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Road Extraction Using a Dual Attention
Dilated-LinkNet Based on Satellite Images and
Floating Vehicle Trajectory Data
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Abstract—Automatic extraction of road from multisource re-
mote sensing data has always been a challenging task. Factors
such as shadow occlusion and multisource data alignment errors
prevent current deep learning-based road extraction methods from
acquiring road features with high complementarity, redundancy,
and crossover. Unlike previous works that capture contexts by
multiscale feature fusion, we propose a dual attention dilated-
LinkNet (DAD-LinkNet) to adaptively integrate local road features
with their global dependencies by joint using satellite image and
floating vehicle trajectory data. First, a joint least-squares feature
matching-based floating vehicle trajectory correction model is used
to correct the floating vehicle trajectory; then a convolutional net-
work model DAD-LinkNet based on a dual-attention mechanism is
proposed, and road features are extracted from the channel domain
and spatial domain of the target image in turn by constructing
a dual-attention module in the dilated convolutional layer and
adopting a cascade connection; a weighted hyperparameter loss
function is used as the loss function of the model; finally, the
road extraction is completed based on the proposed DAD-LinkNet
model. Experiments on three datasets show that the proposed
DAD-LinkNet model outperforms the state-of-the-art methods in
terms of accuracy and connectivity.

Index Terms—Dual attention, floating vehicle trajectory, road
extraction, satellite image.
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I. INTRODUCTION

OADS are an important public infrastructure and play an
R important role in the urbanization process and smart city
construction. Road facilities can be used to assess the degree
of urbanization of an area, and as an important indicator of
urban impervious surface, it can be used to estimate the carbon
emissions of a city [1], [2]. Studies show that the length and
extent of global roads will expand dramatically in the 21st
century, for example: by 2050, there are expected to be at least
25 million kilometers of new roads worldwide; a 60% increase
in total road length compared to 2010. 90% of road construction
is taking place in developing countries, including many areas
with outstanding biodiversity and important ecosystem services,
and the roads that penetrate these areas are a major driver
of habitat loss and fragmentation, wildfires, overhunting, and
other environmental degradation [3]. These issues have received
considerable attention from scientists and policy makers, and
focused and sustainable efforts have been made to understand
the complex environmental changes that occur in areas where
roads are changing rapidly [4]. Therefore, a comprehensive
understanding of the spatial distribution of global roads is impor-
tant for a range of research topics related to the environmental
changes caused by global urbanization processes.

Remote sensing has inherently valuable features to track
large-scale land cover dynamics, such as global road mapping
[40]. In recent years, remote sensing technology has shown great
potential to facilitate the identification of global urban roads and
to assess patterns and types of urbanization processes. A variety
of satellite remote sensing images (e.g., luminescent remote
sensing data, MODIS, Landsat, Quickbird, SPOT, IKONOS,
Gaofen, Worldview, etc.) are used to extract road information
and assess urban conditions, which are critical for both natural
and socio-economic issues [5].

So far, many supervised or unsupervised machine learning
based methods have been developed for road extraction from
remote sensing images. In particular, the former has gained wide
acceptance because of its ability to efficiently and accurately
segment road areas or extract road centerlines from satellite
imagery. Despite its advantages, several factors challenge the
practical application of supervised methods. For example, it
usually requires highly representative and complete training
sets and is highly dependent on the operator’s expertise. In
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addition, complete road information cannot be obtained due to
shadow occlusion from high-resolution images. Studies show
that road extraction accuracy can be improved by multisource
data fusion methods, such as fusion of high-resolution images
and light detection and ranging (LiDAR) data, which improves
the differentiation between ground and nonground elements
and facilitates the accurate extraction of road information, but
also introduces new errors, such as alignment errors between
images and point clouds [6]. In addition, LiDAR point cloud
cannot penetrate the lush tree crown, leading to its inability to
obtain complete road information. Thus, factors such as shadow
occlusion and multisource data alignment errors prevent the
road extraction task from acquiring complementary, redundant,
and intersection-rich road features. Therefore, to obtain accurate
road information, it is necessary to solve the problem of road
feature extraction in the absence of information from a single
data source.

Current road feature extraction has shifted from manual fea-
ture selection to automatic feature extraction based on deep
learning methods. The latter automatically extracts and learns
the features of the road by convolutional networks thus ob-
taining semantic information to segment the road with high
accuracy and robustness [7]-[9]. Despite the superiority of
the deep learning approach, the method relies entirely on the
features of the samples themselves and does not incorporate
prior knowledge of the roads, which leads to increased sample
requirements and limits the accuracy and efficiency of the model.
In addition, when using deep convolutional networks for feature
extraction, fixed-size convolutional kernels are used without
considering the uncertainty of the inherent scale of roads, and
thus it is difficult to deal with multiscale roads with complex
backgrounds. Therefore, there is an urgent need to develop adap-
tive scale convolutional neural network models for global road
mapping.

In recent years, floating vehicle trajectory data have received
increasing attention in the voluntary geographic information
community. The floating vehicle track data originated from
urban cabs contains rich information on traffic dynamics and
is a low-cost, wide coverage, and highly presentable means
of GPS information collection. The coordinates (i.e., latitude
and longitude) of the floating vehicle trajectory data provide an
opportunity to link satellite imagery. Some studies have already
shown that floating vehicle data with trajectory correction can
restore part of the road information obscured by tree canopy or
building shadows [10].

This study proposes a new road extraction method that uses
high-resolution remote sensing imagery and floating vehicle
trajectory data in a near real-time manner. The main objective
of this article is to develop, test, and validate a road extraction
method incorporating heterogeneous road features, which aims
to extract heterogeneous road features from remote sensing
images and floating vehicle trajectory data and apply them to
a deep convolutional neural network to accomplish accurate
road information extraction. Specifically, we introduce a spatial
attention module (SAM) and a channel attention module (CAM)
to capture road contextual information in the spatial and channel
dimensions, respectively.
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The rest of this article is organized as follows. Section II
reviews the existing literature on road extraction from remotely
sensed images and the application of floating vehicle trajectory
data in remote sensing. In Section III, we describe the design
framework of road extraction in detail. The proposed method is
applied to selected test cases, and the experimental results are
reported in Section I'V. Finally, Section V concludes this article.

II. RELATED WORK

In this section, we present an overview of the applications
of deep learning-based road extraction and floating vehicle
trajectory data in remote sensing.

A. Deep Learning-Based Road Extraction

Deep learning method has developed rapidly in the past
decades and attracted the attention of experts in the field of road
extraction. In 2010, Minh er al. attempted to apply neural net-
work technology to road extraction tasks with the city-level spa-
tial land cover [11]. Most of the recently developed algorithms
are based on FCNs with an encoder-to-decoder architecture.
To simplify the training of deep neural networks, Zhang et al.
proposed the residual U-Net, which combines the advantages
of U-Net with residual blocks [12]. To extract roads of various
widths, Gao et al. proposed a multifeature pyramid network
(MFPN) [13]. Chen et al. proposed a reconstruction bias U-Net
for road extraction from high-resolution optical remote sensing
images [14]. D-Linknet [15] is an efficient method in compre-
hensive performance of road extraction, which won first place
in the 2018 DeepGlobe Road Extraction Challenge. Despite its
advantages, the down sampling process of the encoder module
usually leads to a reduction in the boundary accuracy of the
road extraction results. To further improve the road extraction
accuracy, some scholars proposed a cascaded neural network
approach based on multitask learning to obtain road surfaces,
road centerlines, and road boundaries simultaneously [7], [8],
[16]-[18]. These approaches use mutually constrained multiple
tasks to achieve further improvement in road extraction accuracy.
However, in the case, where the roads are obscured by vegeta-
tion or shadows, the contextual information modeling approach
based on local receptive fields cannot establish the topological
relationships between the road segments separated by trees or
shadows, which leads to interrupted results of road extraction.

One of the solutions for the interruption of road extraction
results is to postprocess the pixel-level segmentation results of
roads. Chen et al. proposed a two-stage approach combining
road edge features and area features, which applies connection
analysis to discrete line elements with directional consistency
to extract potential road objects; potential road objects are then
evaluated by shape features to refine the road extraction results
[19]. Gao et al. first used a semantic segmentation model to ob-
tain pixel-level road segmentation results, and then used tensor
voting to connect the breaks [20]. Inspired by human behavior
of annotating roads, Batra et al. proposed a stacked multibranch
convolution model and connectivity optimization method based
on “orientation learning” [21]. This method can correctly predict
road topology and connect blocked roads. Tao et al. focused
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on the modeling of road context information and put forward
a well-designed spatial information reasoning structure [22].
These methods improve the continuity of the road network at
the pixel level. However, they do not construct the road network
topology.

Another solution idea is to use generative adversarial net-
works to estimate roads that are covered by trees or shadows. To
this end, Zhang et al. developed a novel road extraction method
based on an improved generative adversarial network [23].
Yang et al. designed a recurrent CNN unit that exploits spatial
background and low-level visual features, thereby alleviating
detection problems caused by noise, occlusion, and complex
road backgrounds [24]. Zhang et al. proposed a multisupervised
generative adversarial network, which learns how to reconstruct
obscured roads based on the relationship between visible road
areas and road centerlines [25]. Although these methods can
solve part of the road occlusion problem, it is still difficult to
obtain accurate and complete road information using only a
single data source in the face of complex road background.

B. Applications of Floating Vehicle Trajectory Data in Remote
Sensing

Floating vehicle trajectory data from urban cabs contains rich
traffic dynamic information, which is a low-cost, wide cover-
age and high presentational GPS information collection means.
Some researchers have shown that floating vehicle trajectory
data with trajectory correction can restore the road information
under the shadow of tree canopy or buildings [10].

Considering the wide distribution of floating vehicle trajec-
tories, probabilistic and statistical based methods are the main
methods to extract road information from low precision GPS
trajectories [26]. To ensure the extraction accuracy, the trajectory
data must be preprocessed first, i.e., the trajectory correction.
Existing correction methods (e.g., Hidden Markov Model-based
[27], incremental route-based [28], and location sequence-based
[29] methods, etc.) usually rely on existing map data and require
multiple iterations, which is less efficient if long sequences of
floating vehicle trajectory data are encountered. At the same
time, sparse or interwoven GPS trajectories can cause the algo-
rithm to mis-match trajectory points at intersections or multilane
roads [30].

The extraction of trajectory features usually uses clustering
methods, which include distance-based clustering, identifier-
based clustering, and map-based clustering. Among the
distance-based methods, Euclidean distance is a popular metric
to measure the similarity of trajectories [31], but the method
incurs a huge computational overhead because of the need to
calculate the distance for each pair of trajectories [32]. Similarly,
the identifier-based approach incurs additional communication
and computational overhead [33]. The map-based approach
achieves trajectory clustering by matching the baseline map with
the intermediate representation of the trajectory, but it cannot
achieve high precision clustering well due to the complexity of
the road map [34].

Although the road extraction method based on GPS trajectory
has many advantages, it also has the following shortcomings:
1) due to the positioning accuracy, the floating vehicle trajectory
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will appear to offset the road phenomenon. For such problems,
existing studies focus on matching floating vehicle trajectories
with maps to eliminate position offset, while there are fewer
studies on matching floating vehicle trajectories with remote
sensing images; 2) although massive floating vehicle data can
accurately extract road information, the large data volume leads
to an exponential increase in geometric complexity, computa-
tional complexity, and storage space. Meanwhile, in emergency
or less economically developed areas, floating vehicle trajectory
data are scarce, and the road information extracted by using
floating vehicle trajectories alone is incomplete, so it needs to
be combined with other data sources for joint extraction.

III. PROPOSED APPROACH

The objective of this study is to design an efficient approach to
extract road information from open data, including satellite im-
ages and floating vehicle trajectory data. The proposed method
consists of the following four main steps: first, a least squares-
based trajectory correction method was used for floating vehicle
data filtering and registering; then a dual attention module was
proposed to fusion road features; and the module was used to
construct a dual attention based dilated-LinkNet architecture;
then, a weighted loss function was described in detail; finally,
transfer learning for pretrained model is introduced.

A. Least Squares-Based Trajectory Correction for Floating
Vehicles

The first step is to filter the floating vehicle trajectory data. The
key is the difference of the distribution characteristics between
the floating vehicle trajectory data falling into the road and
the background in the “space—time—spectrum” dimension, and
this article proposes to use particle filtering to eliminate the
redundant floating vehicle trajectory data [35].

Then, the remaining trajectory data are corrected using satel-
lite images. Fig. 1 gives the flowchart of joint correction of
floating vehicle trajectory based on least squares feature match-
ing. First, the vehicle turning point class clusters are extracted
from the filtered floating vehicle trajectory data, then the road
intersections are extracted from satellite images and vehicle
turning point data using deep learning and similarity clustering
method, respectively [36], [37]. Finally, the least square method
is used to match and fit the extracted intersection centroid data,
and an adjustment model is constructed to correct the floating
vehicle trajectory data.

Assuming the road intersections extracted from the images as
an independent point set P and the road intersections extracted
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from the floating vehicle trajectories as another independent
point set O, find a set of transformations (R, T) consisting of
a rotation matrix R, and a translation matrix 7. The alignment
matching transformation of the two point-sets minimizes the
following objective function:

N
ERT) =5 Y ln-Ra+DP @
1 =1
where the rotation matrix R and translation matrix 7 are the rota-
tion parameters and translation parameters between the floating
vehicle trajectory data and images, such that the optimal match-
ing between two intersection point sets satisfies the Euclidean
distance minimization criterion.
The algorithm is an iterative process with the following steps.
1) Search the point set P and Q with initial value Q, define
the maximum number of iterations ky,.y, initialize the
rotation matrix R and translation matrix 7.
2) For each point g; in the target point set Q, find the point
p. with the smallest Euclidean distance from the point set
P to form a point pair (p;, g;)-
3) Use the point pairs in 2) to calculate the rotation matrix R
and the translation matrix 7 and substitute the calculated
R and T into (1) to minimize its value.
4) The transformation matrix after k iterations is expressed
as Ry, and T, and then Q is calculated:

Q = Rr Qo+ 1Ty 2

5) If the value of E(R, T) is greater than the set threshold and
at the same time the number of iterations has not reached
kmax, then restart the iteration, and vice versa stop the
iteration and exit.

B. Dual Attention Module

In the field of image recognition, feature extraction based on
attention mechanism belongs to an emerging theoretical system.
The core applied idea of the attention mechanism lies in how to
make the system model learn to focus only on the information
that needs to be studied in the research and choose to ignore the
information that is not related to the research project.

The introduction of the attention mechanism allows flexible
weighting of road features from different data sources during the
learning process, thus enhancing the accuracy of the valid road
features eventually acquired and thus extracting road contours
more efficiently from the background interference information
(e.g., vehicles, pedestrians, standing water, sunlight reflections,
etc.) of complex data images.

This study adopts the image numerical mask to construct the
attention mechanism, which is implemented by designing a new
weight distribution layer to extract and mark the core road feature
information from the target image, and then extract the road
features from the spatial domain and channel domain of the
target image in turn to form dual attention.

1) Spatial Attention Module: As shown in Fig. 2, a local
feature map X € RE*H*W is first passed through three convo-
lutional layers to obtain three feature maps A, B, and C, respec-
tively, where {A, B, C} € RE*#*W Then they are reshaped
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to RE*N  where N = H x W is the number of pixels, after
which the transpose of the reshaped A is multiplied with the

reshaped B and then the spatial attention map M € RV*V is
obtained by softmax
exp (A4; - B;
mji = ( i) (3)

L exp (4; - By)
where m ;; measures the ith position’s impact on the jth position.
Note that the more similar feature representations of the two
positions contribute to greater correlation between them.

Then, we perform a matrix multiplication between C and the
transpose of M and reshape the result to RE*#*W Finally, it is
multiplied by the scale factor o and summed with X to get the
final output spatial attention matrix E

N
« Z (mJZCZ) + Xj (4)

j=1

E; =

where « is initialized as 0 and gradually learns to assign more
weight. It can be inferred from (4) that the resulting feature E at
each position is a weighted sum of the features at all positions
and original features.

2) Channel Attention Module: The structure of CAM is il-
lustrated in Fig. 3. Different from the SAM, we directly calculate
the channel attention map S € R“*“ from the original features
X € REH*W gpecifically, we reshape X to R“*V, and then
perform a matrix multiplication between X and the transpose
of X. Finally, we apply a softmax layer to obtain the channel
attention map S € R€*¢":

exp (X i X j)
> e (Xi- X))
where s;; measures the ith channel’s impact on the jth channel.

In addition, we perform a matrix multiplication between the
transpose of S and X and reshape their result to RE*H*W

S = 5)
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Then, we multiply the result by a scale parameter 5 and
perform an element-wise sum operation with X to obtain the
final output £ € RE*HxW

C
Ei= B (siX)+X; (6)
i=1

where /5 gradually learn a weight from 0. The Equation shows
that the final feature of each channel is a weighted sum of the
features of all channels and original features, which models
the long-range semantic dependencies between feature maps.
It emphasizes class-dependent feature maps and helps to boost
feature discriminability.

In addition, the original D-LinkNet model’s segmentation
network structure is a direct sampling operation using linear
interpolation, which can be considered as a reproduction of the
classical end-to-end neural network architecture, and the entire
model is built without introducing redundant learning parame-
ters and without the need for extensive additional computation
for other parameters. Therefore, when introducing the attention
mechanism, the attention module can be directly added to the
D-LinkNet network without worrying about the learning time
due to the explosive increase in computation and running time,
which may lead to a decrease in the feasibility of the algorithm.

C. DAD-LinkNet Architecture

The architecture of the proposed DAD-LinkNet is an encoder—
decoder model. The network is built with D-LinkNet architec-
ture and has dilated convolution layers in its center part. Dilation
convolution is a powerful tool that can enlarge the receptive field
of feature points without reducing the resolution of the feature
maps.

This study introduces the self-attentive mechanism by re-
ferring to the dual-attention network structure, which adopts a
cascade as the connection method to extract the road information
from the spatial domain of the vehicle trajectory and the channel
domain of the image to obtain the road features in the image more
accurately.

As shown in the Fig. 4, the dotted box A and B parts are
two attention modules. In the modified version of D-LinkNet
structure, the attention module A is connected to the left side of
the pretrained ResNet34 structure as an encoder to preactivate
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the feature extraction capability of the network, and the five
branches in the central region of the model are added to the
dilated convolution operation module. Through the “pooling”
operation of dilated convolution, the range of perceptual field
can be increased without losing feature information, so that the
rod features can be extracted more efficiently and the fusion of
features with multiple depths and sizes can be accomplished.
The fusion method of feature “stacking” is adopted, and there is
no postprocessing operation.

The arrows with numbers in the Fig. 4 indicate the depth of
the convolutional neural network, the depth of the five branches
is from 5 to 1 in order, and the size of the receptive field is set
to 15, 7, 3, 1, and 0. Afterward, a 1x1 convolutional layer is
added for feature fusion. Finally, the road prediction probability
map with the same size as the initial input image is obtained by
using the normalization function and activation function. The
final segmented road binary image is obtained.

D. Loss Function

Loss function is a nonnegative real-valued function used in
the machine learning process to estimate the difference be-
tween the predicted value and the true value obtained by the
model after learning. The smaller the loss function, the better
the performance of the model. In the current research field of
image segmentation, the main two ways of constructing the loss
function are binary cross entropy loss (BCE) and dice coefficient
loss (DICE).

BCE enables the output prediction to match the road dataset
to the maximum extent, which can satisfy the optimization to
reduce the error; while DICE, as a function to measure the
similarity between sets, can be used to compare the similarity
between two samples. The gradients of these two loss functions
are calculated differently, and the gradient value of DICE is much
larger than the gradient value of BCE. Referring to the parameter
settings in DANet, a concept of hyperparametric loss function
is introduced here. The new hyperparametric loss function is
weighted by the two loss functions BCE and DICE, and the
different weighting ratios of these two loss functions are adjusted
by conducting several experiments, to optimize the final road
segmentation results and find the best parameter values to make
the results with the best accuracy. The hyperparametric loss is
calculated by

Hyoss = H (p,q) + A x DiceLoss (7
H(p,q) = =Y plxi)log(q (i) ®)
i=1
21 XNY
DiceLoss = 1 — |)|(| m Y: €)

where H)oss denotes the hyperparametric loss, H(p, q) is the
BCE loss, DiceLoss is the DICE loss, A denotes the weight ration
of DICE to BCE, | X| denotes the ground truth, |Y'| denotes the
predict road mask.
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E. Transfer Learning for Pretrained Model

Transfer learning is an extremely effective method currently
used in the field of computer vision. Its basic idea is to make full
use of the correlation between existing knowledge and learning
objectives, and transfer knowledge from the existing model
to the new learning model. In deep learning, transfer learning
involves sharing the expressions and connection weights of some
common features learned by deep neural networks.

Because the common features of the same data type (e.g.,
urban roads) are not much different, we first select some urban
road datasets from the Massachusetts Road Dataset and NWPU
VHR-10 Dataset for pretraining and use the weight sharing
method to make the model parameters initialized at the position
near the optimal parameters. As a result, transfer learning can
reduce the initial error (loss), speed up the convergence of
training, and improve accuracy.

IV. EXPERIMENTAL RESULTS

To evaluate the proposed method, we carry out comprehensive
experiments on three datasets. To assess extraction accuracy,
we use a confusion matrix to evaluate the model performance.
Four metrics are utilized to evaluate the extraction performance,
including the following:

1) Precision (P): P = L

2) Recall R): R = 775

3) Fl-score (F): F' = %
4) IoU: IoU = %-

Here, TP, FP, TN, and FN denote true positive, false positive,
true negative, and false negative, respectively.

Experimental results demonstrate that DAD-LinkNet
achieves state-of-the-art performance on three datasets. In the
next sections, we first introduce the datasets and implementation
details, then we perform a series of road extraction experiments
on the three datasets.

A. Dataset Description

In our experiments, two well-known remote-sensing datasets:
Massachusetts Road Dataset [38], NWPU VHR-10 dataset [39],
and a Wuhan dataset containing satellite image and floating
vehicle data are used for evaluation.

Massachusetts Road Dataset: This dataset is a common
dataset in the field of road extraction, which contains road
network images of major roads in Marseilles, and it includes
various road types such as urban roads, suburban roads, and
rural roads, as well as some disturbing factors (pedestrians, ve-
hicles, standing water, etc.) commonly found in the field of road
network extraction. The 1171 road images of the Massachusetts
road dataset were cleaned to remove the 398 images with severe
missing images, and 700 of them were used as the sample data
source for pretraining.

NWPU VHR-10 Dataset: This dataset contains 800 high-
resolution satellite images that were cropped from Google Earth
and Vaihingen datasets and then manually annotated by experts.
The dataset is divided into 10 categories (aircraft, ships, storage
tanks, baseball fields, tennis courts, basketball courts, surface
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Fig. 5. The spatial extent of Wuhan dataset. (a) is the imagery data, (b) is the
floating vehicle trajectory data.

runways, ports, bridges, and vehicles). For better road extraction
experiments, 325 of these images suitable for road extraction
learning are manually selected as samples.

Wuhan Dataset: This dataset, as shown in Fig. 5, consists
of a four-band satellite image and floating vehicle data. The
imagery was collected by the Pleiades satellite and shows an
area of Wuhan city. The image has a spatial size of 9331 pixels x
13367 pixels and a spatial resolution of 0.5 m/pixel. The floating
vehicle trajectory data was collected through GPS instruments
on cabs in Wuhan. The collection period was from 04/24/2015
to 04/30/2015.

B. Data Preprocessing

A series of preprocessing operations are performed on differ-
ent images in the dataset to reduce the learning time. Since the
training time increases exponentially due to the large resolution
of the target image, the images used in the dataset are first
segmented. The segmented images are uniformly processed into
square image blocks of 512 pixels in length and width. Second, to
improve the accuracy of the result, a small block of 512 pixels
in length and width is also cropped to achieve a simple data
enhancement. Finally, some of the images are randomly selected
to be rotated, mirrored, and color adjusted to further enhance the
data enhancement effect.

The floating car trajectory data is processed by thinning
algorithm, a buffer zone is set in the trajectory data map to select
samples, the vector point data is converted into corresponding
rasterized data by ArcGIS software, and vectorized road network
geometric data can be obtained by coordinate transformation
and accuracy calibration operations, and then this part of data
is processed according to the format of image dataset as the
expansion of dataset.

C. Implementation Details

We conducted all the experiments on an HP Omen Station
with the following specification: Central processing Unit Intel
i7-7700HQ 2.80GHz with a RAM of 32GB and an NVIDIA
GeForce GTX 2080 Graphical Processing Unit (with a RAM of
16GB) . All codes were implemented using Pytorch 1.5, and the
programming environment is Python 3.6.

We employ a poly learning rate policy, where the initial learn-
ing rate is multiplied by (1 — —1%__)0-9 after each iteration.

total_iter
The base learning rate is set to 0.0l for Massachusetts Road
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Fig.6. Road extraction results of experiment 1. (a) original image. (b) ground
truth. Road extraction results using (c) D-Link Net, (d) U-Net, (¢) DAD-LinkNet
(weighted loss function), (f) DAD-LinkNet (unmodified loss function).

TABLE I
RESULTS OF ROAD EXTRACTION IN EXPERIMENT 1

Methods Precision Recall Fl-score IoU
U-Net 0.7723 0.7604 0.7138 0.6564
D-LinkNet 0.8308 0.7498 0.7719 0.6447
DAD-LinkNet
(unmodified 0.8553 0.7702 0.7802 0.6576
loss function)

DAD-LinkNet
(weighted loss 0.8430 0.7892 0.7814 0.6774

function)

Dataset. Momentum and weight decay coefficients are set to
0.95 and 0.001, respectively.

The proposed model is trained with synchronized BN. Batch-
size are set to 4 for Massachusetts Road Dataset and 6 for
other datasets. When adopting multiscale augmentation, we set
training time to 120 epochs for NWPU VHR-10 Dataset and 140
epochs for other datasets. The weighted loss function on the end
of the network is adopted when two attention modules are used.

D. Experiment 1

In the first experiment, the presented method is validated
using the images from Massachusetts Road Dataset and NWPU
VHR-10 Dataset. In the experiment, a total of 1315 images
with roads were used and increased to 3010 images by data
enhancement and complementation, and these datasets were
divided into training, testing, and validation sets in the ratio
of 7:2:1.

Fig. 6 shows the visual comparison among the proposed
model, i.e., DAD-LinkNet, with U-Net, and D-LinkNet. It can be
found that incomplete extractions exist in all methods. However,
in terms of road integrity, DAD-LinkNet can obtain a more
complete road structure. Table I records the quantitative results
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of the comparison among the selected networks. From the ex-
perimental metrics, DAD-LinkNet achieves higher scores than
other methods in all evaluating metrics. This phenomenon can
be explained by the fact that the image features extracted by
the encoder component are shared in the latter dual attention
module, leading to the correlation between spatial and channel
domain output results to a certain extent.

Due to the complexity of the roads in the original image, the
road extraction results obtained based on D-LinkNet network
and U-Net network have some blurring, adhesion, and misjudg-
ment of the adjacent roads, such as the parts marked in red box
in Fig. 6(c) and (d). In particular, the extraction results based
on the D-LinkNet network may even result in “broken roads”
due to misjudgment, and there is also the problem of incomplete
road structure compared with the ground truth due to omission
in the extraction and acquisition of road structure information.
DAD-LinkNet can effectively extract the main structure of the
road, preserving the details even in some challenging scenes,
which proves the effectiveness and superiority of our proposed
method.

E. Experiment 2

The floating vehicle trajectory data in Wuhan dataset was
used in the second experiment. It is composed of a series
of trajectory points, each trajectory point contains the coding
information, position information, and time information of the
vehicle. Therefore, the spatial information of the road network
is extracted from these data, and the corresponding trajectory
lines are formed by connecting the trajectory points, followed
by making a buffer zone of distance ~ for each trajectory line
and fusing them into the surface elements of single components.
Because the trajectories of local roads are sparse, when the
maximum distance between trajectories exceeds twice the radius
of buffer v, the fused surface elements of road buffers are easy
to form holes inside the roads, and it is necessary to fill the holes
according to the area of holes using mathematical morphology
before binarization. The rasterized floating vehicle trajectory
data can reduce the computational complexity on the one hand,
and at the same time can compensate for the shadows and occlu-
sions in the remote sensing images, providing complementary
road features.

Fig. 7 shows the results extracted from the remote sensing
image and the floating vehicle trajectory data, and the fused re-
sults, respectively. Based on the proposed DAD-LinkNet model,
it can better extract small roads and complex road networks that
may exist in the original image, accurately segment narrow road
edges on the extracted road contours without blurred pixels,
and more efficiently, accurately, and completely preserve the
road details in remote sensing images. It can also cope with
situations, where there is no floating vehicle trajectory. However,
there are some discontinuities in the road results extracted based
on DAD-LinkNet model due to shadows or vegetation occlusion,
etc. And the roads obtained based on floating vehicle trajectory
data can make up for the deficiencies in the results extracted by
DAD-LinkNet model, and more complete and accurate results
can be obtained by fusing the two results. According to the
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Fig. 7.
(e) DAD-LinkNet +GPS data.

TABLE II
RESULTS OF ROAD EXTRACTION IN EXPERIMENT 2

Road extraction results of experiment 2. (a) original image. (b) ground truth. Road extraction results using (c) DAD-LinkNet, (d) rasterized GPS data,

TABLE III
EXPERIMENTAL RESULTS OF ROAD EXTRACTION WITH DIFFERENT WEIGHTS

Methods Precision Recall F1-score IoU Ratios of @ and b 1: 2 1: 3 1: 4 1: 5
GPS data 0.6467 0.5477 0.5777 0.4327 loU 0.963 0972 0.979 0.967
DAD-LinkNet 0.9526  0.6307  0.7549 0.6111 Recall 0.763 0.769 0.779 0.774
DAD- Precision 0.834 0.837 0.847 0.842

0.8079 0.7941 0.8012 0.6592

LinkNet+GPS data

experimental results, the quality and completeness of the whole
road extraction are improved by fusing the road results extracted
from the satellite images and the floating vehicle trajectory data.
This is also verified from the statistics in Table II.

V. DISCUSSION

In this section, we explore the influence of different weight
parameter selections and the attention mechanism and weighted
loss function on the experimental results.

A. Optimal Weighting Parameter Test

For the selection of the weight parameters of the loss function,
to obtain the most suitable parameters, let the weight coefficient
of BCE loss be a and the weight coefficient of DICE loss be b.
For the convenience of implementation, set the value of a to 1
and adjust the value of b. Since the impact of DICE loss function
on the final loss of the network model is much smaller than the
impact of BCE function on the final loss of the model, several
groups of ratios of @ and b are preset here for the test as 1:2, 1:3,
1:4, and 1:5, respectively. These ratios are used as the weight
ratios for the a priori test, and the final error values are calculated
under these ratios to find the weight ratio with the best results.

After setting the corresponding ratios of a and b parameters,
the learning iterations are performed separately, and the final
performance is compared under different parameters. Table III
shows the different evaluation metrics of the road extraction
results with different ratios, from which it can be found that the
improved network model has the best performance when the
ratio of @ and b is 1:4.

B. Attention Mechanism and Weighted Loss Function Can
Improve the Quality of Road Extraction

To investigate the effects of attention mechanism and loss
function on road extraction results, U-Net network, D-LinkNet
network, and DAD-LinkNet network (unmodified loss function)
and DAD-LinkNet network (weighted loss function) were used
for road extraction, and the changes of precision, recall, and
IoU of different network models after increasing the number
of iterations were recorded, and the results are shown in the
following figures.

1) In terms of precision. As can be seen from Fig. 8, when
the number of iterations is less than 60, the D-LinkNet
network, DAD-LinkNet network (unmodified loss func-
tion), and DAD-LinkNet network (weighted loss func-
tion) have little difference in precision, but all signifi-
cantly outperform the U-Net network. After 90 iterations,
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the DAD-LinkNet network (weighted loss function) sig-
nificantly outperforms the D-LinkNet network in terms
of precision and improves the precision compared to the
DAD-LinkNet network (unmodified loss function).

2) In terms of recall. From the experimental results shown
in Fig. 9, when the number of learning iterations is small,
D-LinkNet network, DAD-LinkNet network (unmodified
loss function), and DAD-LinkNet network (weighted loss
function) do not differ much, but U-Net network sig-
nificantly outperforms the other methods. However, as
the number of iterations increases, both modified DAD-
LinkNet networks show a tendency to outperform the
U-Net as well as the D-LinkNet networks in terms of
recall. Also, by comparing the average rate of change
of recall (i.e., the average slope in the image) during the
100 iterations of learning, it can be found that the average
rate of change of recall of both improved DAD-LinkNet
networks is greater than that of the D-LinkNet network,
showing that the improved network structure is more
efficient in learning compared with the original version
of the D-LinkNet network as well as the U-Net network.
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Moreover, after the number of learning iterations reached
100, the recall rates of the two improved DAD-LinkNet
networks improved compared to the U-Net and D-LinkNet
network models.

3) In terms of IoU. As can be seen from Fig. 10, the IoU of
DAD-LinkNet network (weighted loss function) exceeds
the other three networks after the number of learning
iterations is greater than 65, which illustrates the ratio-
nality of improving the D-LinkNet network based on the
attention mechanism in this paper; meanwhile, the IoU of
DAD-LinkNet network (weighted loss function) has been
greater than the IoU of DAD-LinkNet network (unmod-
ified loss function) since the beginning of the iteration,
which illustrates that the weighted loss function proposed
in this article can improve the quality of road extraction
results.

Referring to the above three evaluation metrics, it can be found
that the comprehensive performance of the two improved DAD-
LinkNet networks has been significantly optimized over both
U-Net and D-LinkNet networks. Moreover, the DAD-LinkNet
network with weighted loss function is significantly better than
the network with the original version of loss function, which
proves the superiority of the DAD-LinkNet network proposed
in this article.

VI. CONCLUSION

In this article, we have presented a modified road extraction
network DAD-LinkNet for multisource heterogeneous remote
sensing data, which adaptively integrates local semantic features
using the self-attention mechanism. To address the distribu-
tion differences between the source and target domains, we
introduce a dual attention mechanism to capture heterogeneous
road features and improve the loss function by introducing a
weight parameter to improve the accuracy of the road extraction
results. The experiment results demonstrate that this method
can effectively improve the accuracy of road extraction from
multisource heterogeneous remote sensing data.
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