Part Conv results of corresponding SAR image
are calculated with part kernels. Fig. 7 shows the Part Conv
results of a vehicle target in MSTAR dataset with five parts. The
brighter the area, the larger the value after convolution. From
convolution results, we can find that under different convolution
kernels, the convolution results are obviously different. We can
see that the results not only reflect the scattering values of
the parts but also reflect the position of the parts. Combining
with Figs. 4 and 7, it can be found that when the target part
changes, the convolution result will change at the corresponding
position of the part. At the same time, the convolution result
image will shift to the position of the part in the target. Through
this operation, we can convert the descriptive information of a
certain structure at a location in the original map into visualized
information that can be recognized by the network.

To integrate electromagnetic scattering features with deep
learning algorithm, we set the Part Conv results as the input of
MBCRN. Our MBCRN structure is designed for single-channel
data which is different from the original BCRN proposed in
[28]. Since the Part Conv results are single-channel data, many
parameters of original network need to be revised. First, a few
convolutional layers are applied to convert Part Conv results into
feature vectors. Detailed parameter setting of the convolutional
layers is presented in Fig. 8.

Through the network, the corresponding 1-D feature of each
part image can be obtained. In order to comprehensively con-
sider the feature of each component, we use the bidirectional
LSTM (Bi-LSTM) network [48] structure. It consists of a for-
ward sequence and a backward sequence of the LSTM net-
work. LSTM network has cell architecture and the detailed
structure of a single cell is shown in Fig. 9. X = {xn}, n =
1, 2, . . . , N means the input vector sequence of LSTM, Y =
{yn}, n = 1, 2, . . . , N means the output vector sequence, and
C = {Cn}, n = 1, 2, . . . , N means the state of each cell, where
N is the length of the image sequence. fn, in, and on represent

Fig. 8. Detailed parameter setting of the convolutional layers. “BN” means
batch normalization module.

Fig. 9. Detailed structure of a LSTM network cell [28].

the output values of three different gates defined in LSTM:
forget gate, input gate, and output gate. σ and tanh are the
logistic sigmoid function and the hyperbolic tangent function,
respectively.

Then, at stepn, the forward propagation in the forward LSTM
network is described as follows:

fn = σ (Wf [yn−1, xn] + bf )

in = σ (Wi [yn−1, xn] + bi)

Cn = fn × Cn−1 + in × tanh (WC [yn−1, xn] + bC)

on = σ (Wo [yn−1, xn] + bo)

yn = on × tanh (Cn) (4)

where eachW and b represents the weight and offset of the corre-
sponding network layer. For reverse LSTM networks, except that
the sequence parameters are entered in the opposite order, the
other calculation methods are similar to forward networks. We
denote the output vector sequence of reverse LSTM networks as
Y ′ = {y′n}, n = 1, 2, . . . , N . Then, the output of the Bi-LSTM
network is the combination of the output for the forward and
reverse networks, that is,

YBi = [Y ;Y ′] . (5)

The sequence size of the Bi-LSTM layer we used is the same
as the parts number and the hidden size of each step is set to 32.
Since we use a bidirectional LSTM structure, the final output size
of each step in Bi-LSTM is 64. Then, we calculate the average of
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Fig. 10. Detailed architecture of modified A-ConvNets. “BN” means batch
normalization module.

the output vector sequence. Finally, a fully connected layer and
softmax function are used to calculate the probabilities of the
predicted categories. The output of the local feature extraction
branch is a 1-D label probability distribution vector.

C. Global Feature Extraction With Modified A-ConvNets

To extract global features of each target, we use a modified
network structure based on the structure of A-ConvNets [39]
which can achieve high classification accuracy on MSTAR
dataset. The detailed architecture is shown in Fig. 10.

Different from the local feature extraction branch, the input
of this modified network is the whole target image. We use five
trainable layers to extract features of different targets. The main
difference between the original A-ConvNets and our modified
architecture is network parameter setting. The input image size
of the original network is 88×88 pixels. To simplify the image
preprocessing, the input size of our network is 128×128. We
add max pool layers and change convolution kernel size to
satisfy the input size. Besides, we add a batch normalization
module [49] after each convolution layer. The advantage of the
modified network structure is that it needs neither cropping the
input images nor conducting data augmentation steps during the
training process.

From the above network, we can also get a 1-D label proba-
bility distribution vector which is learned from the whole target
image with a global feature extraction branch.

D. Target Recognition Based on DLF

After we get two 1-D probability distribution vectors from
the local feature extraction branch and global feature extraction
branch, respectively, we need to fuse the two vectors to get
the final recognition result. There are many fusion strategies
such as EFF, LFF, and DLF [43] as mentioned in the previous
introduction. The difference between these three strategies is that
the fusion operation is located at different levels of the algorithm.
DLF is the simplest form of fusion between different approaches
where the output probabilities of each individual approach are

averaged. Considering the simplicity of calculation, the final
target recognition result is achieved based on the DLF of these
two vectors as shown in (6):

Pfinal =
1

2

classnum∑
i=1

(
plocali + pglobali

)
. (6)

Pfinal means the final output probability distribution vector of
the proposed method. plocali and pglobali denote the probability
of a certain class calculated through different feature extraction
branches.

E. Training and Test Process

The complete training process of the proposed method is as
follows. In preprocessing step, we first predict the parameters of
the ASC model of each target image. Then, target parts images
are reconstructed based on prediction results and clustering
operation. After that, we take the whole target image and parts
images sequence as the input of our network to extract two
1-D probability distribution vectors based on local feature and
global feature, respectively. The final output of the proposed
method is the mean of two probability distribution vectors. In this
article, the cross entropy loss [50] is used to calculate the error
for backward propagation, and the stochastic gradient descent
[51] is used to optimize parameters. During the test process,
parameters of the ASC model and parts images of each test target
also need to be calculated at first. Through forward propagation
of the whole network, we can get the final label probability
distribution vector for each test target. Then, the predicted label
is the one with the highest probability. Compared with true
labels, the classification accuracy of the algorithm is obtained.

III. EXPERIMENTS

To verify the performance of the proposed method, we first
introduce the images of the MSTAR dataset in Section III-A,
and generate the training and test dataset under the standard
operating condition (SOC) and extended operating conditions
(EOCs), respectively. In Section III-B, we first analyze the
influence of different parameter settings on the performance
of our method. Then, we compare the classification perfor-
mance of the proposed algorithm and other algorithms under
different conditions. In Section III-C, ablation experiments are
conducted to illustrate the effect of the proposed modules. In
addition, we also perform performance verification under more
complex conditions such as limited training data and random
occlusions presented in Section III-D. Finally, we briefly discuss
the key parts that affect the results of target classification in
Section III-E.

All experiments are carried out with both Matlab platform
and the Pytorch framework on a NVIDIA GeForce RTX 2080
Ti GPU card.

A. Datasets

The experiments are conducted on the MSTAR public re-
lease dataset. This dataset is collected by the Sandia National
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Fig. 11. Classification accuracy of proposed method with different parts
numbers.

Laboratory using a Twin Otter SAR sensor operating at X-
band HH polarization with 0.3m× 0.3m resolution [32]. It is
taken at multiple depression angles (15◦, 17◦, 30◦, 45◦) over a
full 0◦–360◦ range of viewing angles. The dataset includes 10
classes of military targets: BMP2, BTR70, T72, T62, BTR60,
2S1, BRDM2, D7, ZIL131, and ZSU23/4. The dataset can be
used under different operation conditions with different data
selections. The data compositions under SOC and EOCs are
presented in Tables I–IV.

SOC refers to the training data and test data under similar
imaging conditions, using 17◦ depression angle data of 10 kinds
of targets as training data and 15◦ depression angle data as test
data. EOC1 corresponds to large depression angle variation,
where the training set has 17◦ depression angle and the test
set has 30◦ depression angle. EOC2/C represents configuration
variation of vehicle targets, where training data and test data
differ in components. EOC2/V means target version variation,
where some structures have relative motion among the training
and test sets [32].

B. Results of SOC and EOCs

1) Analysis of Different Parts Number: We first experiment
with the proposed method under different parts numbers to show
the influence of parts numbers on the classification performance
of the algorithm. From Section II-A, we can find that under
different cluster numbers, we can get different numbers of target
parts. Since the results of the ASC prediction method used in
this article include 30–40 main scattering centers, we only do
experimental analysis on five to ten parts. More parts will lead
to too detailed division and a lack of representativeness. The
parameters of the proposed method change with different parts
numbers, which are mainly reflected in the sequence size of
Bi-LSTM. Experiment results of SOC and EOCs are shown in
Fig. 11 and Table V with different parts numbers.

From the results, it can be found that different experimental
conditions have different preferences for the number of target
parts. For SOC, the classification performance of the algorithm is
less affected by the number of target parts. However, for EOC1,

TABLE I
TRAINING AND TEST EXAMPLES FOR SOC

TABLE II
TRAINING AND TEST EXAMPLES FOR EOC1

TABLE III
TRAINING AND TEST EXAMPLES FOR EOC2/C

the classification performance of the algorithm first increases
and then decreases with the change of the number of target
parts. We consider that the training data and test data in SOC are
with the same serial number of each target type and the same
depression angle. The recognition of different types of targets
depends more on large-scale features than on detailed features.
Due to the large depression angle change in EOC1, the target
parts with a certain size will show stable characteristics, while
the more detailed structure will have larger changes in elec-
tromagnetic scattering characteristics. Therefore, under EOC1,
the classification performance of the proposed method improves
first when the number of target parts increases. When the target
parts are divided too much, the performance will be degraded.
For EOC2s, although there are some fluctuations, the overall
classification performance is on the rise with the increase in
the number of parts. We consider that the configuration of the
target changes significantly in EOC2s, so the large-scale parts
of targets of different versions in the same category are quite
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TABLE IV
TRAINING AND TEST EXAMPLES FOR EOC2/V

TABLE V
COMPARISON OF CLASSIFICATION ACCURACY BETWEEN DIFFERENT PARTS

NUMBERS UNDER SOC AND EOCS

TABLE VI
COMPARISON OF CLASSIFICATION ACCURACY BETWEEN DIFFERENT

METHODS UNDER SOC AND EOCS

different, but the details are similar. Thus, large parts number
performs better in EOC2s.

Because the number of parts has no obvious influence on
the performance of the method under SOC and we focus on
SOC data in the following experiments, we set the parts number
of the proposed method as five for convenience and higher
computational efficiency.

2) Analysis of Different Methods: In order to illustrate the
performance of the proposed method, we compare it with the
existing methods. Table VI presents the classification accuracy
of different methods under SOC and EOCs. From the results of
the table below, we can find that our algorithm can achieve high
accuracy which has reached the advanced level in this field.

Fig. 12. Detailed modified local feature extraction structure. “FC” means fully
connected layer.

The experimental results show that both BCRN and the pro-
posed method can achieve high accuracy under different condi-
tions. BCRN is only slightly higher than our method under some
conditions. However, we compare the computational efficiency
of the proposed algorithm with that of BCRN and find that
BCRN is less efficient. We employ frame per second (FPS) to
measure the time efficiency of different methods. In this article,
it means the number of target chip images classified per second.
The FPS of BCRN is 11.66, whereas our proposed method is
33.68, which is significantly higher than that of BCRN.

C. Results of Different Architectures

In this section, in order to verify the effectiveness of the
proposed Part Conv module and decision fusion strategy in
the target recognition, we conduct ablation experiments with
different variants of the proposed structure for comparison.

The first variant is the network structure proposed in Sec-
tion II-C which is used to extract the global feature of SAR
targets, denoted as Global. We only use this branch for data
training and testing under different conditions. Comparing the
experimental results with the complete method, we can analyze
the role of local features learned from part images. The second
variant is to remove the Part Conv module in the proposed
method, while the global feature extraction branch is maintained,
denoted as Global-Part. The detailed modified local feature
extraction structure of this variant is shown in Fig. 12.

Different from the original local feature extraction branch pro-
posed in Section II-B, the variant changes the input of MBCRN
structure from Part Conv results into part images of 128×128
size. Thus, the CNN architecture also needs to be modified to
satisfy the input size. The detailed modified CNN parameters
are shown in Fig. 13.

Besides, we also test the performance of local feature extrac-
tion branches in target recognition. Local means the structure us-
ing only the local features mentioned in Section II. Global–Local
represents the complete structure of the algorithm proposed
in this article. We test those variants under SOC and EOCs.
Then, the classification results of different architectures are
compared in Table VII. From the table, we can find that our
algorithm has higher classification accuracy than other variants.
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Fig. 13. Detailed parameter setting of modified CNN. “BN” means batch
normalization module.

TABLE VII
COMPARISON OF CLASSIFICATION ACCURACY BETWEEN DIFFERENT

ARCHITECTURES UNDER SOC AND EOCS

Experimental results show that using parts images for feature
extraction directly does not improve the performance, but re-
duces the classification accuracy. Therefore, the proposed Part
Conv module can extract more useful features than the ordinary
convolution layer. Comparing these experimental results, we
can find that decision fusion can indeed improve classification
performance, especially in EOCs. In the EOCs experiment,
the classification accuracy after fusion is significantly higher
than that using only global branches. In addition, in EOC1
and EOC2/V, the classification accuracy after fusion is higher
than that of any branch, which shows that the part features and
overall features of the target are complementary. By fusing the
classification probabilities based on the calculation results of
different branches, the accuracy of target classification under
complex conditions can be effectively improved.

D. Results of Complex Conditions

Since different algorithms can both achieve high classification
accuracy under standard experimental condition, there is a risk
of overfitting. To further compare the performance of the pro-
posed method with others, we conduct experiments under more
complex conditions including limited training data and random
occlusion on target images.

1) Limited Training Data: First, experiments with limited
training data are analyzed. Classification results of different
algorithms are shown in Table VIII. SOC column means test

TABLE VIII
COMPARISON OF CLASSIFICATION ACCURACY BETWEEN DIFFERENT METHODS

WITH LIMITED TRAINING DATA

Fig. 14. Target images after random occlusion. Cover sizes of (a)–(c) are 5×5,
10×10, and 15×15.

accuracy when training with full data under SOC and other
columns mean test accuracy when training with corresponding
number of samples in each target category under SOC. All
the sample data are obtained by random sampling in the SOC
training dataset. Then, we use all the test data to verify the
classification performance of different algorithms.

From the table, we can find that our algorithm can still
maintain a relatively stable classification performance in the case
of limited training samples. Although the classification accuracy
of the proposed method is slightly lower than that of BCRN
under the condition of 100 samples per class, the performance
of the proposed method is more robust when the sample size is
smaller.

2) Random Occlusions: In view of the actual situation, we
cover part of the target image to further test the generalization
of each algorithm. We consider that the target is mainly con-
centrated in the central region on the slice image. Therefore, we
only cover the middle area of the image and the range of central
region is 64×64. We use different cover sizes for experiments:
5×5, 10×10, and 15×15. Fig. 14 shows the target image after
random occlusion. The black squares in the target area are the
cover area.

Because our algorithm needs to use the target parts images,
for the rationality of the experiment, we occlude the parts images
used in the algorithm with the same position as the corresponding
target image shown in Fig. 15. It can be seen from the figure that
some of the target parts are occluded and some of them are not
occluded.

The classification results of different methods are shown in
Table IX. It can be seen from the changes in classification
accuracy of various methods in the table below that our algorithm
is still very robust under different cover sizes.

When the cover size is small, both our method and BCRN can
achieve very high classification accuracy. However, our method
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Fig. 15. Target image and parts images after random occlusion. Red box marks
the position of the cover.

TABLE IX
COMPARISON OF CLASSIFICATION ACCURACY BETWEEN DIFFERENT METHODS

WITH RANDOM OCCLUSIONS

is obviously superior to other algorithms when the size becomes
larger. We believe that the advantage of the proposed algorithm
is that it uses the local features related to the target parts to
improve the stability of the classification. When the random
occlusion does not cover the key parts that affect the target clas-
sification, the performance of our algorithm will not be greatly
degraded. However, other methods all depend on the overall
features of the target. Therefore, when the target area is in-
complete, the performance of the algorithm will be significantly
reduced.

According to the above experimental results, the proposed al-
gorithm can achieve excellent classification performance under
the conditions of limited training samples or random occlusions.
Thus, we can conclude that the proposed method is more gen-
eralized and robust than other methods.

E. Analysis on Key Parts With Part Occlusion

From the above experimental comparison, we can find that
the part features of proposed algorithm have a certain impact on
the classification accuracy. In this part, we use the visualization
method to analyze the key parts that affect the target classifi-
cation. In Belloni et al. [53], researchers use a black square to
occlude target images and the percentage of correctly classified
images is used as the new intensity of the pixels located in the
center of the black square in the classification map. Different
from it, we occlude target parts instead of pixel squares. The
visualization process is shown in Fig. 16.

Fig. 16. Calculation process of the importance map of different target parts
with part occlusion.

We use test data under SOC for analysis. First, we calculate
the class probability distribution vector of each test image. Then,
after occluding a part from the image, the class probability
distribution vector is recalculated.

We calculate the difference of the probability values of the
two probability distribution vectors corresponding to the real
class labels, and take it as the importance value of the target
part. The larger the difference is, the lower the recognition rate
will be after removing this part of the image, that is, the more
important this part is for target recognition.

We calculate the importance of each target part in turn and
then visualize it to get the thermodynamic diagram of the key
parts of target recognition. Fig. 17 shows the thermal distribution
diagram of key parts of different types of targets at similar
azimuth angles. The visualization result shows that different
targets do have differences in the distribution of key parts. In
order to make the conclusion more convincing, we normalize
the target angle. Then, we average the distribution map of key
parts of all targets in the same category and get the result as
shown in Fig. 18. It can be seen from the graphic results that
some key parts have important impacts on SAR vehicle target
recognition. At the same time, there are separable differences in
the distribution of key parts of different targets.

Fig. 19 shows examples of optical images of ten types of
targets at similar aspect angles. Combined with Figs. 18 and
19, we can find that the key parts learned by the proposed
algorithm are consistent with the expert knowledge of vehicle
target recognition in SAR images. For example, for BMP2, the
focus of manual interpretation is that the turret is obvious and
located in the middle and rear of the target. These are exactly
the features learned by the proposed algorithm as shown in
Fig. 18(a). For ZIL131, this is a truck target, and the key to
interpretation lies in the joint between the front and the body
which is also can be seen in Fig. 18(i). These conclusions further
demonstrate the rationality of our method.
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Fig. 17. Thermal distribution diagram of key parts of different types of targets at similar azimuth angles: (a) BMP2, (b) BTR70, (c) T72, (d) BTR60,
(e) 2S1, (f) BRDM2, (g) D7, (h) T62, (i) ZIL131, and (j) ZSU23/4.

Fig. 18. Average thermal distribution diagram of key parts of different types of targets with angle normalization: (a) BMP2, (b) BTR70, (c) T72, (d) BTR60,
(e) 2S1, (f) BRDM2, (g) D7, (h) T62, (i) ZIL131, and (j) ZSU23/4.

Fig. 19. Examples of optical images of MSTAR targets at similar aspect
angles: (a) BMP2, (b) BTR70, (c) T72, (d) BTR60, (e) 2S1, (f) BRDM2,
(g) D7, (h) T62, (i) ZIL131, and (j) ZSU23/4.

IV. CONCLUSION

Considering the advantages and disadvantages of both
traditional machine learning methods and deep-learning-based
methods in SAR ATR, an integration method based on

electromagnetic scattering mechanism of target and deep
learning features is proposed in this article. First, target parts
extraction method based on the ASC model is introduced. Then,
target local feature is calculated with Part Conv and MBCRN.
Modified A-ConvNets is used to extract target global features.
The final classification result is the combination of the results
based on both local and global features with decision fusion.
Experimental results on MSTAR dataset show that our method
can achieve excellent classification accuracy under SOC and
EOCs. At the same time, for complex experimental conditions
such as limited training samples and random occlusion, the
proposed method is still stable and superior to other existing
algorithms. Based on the part occlusion method, we briefly
analyze the key parts that affect the results of target classification.
The visualization results further prove the rationality of the
proposed method and provide an experimental basis for further
research on the interpretability of learning networks.
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In this article, a preliminary study on the integration of the
target parts model and deep learning model is carried out. In fu-
ture article, we will further study the electromagnetic scattering
mechanism of the target parts model and explore more effective
fusion methods of different classification algorithms.
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