
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021 10357

Wide-Area Land Cover Mapping With Sentinel-1
Imagery Using Deep Learning Semantic

Segmentation Models
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Abstract—Land cover (LC) mapping is essential for monitoring
the environment and understanding the effects of human activities
on it. Recent studies demonstrated successful applications of spe-
cific deep learning models to small-scale LC mapping tasks (e.g.,
wetland mapping). However, it is not readily clear which of the
existing state-of-the-art models for natural images are the best
candidates to be taken for the particular remote sensing task and
data. In this article, we answer that question for mapping the funda-
mental LC classes using the satellite imaging radar data. We took
ESA Sentinel-1 C-band SAR images acquired during the whole
summer season of 2018 in Finland, which are representative of the
land cover in the country. CORINE LC map was used as a reference,
and the models were trained to distinguish between the five major
CORINE-based classes. We selected seven among the state-of-the-
art semantic segmentation models so that they cover a diverse
set of approaches: U-Net, DeepLabV3+, PSPNet, BiSeNet, SegNet,
FC-DenseNet, and FRRN-B, and further fine-tuned them. Upon
evaluation and benchmarking, all the models demonstrated solid
performance with overall accuracy between 87.9% and 93.1%,
with good to a very good agreement (Kappa statistic between 0.75
and 0.86). The two best models were fully convolutional DenseNets
(FC-DenseNet) and SegNet (encoder-decoder-skip), with the latter
having a much shorter inference time. Overall, our results indicate
that the semantic segmentation models are suitable for efficient
wide-area mapping using satellite SAR imagery and provide base-
line accuracy against which the newly proposed models should be
evaluated.

Index Terms—C-band, CORINE, deep learning, image
classification, land cover (LC) mapping, semantic segmentation,
sentinel-1 data, synthetic aperture radar (SAR).

I. INTRODUCTION

MAPPING of land cover (LC) and its change has a critical
role in the characterization of the current state of the
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environment. The changes in LC can be due either to human
activities as well as caused by climate changes on a regional
scale. The LC, on the other hand, affects climate through water
and energy exchange with the atmosphere and by changing
carbon balance. Because of this, LC belongs to the essential
climate variables [1]. Hence, timely assessment of LC and its
change is one of the most important applications in satellite
remote sensing. Thematic maps are needed annually for various
purposes in medium resolution (circa 250 m) with less than 15%
measurement uncertainty, and in high resolution (10–30 m) with
less than 5% uncertainty.

CORINE LC (CLC) is a notable example of a consistent
Pan-European LC mapping initiative [2], [3] coordinated by
the European Environment Agency (EEA).1 CORINE stands
for coordination of information on the environment. It is an
ongoing long-term effort providing harmonized land cover data
in Europe with updates approximately every four years. The
CORINE maps are an important source of LC information suit-
able for operational purposes also for various customer groups
in Europe. It has altogether 44 classes, though many of them
are not strictly ecological classes but rather land use classes. On
the continental scale, CORINE provides a harmonized map with
a 25-ha minimum mapping unit (MMU) for areal phenomena,
and a minimum width of 100 m for linear phenomena [4]. Na-
tional LC maps in the CORINE framework can exhibit smaller
mapping units. In Finland, the latest revision of the CORINE
LC map at the time of this study was the year 2018 version
produced by the Finnish Environment Institute. The map has an
MMU of 20× 20 m and was produced by a combined automated
and manual interpretation of the high-resolution satellite optical
data followed by the data integration with existing basic map
layers [5].

The state-of-the-art approaches used for LC mapping mainly
rely on satellite optical imagery. The key role is played by the
Landsat imagery often augmented by the MODIS or SPOT-5
imagery [6]–[8]. Other sources of information employed for
LC mapping include digital elevation models (DEM) and very
high-resolution imagery [9]. When it comes to large-scale and
multitemporal LC mapping, a more recent optical imagery

1[Online]. Available: https://land.copernicus.eu/pan-european/corine-land-
cover
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source is Copernicus Sentinel-2. With a revisit of five days, it
has become another key data source [10].

International programs, such as the European Space Agency’s
(ESA’s) Copernicus [11] behind the Sentinel satellites are taking
significant efforts to make Earth observation (EO) data freely
available for commercial and noncommercial purposes. The
Copernicus programme is a multibillion investment by the EU
and ESA aiming to provide essential services based on accurate
and timely data from satellites. Its main goals are to improve the
ways of managing the environment, to help mitigate the effects
of climate change, and enable the creation of new applications
and services, such as environmental monitoring and urban de-
velopment.

The provision of free satellite data for mapping in the frame-
work of such programs also enables the application of methods
that could not be used earlier because they require vast and
representative datasets for training, for example, deep learning.
In recent years, deep learning has brought about several break-
throughs in pattern recognition and computer vision [12]–[14].
The success of the deep learning models can be attributed to both
their deep multilayer structure creating nonlinear functions and,
hence, allowing extraction of hierarchical sets of features from
the data, and to their end-to-end training scheme allowing for
simultaneous learning of the features from the raw input and pre-
dicting the task at hand. In this way, the heuristic feature design
is removed. This is advantageous compared to the traditional
machine learning methods [e.g., support vector machine (SVM)
and random forest (RF)], which require a multistage feature
engineering procedure. In deep learning, such a procedure is
replaced with a simple end-to-end deep learning workflow. One
of the key requirements for the successful application of deep
learning methods is a large amount of data available from which
the model can automatically learn the representative features
for the prediction task [15]. The availability of open satellite
imagery, such as from Copernicus, offers just that.

The LC mapping systems based solely on optical imagery
suffer from issues with cloud cover and weather conditions,
especially in the tropical areas, and with a lack of illumination
in the polar regions. Among the free satellite data offered by
the Copernicus programme are synthetic aperture radar (SAR)
images from the Sentinel-1 satellites. SAR is an active radar
imaging technique that does not require illumination and is
not hampered by cloud cover due to penetration of microwave
radiation through clouds. The utilization of SAR imagery, hence,
would allow mapping such challenging regions and increasing
the mapping frequency in the orchestrated efforts like CORINE.
One of the significant issues previously was the absence of timely
and consistent high-resolution wide-area SAR coverage. With
the advent of Copernicus Sentinel-1 satellites, operational use
of imaging radar data becomes feasible for consistent wide-
area mapping. The first Copernicus Sentinel-1 mission was
launched in April 2014. First, Sentinel-1 A alone was capable of
providing C-band SAR data in up to four imaging modes with a
revisit time of 12 days. Once Sentinel-1B was launched in 2016
the revisit time has reduced to six days [11].

We studied wide-area SAR-based LC mapping by method-
ologically combining the two discussed recent advances: The
improved methods for large-scale image processing using deep

learning and the availability of SAR imagery from the Sentinel-1
satellites.

A. Land Cover Mapping With SAR Imagery

While using optical satellite data is still a mainstream in LC
and LC change mapping [5], [16]–[19], SAR data has been
getting more attention as more suitable sensors appear. To date,
several studies have investigated the suitability of SAR for
LC mapping, focusing primarily on L-band, C-band, and X-
band polarimetric [20], [21], multitemporal, and multifrequency
SAR [22] [23], as well as, on the combined use of SAR and
optical data [24]–[28].

Independently of the imagery used, the majority of LC
mapping methods so far are based on traditional supervised
classification techniques [29]. Widely used classifiers are sup-
port vector machines (SVM), decision trees, random forests
(RF), and maximum likelihood classifiers (MLC) [7], [9], [22],
[29]. However, extracting a large number of features needed
for classification, i.e., the feature engineering process, is time
intensive, and requires lots of expert work in developing and
fine-tuning classification approaches. This limits the applica-
tions of the traditional supervised classification methods on a
large scale.

Backscattered microwave radiation is composed of multiple
fundamental scattering mechanisms determined by the vegeta-
tion water content, surface roughness, soil moisture, horizontal
and vertical structure of the scatterers, as well as imaging geom-
etry during the datatake. Accordingly, a considerable number
of classes can be differentiated in SAR images [20], [30].
However, majority of SAR classification algorithms use fixed
SAR observables (e.g., polarimetric features) to infer specific LC
classes, despite the large temporal, seasonal, and environmental
variability between different geographical sites. This leads to a
lack of generalization capability and a need to use extensive and
representative reference data and SAR data. The latter means the
need to account for not only all variation of SAR signatures for
a specific class but also the need to consider seasonal effects, as
changes in moisture of soil and vegetation, as well as frozen state
of land [31] that strongly affect SAR backscatter. On the other
hand, when using multitemporal approaches, such seasonal vari-
ation can be used as an effective discriminator among different
LC classes.

When exclusively using SAR data for LC mapping, reported
accuracy often turns out to be relatively low for operational LC
mapping and change monitoring. Methodologically, reported so-
lutions utilized supervised approaches, linking SAR observables
and class labels to pixels, superpixels, or objects in parametric
or nonparametric manner [19], [20], [30], [32]–[37].

However, tackling relatively large number of classes was
considered only in several studies, often with relatively low
reported accuracies. For instance, in [38] it was found that
P-band PolSAR imagery was unsatisfactory for mapping more
than five classes with the iterated conditional mode contex-
tual classifier applied to several polarimetric parameters. They
achieved a Kappa value of 76.8% when mapping four classes.
Classification performance of the L-band ALOS PALSAR and
C-band RADARSAT-2 images was compared in the moist
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tropics [39]. L-band provided 72.2% classification accuracy for
a coarse LC classification system and C-band only 54.7%. In a
similar study in Lao PDR, ALOS PALSAR data were found to
be mostly useful as a back-up option to optical ALOS AVNIR
data [19]. Multitemporal Radarsat-1 data with HH polarization
and ENVISAT ASAR data with VV polarization (both C-band)
were studied for classification of five LC classes in Korea with
moderate accuracy [40]. Waske et al. [22] applied boosted de-
cision tree and RF to multitemporal C-band SAR data reaching
accuracy up to 84%. Several studies [41], [20] investigated
specifically SAR suitability for the boreal zone, with reported
accuracy up to 83% depending on the classification technique
(maximum likelihood, probabilistic neural networks, etc.) when
five super-classes (based on CORINE data) were used.

The potential of Sentinel-1 imagery for CORINE-type the-
matic mapping was assessed in a study that used Sentinel-1 A
data for mapping class composition in Thuringia [30]. Long-
time series of Sentinel-1 SAR data are considered especially
suitable for crop type mapping [42]–[45], with increased number
of studies attempting LC mapping in general [46], [47].

Moreover, as Sentinel-1 data are presently the only free
source of SAR data routinely available for wide-area mapping
at no cost for users, it seems to be the best candidate data for
development and testing of improved classification approaches.
Previous studies indicate a necessity for developing and testing
new methodological approaches that can be effectively applied
to a large-scale and deal with the variability of SAR observ-
ables concerning ecological LC classes. We suggest adopting
state-of-the-art deep learning approaches for this purpose.

B. Deep Learning in Remote Sensing

The advances in the deep learning techniques for computer
vision, in particular, convolutional neural networks (CNNs) [12],
[48], have led to the application of deep learning in several
domains that rely on computer vision. Examples are self-driving
cars, image search engines, medical diagnostics, and augmented
reality. Deep learning approaches are becoming extensively
applied in the remote sensing domain, as well.

Zhu et al. [49] provided a discussion on the specificities of
remote sensing imagery (compared to ordinary RGB images)
that result in specific deep learning challenges in this area. For
example, remote sensing data are georeferenced, often multi-
modal, with particular imaging geometries, there are interpre-
tation difficulties, and the ground-truth or labeled data needed
for deep learning is still often lacking. Additionally, most of
the state-of-the-art CNNs are developed for three-channel input
images (i.e., RGB) and so certain adaptations are needed to apply
them on the remote sensing data [50].

Nevertheless, several research papers tackling remote sensing
imagery with deep learning techniques were published in recent
years. Zhang et al. [51] review the field and find applications
to image preprocessing [52], target recognition [53], classifi-
cation [54], [55], and semantic feature extraction and scene
understanding [56]. The deep learning approaches are found to
outperform standard methods applied up to several years ago,
i.e., SVMs and RFs [57].

When it comes to deep learning for LC or land use mapping,
applications have been limited to optical satellite [50], [54], [58]
or aerial [59] imagery, and hyperspectral imagery [55], [58]
owing to the similarity of these images to ordinary RGB images
studied in computer vision [50].

When it comes to SAR images, Zhang et al. [51] found that
there is already a significant success in applying deep learning
techniques for object detection and scene understanding. How-
ever, for classification on SAR data, applications are scarce and
advances are yet to be achieved [51]. Published research includes
deep learning for crop types mapping using combined optical
and SAR imagery [57], as well as the use of SAR images exclu-
sively [60]. However, those methods applied deep learning only
to some part of the task at hand and not in an end-to-end fashion.
Wang et al. [54], for instance, just used deep neural networks
for merging oversegmented elements, which are produced using
traditional segmentation approaches. Similarly, Tuia et al. [55]
applied deep learning to extract hierarchical features, which they
further fed into a multiclass logistic classifier. Duan et al. [60]
used first unsupervised deep learning and then continued with a
couple of supervised labeling tasks. Chen et al. [58] applied a
deep learning technique (stacked autoencoders) to discover the
features, but then they still used traditional machine learning
(SVM, logistic regression) for the image segmentation. Unlike
those methods, we applied the deep learning in an end-to-end
fashion, i.e., from supervised feature extraction to the land class
prediction. This makes our approach more flexible, robust, and
adaptable to the SAR data from new regions, as well as more
efficient.

When it comes to the end-to-end approaches for SAR classi-
fication, there are several studies where the focus was on a small
area and a specific LC mapping task. For instance, Moham-
madimanesh et al. [61] used fully polarimetric SAR (PolSAR)
imagery from RADARSAT-2 to classify wetland complexes, for
which they have developed a specifically tailored semantic seg-
mentation model. However, the authors have tackled a small test
area (around10× 10 km) and have not explored how their model
generalizes to other types of areas. Similarly, Wang et al. [62]
adapted existing CNN models into a fixed-feature-size CNN that
they have evaluated on a small-scale RADARSAT-2 or AIRSAR
(i.e., airborne SAR data). In both cases, they have used more
advanced fully polarimetric SAR imagery at better resolution
as opposed to Sentinel-1, which means the imagery with more
input information to the deep learning models. Importantly, it
is only Sentinel-1 that offers open operational data with up
to every six days repeat. Because of this, the discussed ap-
proaches developed and tested specifically for PolSAR imagery
at a higher resolution cannot be considered applicable for a
wide-area mapping, yet. Similarly, Ahishali et al. [63] applied
end-to-end approaches to SAR data. They have also worked
with single polarized COSMO-SkyMed imagery. However, all
the imagery they considered was X-band SAR contrary to the
C-band imagery we use here and again only on a small scale.
The authors proposed a compact CNN model that they found had
outperformed some of the off-the-shelf CNN methods, such as
Xception and Inception-ResNet-v2. It is important to note that
compared to those, the off-the-shelf models that we consider
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here are more sophisticated semantic segmentation models,
some of which employ Xception or ResNet but only as a module
in their feature extraction parts.

In summary, the capabilities of the deep learning approaches
for the classification have been investigated to a lesser extent
for SAR imagery than for optical imagery. The attempts to use
SAR data for LC classification were relatively limited in scope,
area, or the number of used SAR scenes. Particularly, wide-
area LC mapping was never addressed. The reasons for this
include comparatively poor availability of SAR data compared to
optical (greatly changed since the advent of Sentinel-1), complex
scattering mechanisms leading to ambiguous SAR signatures for
different classes (which makes SAR image segmentation more
difficult than the optical image segmentation [64]), as well as the
speckle noise caused by the coherent nature of the SAR imaging
process.

C. Study Goals

Present study addresses the identified research gap of a lack
of wide-area land cover mapping using SAR data. We achieve
this by training, fine-tuning, and evaluating a set of suitable
state-of-the-art deep learning models from the class of semantic
segmentation models, and demonstrating their suitability for
land cover mapping. Moreover, our work is the first to examine
and demonstrate the suitability of deep learning for LC mapping
from SAR images on a large-scale, i.e., across the whole country.

Specifically, we applied the semantic segmentation models
on the SAR images taken over Finland. We focused on the
images of Finland because there is the LC mask of a suitable
resolution that can be used for training labels (i.e., CORINE).
The training is performed with the seven selected models (Seg-
Net [65], PSPNet [66], BiSeNet [67], DeepLabV3+ [68], [69],
U-Net [70], [71], FRRN-B [72], and FC-DenseNet [73]), which
have encoder modules pretrained on the large RGB image
corpus ImageNet 2012.2 Those models are freely available.3

In other words, we reused semantic segmentation architectures
developed for natural images with pretrained weights on RGB
images and we fine-tuned them on the SAR images. Our results
(with over 90% overall accuracy) demonstrate the effectiveness
of the deep learning methods for the LC mapping with SAR
data.

In addition to having the high-resolution CORINE map that
can serve as a ground-truth (labels) for training the deep learning
models, another reason that we selected Finland is that it is
a northern country with frequent cloud cover, which means
that using optical imagery for wide-area mapping is often not
feasible. Hence, demonstrating the usability of radar imagery
for LC mapping is particularly useful here.

Even though Finland is a relatively small country, there is still
considerable heterogeneity present in terms of LC types and how
they appear in the SAR images. Namely, SAR backscattering is
sensitive to several factors that likely differ between countries
or between distant areas within a country. Examples of such
factors are moisture levels, terrain variation and soil roughness,

2[Online]. Available: http://image-net.org/challenges/LSVRC/2012
3[Online]. Available: https://github.com/tensorflow/models/tree/master/

research/slim#pre-trained-models

predominant forest biome and tree species proportions, types of
shorter vegetation and crops in agricultural areas, and specific
types of built environments. We did not contain our study to a
particular area of Finland where the SAR signatures might be
consistent, but we obtained the images across a wide area. Hence,
demonstrating the suitability of our methods in this setting
hints at their potential generalizability. Namely, the semantic
segmentation models can be fine-tuned and adapted to work
on data from other regions or countries with different SAR
signatures.

On the other hand, we took into account that the same ar-
eas will appear somewhat different on the SAR images across
different seasons. Scattering characteristics of many LC classes
change considerably between the summer and winter months,
and sometimes even within weeks during seasonal changes [20],
[74]. These include snow cover and melting, freeze/thaw of soils,
ice on rivers and lakes, crops growing cycle, and leaf-on and
leaf-off conditions in deciduous trees. Because of this, in the
present study, we focused only on the scenes acquired during
the summer season. However, we did allow our training dataset
to contain several images of the same area, taken during different
times during the summer season. This way not only spatial but
also the temporal variation of SAR signatures is introduced.

Our contributions can be summarized as follows.
C1: We thoroughly benchmarked seven selected state-of-the-

art semantic segmentation models covering a diverse set
of approaches for LC mapping using Sentinel-1 SAR
imagery. We provided insights on the best models in
terms of both accuracy and efficiency.

C2: Our results demonstrated the power of deep learning
models along with SAR imagery for accurate wide-area
land cover mapping in the cloud obscured boreal zone
and polar regions These results can serve as baselines
when developing new, specialized approaches to SAR
imagery.

II. DEEP LEARNING TERMINOLOGY

As with other representation learning models, the power of
deep learning models comes from their ability to learn rich
features (representations) from the dataset automatically [15].
The automatically learned features are usually better suited for
the classifier or other task at hand than hand-engineered features.
Moreover, thanks to a large number of layers employed, it has
been proven that the deep learning networks can discover hier-
archical representations so that the higher-level representations
are expressed in terms of the lower level, simpler ones. For
example, in the case of images, the low-level representations
that can be discovered are edges and using them, the mid-level
ones can be expressed, such as corners and shapes, and this helps
to express the high-level representations, such as object elements
and their identities [15].

The deep learning models in computer vision can be grouped
according to their main task in three categories. In Table I, we
provide a description for those categories. However, the deep
learning terminology for those tasks does not always correspond
well to the terminology used in the remote sensing community.
Relevant to our task, several remote sensing studies use the term

http://image-net.org/challenges/LSVRC/2012
https://github.com/tensorflow/models/tree/master/research/slim#pre-trained-models
https://github.com/tensorflow/models/tree/master/research/slim#pre-trained-models
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TABLE I
SELECTED TERMINOLOGY IN THE DEEP LEARNING AND REMOTE SENSING

COMMUNITIES

classification in the context of LC mapping, inherently meaning
pixel- or region-based classification, which in the deep learning
terminology corresponds to semantic segmentation. In Table I
we list the corresponding terminology that we encountered being
used for each task in both, the deep learning and remote sensing
communities. This is helpful to disambiguate when talking about
different and recognize when talking about the same tasks in the
two domains. In the present study, the focus is on LC mapping.
Hence, we tackle semantic segmentation in the deep learning
terminology and image classification, i.e., pixelwise classifica-
tion, in the remote sensing terminology. Another terminology
issue that often arises is about the dataset types used. The
dataset that is held out from the training set and used to give an
estimate of the model’s performance during the training phase is
referred to as a development dataset or validation dataset in the
deep learning context. From a remote sensing viewpoint, both
training and development/validation datasets belong to training
phase data. Further, the term validation data in remote sensing
context is typically reserved for the datasets used during the final
evaluation (accuracy assessment) on completely independent
data not involved in the training phase, i.e., what is called a
test dataset in deep learning. Hence, to avoid any confusion, we
will avoid using the validation term in the text, calling respective
datasets as training, development, and test (accuracy assessment)
data.

CNNs [12], [13] are the deep learning models that have trans-
formed the computer vision field. Initially, CNNs were defined
to tackle the image classification (deep learning terminology)
task. Their structure is inspired by the visual perception of
mammals [76]. CNNs are named after one of the most important
operations, which is particular to them compared to other neural
networks, i.e., convolutions. Mathematically, convolution is a
combination of two other functions. A convolution is applied
to the image by sliding a filter (kernel) of a given size k × k
which is usually small compared to the original image size.
Different purpose filters are designed; for example, a filter
can serve as a vertical edge detector. Application of such a
convolution operation on an image results in a feature map.

Fig. 1. Architecture of fully convolutional neural networks (FCNs), image
source: IEEE [75].

Another common operation that is usually applied after a con-
volution is pooling. Pooling reduces the size of the feature map
while providing robustness to the extracted features. Common
CNNs end with a fully connected layer which is used for final
predictions, commonly for image classification. By employing a
large number of convolutional layers (depth), CNNs can extract
gradually more complex and abstract features. The first CNN
model to demonstrate its impressive effectiveness in image
classification (of hand digits) was LeNet [12]. Several years
later, Krizhevsky et al. [13] developed AlexNet, the deep CNN
to dramatically push the limits of classification accuracy on the
famous ImageNet computer vision challenge [77]. Since then, a
variety of CNN-based models have been proposed. Some notable
examples are: VGG network [14], ResNet [78], DenseNet [79],
and Inception V3 [80]. The effectiveness of CNNs has been also
proven in various real-world applications [81], [82].

Once CNNs have proven their effectiveness to classify im-
ages, Long et al. [75] were the first to discover how they can
augment a given CNN model to make it suitable for the seman-
tic segmentation task—they proposed the fully convolutional
neural network (FCN) framework. This generic architecture
can be used to adapt any CNN network used for classification
into a segmentation model. Namely, the authors have shown
that by replacing the last, fully connected layer, with an ap-
propriate convolutions layer, so that they will upsample and
restore the resolution of the input at the output layer, CNNs
can be transformed to classify each individual pixel (instead
of the whole image). The basic idea is as follows. The en-
coder is used to learn the feature maps, and is usually based
on a pretrained deep CNN for classification, such as ResNet,
VGG, or Inception. The decoder part serves to upsample the
discriminative features that the encoder has learned from the
coarse-level feature map to the fine, pixel level. Long et al. [75]
have shown that this upsampling (backward) computation can be
efficiently performed using backward convolutions (deconvolu-
tions). Moreover, this means that the specific CNN models, such
as those mentioned above, can all be incorporated in the FCN
framework for segmentation, giving rise to FCN-AlexNet [75],
FCN-ResNet [78], FCN-VGG16 [75], FCN-DenseNet [73], etc.
We present a diagram of the generic FCN architecture in Fig. 1.

III. MATERIALS AND METHODS

Here, we first describe the study site, SAR, and reference
data. This is followed by an in-depth description of the deep



10362 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 2. Study area in Finland. (a) Reference CORINE land cover data. (b) Example of compiled Sentinel-1 SAR mosaic that includes the whole country.

learning terminology and the models used in the study. We finish
with the description of the experimental setup and the evaluation
metrics.

A. Study Site

Our study site is covering the territory of Finland located
to the south of 66.0◦ latitude, which is effectively the whole
country without Finnish Lapland. The study area is shown in
Fig. 2. Southern Finland is primarily covered by boreal forests
with lakes, marshes, open bogs, agricultural areas, and urban
settlements. We have omitted Lapland due to considerably dif-
ferent LC composition and topography compared to the rest of
the country. The terrain height variation within the study area is
moderate and mostly within the 100− 300-m range.

B. SAR Data

Presently, Sentinel-1 is a C-band SAR dual-satellite system
with two satellites orbiting 180◦ apart [11], launched in 2014
and 2016, respectively. The operational acquisition modes are
stripmap (SM), interferometric wide-swath (IW), extra wide
swath (EW), and wave mode (WV). The IW-mode is the default
mode over land, providing a 250-km wide swath composed
of three subswaths, with a single look image at 5 by 20-m
spatial resolution. It uses the so-called terrain observation with
progressive scan (TOPS) SAR mode.

SAR data acquired by Sentinel-1 satellites in IW mode is used
in our study. Specifically, we used only Sentinel-1 A imagery
acquired during the summer of 2018.

Original scenes were downloaded as Level-1 ground range
detected (GRD) products. They represent focused SAR data that
has been detected, multilooked and projected to ground range us-
ing an Earth ellipsoid. The images were orthorectified using the
Technical Research Centre of Finland (VTT) in-house software
employing the local digital terrain model (with 20-m resolution)
available from the National Land Survey of Finland. The pixel
spacing of orthorectified scenes was set to 20 m. Orthorectifica-
tion included terrain flattening to obtain the backscatter signal in
gamma-nought format [83]. The scenes were further reprojected
to the ERTS89/ETRS-TM35FIN projection (EPSG:3067) and
resampled to a final pixel size of 20 m.

The Sentinel-1 images were mosaiced into seven homoge-
neous SAR mosaics covering the whole territory of Finland.
Each mosaic was compiled from approximately 90 Sentinel-1
IW scenes (both ascending and descending paths), and it takes
about 12 days to collect enough imagery to have the whole
country covered. Altogether seven SAR mosaics were produced
during summer 2018. These SAR mosaics are further used for
sampling the training, development, and testing images that
are input to deep learning models as described in detail in
Section III-F. The geographical coverage of each SAR mosaic
is shown in Fig. 2.
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Fig. 3. Zoomed in area fragment with reference CORINE-based map shown on top (left) and along with the Google Earth layer (right), image source: Google
Earth.

TABLE II
DESCRIPTION OF CORINE-BASED LAND COVER CLASSES AND THEIR MAP

COLOR CODES

C. Reference Data

In Finland, the Finnish Environment Institute (SYKE) was
responsible for the production of the CORINE maps. While for
most of the EU territory, the CORINE mask of 100× 100−m
spatial resolution is available, the national institutions might
choose to create more precise maps, and SYKE, in particular,
had produced a 20× 20−m spatial resolution mask for Finland
(Fig. 3), with the first one in 2000. Since then, the updates have
been produced regularly, with the latest one CLC2018 that well
corresponds to the acquisition timing of our SAR data. There are
48 different land use classes in the map that can be hierarchically
grouped into four CLC Levels. In detail, there are 30 classes on
CLC Level-3, 15 classes on CLC Level-2, and 5 top CLC Level-1
classes. According to the information provided by SYKE for
CLC2012, the accuracy of the CLC Level-3 was 61%, of the
CLC Level-2, 83%, and of the CLC Level-1, it was 93%. In
this study, we use its updated and revised version, CLC2018,
having good results on both internal and external quality con-
trol. The selected classes and their corresponding color codes
used for our segmentation results are shown in Table II. Our
superclasses generally correspond to CLC Level-1 classes, with
minor corrections for “artificial surfaces” class that is not fully
included in the urban class, but some elements are distributed
to other classes; most notably green urban areas were included
in the forest class in our study as those are essentially parks and
mixed boreal forestland enclosed within urban-designated areas.

Until the most recent CORINE production round, EEA mem-
ber countries adopted national approaches for the production

of CORINE. EEA technical guidelines include manual digital-
ization of LC change based on visual interpretation of optical
satellite imagery. In Finland, the European CLC was not appli-
cable for the majority of national users due to the large minimal
mapping unit (MMU). Thus national version was produced with
a somewhat modified nomenclature of classes [84]. The national
high-resolution CLC2018 data are in raster format of 20 m, with
corresponding MMU. In the provision of the 2018 update of
CLC, obtaining optical imagery over Scandinavia and Britain
was particularly challenging because of the frequent clouds, thus
calling for the use of radar imagery to meet user requirements
on accuracy and coverage [30]. CORINE map itself is normally
built from high-resolution satellite images acquired primarily
during the summer and, to a smaller extent, during the spring
months [2].

D. Semantic Segmentation Models

We selected following seven state-of-the-art [85] semantic
segmentation models to test for our LC mapping task: Seg-
Net [65], PSPNet [66], BiSeNet [67], DeepLabV3+ [68], [69],
U-Net [70], [71], FRRN-B [72], and FC-DenseNet [73]. The
models were selected to cover a wide set of approaches to
semantic segmentation. In the following, we describe its specific
architecture for each of these DL models. We will use the
following common abbreviations: conv for convolution opera-
tion, concat for concatenation, max pool for max pooling
operation,BN for batch normalisation, andReLU for the rectified
linear unit activation function.

1) Bilateral Segmentation Network (BiSeNet): The BiSeNet
model is designed to decouple the functions of encoding ad-
ditional spatial information and enlarging the receptive field.
These functions are fundamental to achieving good segmenta-
tion performance. As can be seen in Fig. 4(a), there are two
main components to this model: Spatial path (SP) and context
path (CP). Spatial path serves to encode rich spatial information.
Context path serves to provide sufficient receptive field and
uses global average pooling and pretrained Xception [86] or
ResNet [78] as the backbone. The goal of the creators was not
only to obtain superior performance but to achieve a balance
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Fig. 4. Architectures of (a) BiSeNet [67], (b) U-Net [70], (c) FRRN-B [72], (d) PSPNet [66], (e) DeepLabV3+ [68], (f) FC-DenseNet [73], and (g) SegNet-based
encoder-decoder with skip connections [65]. For BiSeNet, ARM stands for the attention refinement module and FFM for the feature fusion module. For FRRN-B,
RU_n and FRRU_n stand for residual units and full-resolution residual units with n-channel convolutions, respectively. FRRUs simultaneously operate on the two
streams.

between speed and performance. Hence, BiSeNet is a relatively
fast semantic segmentation model.

2) Mobile U-Net: Mobile U-Net is based on the U-Net [70]
semantic segmentation architecture shown in Fig. 4(b). In de-
signing U-Net, a fully convolutional approach was generally
employed with the following modification. Their upsampling
part of the architecture has no fully convolutional layer but
is nearly symmetrical to the feature extraction part due to
the use of similar feature maps. This results in a u-shaped
architecture [see Fig. 4(b)], and hence the name of the model.

While originally developed for biomedical images, the U-net
architecture has proven successful for image segmentation in
other domains, as well. Here, we somewhat modify the U-Net
architecture, according to MobileNets [71] framework, to im-
prove its efficiency. In particular, the MobileNets framework
uses depthwise separable convolutions, a form which factor-
izes standard convolutions (e.g., 3× 3) into a depthwise con-
volution (applied separately to each input band) and a point-
wise (1× 1) convolution to combine the outputs of depthwise
convolution.
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3) Full-Resolution Residual Networks (FRRN-B): As we
have seen, most of the semantic segmentation architectures
are based on some form of FCN, and so they utilize existing
classification networks, such as ResNet or VGG16 as encoders.
We also discussed the main reason for such approaches, which is
to take advantage of the learned weights from those architectures
pretrained for the classification task. Nevertheless, one disadvan-
tage of the FCN approach is that the resulting network outputs of
the encoder part (particularly, after the pooling operations) are
at a lower resolution, which deteriorates the localization per-
formance of the overall segmentation model. Pohlen et al. [72]
proposed to tackle this by having two parallel network streams
processing the input image: A pooling and a residual stream
[Fig. 4(c)]. As the name says, the pooling stream performs suc-
cessive pooling and then unpooling operations, and it serves to
obtain good recognition of the objects and classes. The residual
stream computes residuals at the full image resolution, which
enables that low-level features, i.e., object pixel-level locations,
are propagated to the network output. The name of the model
comes from its building blocks, i.e., full-resolution residual
units. Each such unit simultaneously operates on the pooling
and the residual stream. In the original paper [72], the authors
propose two alternative architectures FRRN-A and FRRN-B,
and they show that FRRN-B achieves superior performance
on the Cityscapes benchmark dataset. Hence, we employ the
FRRN-B architecture.

4) Pyramid Scene Parsing Network (PSPNet): Zhao
et al. [66] proposed the pyramid scene parsing as a solution to
the challenge of making the local predictions based on the local
context only, and not considering the global image scene. In
remote sensing, an example for this challenge happening could
be when a model wrongly predicts the water with waves present
in it as the dry vegetation class, because they appear similar
and the model did not consider that these pixels are being part
of a larger water surface, i.e., it missed the global context. In
similarity to the other FCN-based approaches, PSPNet uses a
pretrained classification architecture to extract the feature map,
in this case, ResNet. The main module of this network is the
pyramid pooling, which is enclosed by a square in Fig. 4(d).
As can be seen in the figure, this module fuses features at four
scales: From the coarse (red) to the fine (green). Hence, the
output of each level in the pyramid pooling module contains the
feature map of a different resolution. In the end, the different
features are stacked together yielding the final pyramid pooling
global feature for predictions.

5) DeepLab-V3+: DeepLab-V3+ [68] is an improved ver-
sion of DeepLab-V3 [87], while the latter is an improved version
the original DeepLab [69] model. This segmentation model does
not follow the FCN framework like the previously discussed
models. The main features that distinguish the DeepLab model
from FCNs are the atrous convolutions for upsampling and
the application of probabilistic machine learning models, con-
cretely, conditional random fields (CRFs) for a finer localization
accuracy in the final fully connected layer. Atrous convolutions,
in particular, allow enlarging the context from which the next
layer feature maps are learned while preserving the number
of parameters (and, thus, the same efficiency). Using a chain

of atrous convolutions allows computing the final output layer
of a CNN at an arbitrarily high resolution (removing the need
for the upsampling part as used in FCNs). In the follow-up
work, proposing DeepLab-V3, Chen et al. [87] changed the
approach to atrous convolutions to gradually double the atrous
rates, and showed that with an adapted version, their new algo-
rithm outperforms the previous one, even without including the
fully connected CRF layer. Finally, in their newest adaption to
the model, called DeepLab-V3+, Chen et al. [68] turned to a
similar approach to the FCNs, i.e., they add a decoder module
to the architecture [see Fig. 4(e)]. That is, they employ the
features extracted by the DeepLab-V3 module in the encoder
part, and add the decoder module consisting of 1× 1 and 3× 3
convolutions.

6) Fully Convolutional DenseNets (FC-DenseNet): This
semantic segmentation algorithm is built using DenseNet
CNN [79] as a basis for the encoder, followed by applying the
FCN approach [73]. The specificity of the DenseNet architecture
is the presence of blocks, where each layer is connected to
all other layers in a feed-forward manner. Fig. 4(f) shows the
architecture of FC-DenseNet, where the blocks are represented
by the dense block units. According to [79], such architecture
scales well to hundreds of layers without any optimization
issues, while yielding excellent results in classification tasks. In
order to efficiently upsample the DenseNet feature maps, Jegou
et al. [73] substituted the upsampling convolutions of FCNs
by dense blocks and transitions up. The transition up modules
consist of transposed convolutions, which are then concatenated
with the outputs from the input skip connection [the dashed lines
in Fig. 4(f)].

7) SegNet (Encoder-Decoder-Skip): Similarly to BiSeNet,
SegNet is also designed with computational performance in
mind, this time, particularly during inference. Because of this,
the network has a significantly smaller number of trainable
parameters compared to most of the other architectures. The
encoder in SegNet is based on VGG16: It consists of its first
13 convolutional layers, while the fully connected layers are
omitted. Hence, the novelty of this network lies in its decoder
part, as follows. The decoder consists of one decoder layer for
each encoder layer and so it also has 13 layers. Each decoder
layer utilizes max-pooling indices memorized from its corre-
sponding encoder feature map. The authors have shown that
this enhances boundary delineation between classes. Finally, the
decoder output is sent to a multiclass soft-max function yielding
classification for each pixel [see Fig. 4(g)].

E. Training Approach

To improve performance, we can pretrain semantic segmen-
tation models (their encoder modules) on a set of images of
another type (such as natural images). When the model pre-
trained on natural images is further trained with the limited set
of SAR images, the knowledge is effectively transferred from
the natural to the SAR task [88]. To accomplish such transfer,
we employed models whose encoders were pretrained for the
ImageNet classification task and fine-tuned them on our SAR
dataset (described next).
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F. Experimental Setup

In this section, we first describe how we prepared the SAR
images for training with the deep learning models that are
originally designed for natural images, and then we provide the
details of our models’ implementation and the hardware setup
used.

1) SAR Data Preprocessing: Sentinel-1 imagery comes in
two polarization channels (VH and VV), each of them being
particularly informative about certain types of land cover. Hence,
using their combination is expected to yield better LC mapping
results than using any of them independently.

The backscatter amplitude for both polarizations (VH and
VV) represented the first two channels for our dataset. As
the third channel, after some preliminary tests, we decided to
include a VH-to-VV amplitude ratio (also known as cross-pol
ratio). This dataset was called RGB SAR. In addition, for the
deep learning models, each band should be normalized so that
the distribution of the pixel values would resemble a Gaussian
distribution centered at zero. This is done to yield a faster conver-
gence during the training. Hence, each channel was normalized
by channel-specific calibration factor using percentile contrast
stretching, with no more than 1% of pixel values clipped.

The naming of the dataset comes from the process used to
create the images. Namely, VH-pol data of a Sentinel-1 image is
assigned to R and VV-pol to G channel. For the third, B channel,
the cross-pol ratio of the Sentinel-1 data is used. Given that the
semantic segmentation models expect RGB pixel values in the
range (0,255), we scaled the normalized channel values for both
datasets to this range.

2) Train/Development and Test (Accuracy Assessment)
Dataset: The original images needed to be split into 512×
512− px partial images (further in the text called imagelets)
used for model training and testing. Thus, each imagelet rep-
resented an area of roughly 10× 10 km2. The first reason for
this preprocessing has to do with the squared shape: Some of
the selected models required square-shaped images. Some other
of the models were flexible with the image shape and size but
we wanted to make the setups for all the models the same so
that their results are comparable. The second reason for this
preprocessing has to do with computational capacity: With our
hardware setup (described below), this was the largest image
size that we could work with.

Given the geography of Finland, for representative training
data, it is useful to include imagelets from the whole country (in-
cluding the large cities) aside from the Finnish Lapland, where
the land classes are distinctly different. On the other hand, some
noticeable differences are found also in the gradient from east to
west of the country. Hence, to achieve a representative training
dataset, we selected all imagelets between the longitudes of
25◦ and 29◦ for the accuracy assessment (so-called “unobserved
data” for model testing), and all the other imagelets we used for
the model training (that is training/validation in the computer
vision terminology). In this way, we prevented the situation in
which two images of the same area, but acquired at different
times, were used one for training and the other one for testing.
In other words, we kept our training/development and test sets
completely independent from each other.

The areas for training/development and model testing are
shown in Fig. 5. From each of the seven SAR mosaics, 1000
imagelets were generated using random sampling, while control-
ling for no spatial overlap between the imagelets. Among those
1000 imagelets, 400 were sampled from the testing area and set
aside for the accuracy assessment, while the remaining 600 were
sampled from the training/development area. The procedure
resulted in 4200 images in the training and development set
and 2800 images in the test (accuracy assessment) set. Finally,
we used 60% from the training/development set for training and
the rest for the development of the deep learning models.

3) Data Augmentation: Further, we have employed the data
augmentation technique. The main idea behind the data aug-
mentation is to enable improved learning by reusing original
images with slight transformations such as rotation, flipping,
adding Gaussian noise, or slightly changing the brightness. This
provides additional information to the model, and the dataset size
is effectively increased. Moreover, an additional benefit of the
data augmentation is in helping the model to learn some invariant
data properties for which no examples are present in the original
dataset. Given the sensitivity of the SAR backscatter, we did not
want to augment the images in terms of color, brightness, or by
adding noise. However, we could safely employ rotations and
flipping. For rotations, we only used the 90◦ increments, giving
three possible rotated versions of an image. For image flipping,
we applied horizontal and vertical flipping, or both at the same
time, giving another three possible versions of the original
image.4 Notice that our images are square, so the transformations
did not change the image dimensions. Finally, we applied the
online augmentation, as opposed to the offline version. In the
online process, each augmented image is seen only once, and so
this process yields a network that generalizes better.

4) Implementation: To apply the described semantic seg-
mentation models, we adapted the open-source semantic seg-
mentation suite. We used Python with TensorFlow [89] backend.

5) Hardware and Training Setup: We trained and tested
separately each of the deep learning models on a single GPU
(NVIDIA GeForce GTX 1080) on a machine with 32 GB of
RAM.

For all the models, we used the Adam optimization
method [90] with the learning rate of 0.0001, and with the
exponential decay rate for the first moment estimates of 0.9,
and for the second-moment estimates of 0.999. We applied the
early stopping criterion so that, for each model, the training
would automatically stop after there was no improvement in the
development (validation) loss for 10 epochs. Such early stopping
criteria resulted in different models being trained for a different
number of epochs: From 69 (for DeepLabV3+) up to 126 (for
SegNet) epochs. In each case, the checkpoint for the latest model
with the best result before stopping was saved. Then we used that
model for prediction on the test set and we report those results.

The general processing flowchart is shown in Fig. 6.

4Vertical flip operation switches between top-left and bottom-left image
origin (reflection along the central horizontal axis), and horizontal flip switches
between top-left and top-right image origin (reflection along the central vertical
axis)
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Fig. 5. Sampling of SAR and land cover imagelets and division into training and development and testing datasets.

Fig. 6. General processing flowchart for RGB SAR dataset.

G. Evaluation Metrics

In the review on the metrics used in LC classification, Costa
et al. [91] have found a lack of consistency, complicating the
intercomparison of different studies. To avoid such issues and

ensure that our results are easily comparable with the literature,
we thoroughly evaluated our models. For each model and class,
we report the following measures of accuracy: Precision, also
known as producer’s accuracy (PA), recall, also known as user’s
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Fig. 7. Illustration of the FC-DenseNet model performance: Selection of classification results, i.e., direct output of the network, without any post-processing
(bottom row) versus reference CORINE based LC (upper row).

accuracy (UA), and overall accuracy and Kappa coefficient. The
formulas are as follows.

For each segmentation class (LC type) c, we calculate preci-
sion (producer’s accuracy):

Pc =
Tpc

Tpc + Fpc

and recall (user’s accuracy)

Rc =
Tpc

Tpc + Fnc

where Tpc represents true positive, Fpc false positive, and Fnc

false negative pixels for the class c.
When it comes to accuracy [92], we calculate per class

accuracy5

Accc =
Cii

Gi

and overall pixel accuracy:

AccOP =
ΣL

i=1Cii

ΣL
i=1Gi

,

where Cij is the number of pixels having a ground-truth label
i and being classified/predicted as j, Gi is the total number of
pixels labelled with i, and L is the number of classes. All these
metrics can take values from 0 to 1.

Finally, we also use a Kappa statistic (Cohen’s measure of
agreement), indicating how the classification results compare to
the values assigned by chance [93]. Kappa statistics can take
values from 0 to 1. Starting from a k by k confusion matrix with

5Effectively, per class accuracy is defined as the recall obtained on each class.

TABLE III
PROPERTIES OF THE EXAMINED SEMANTIC SEGMENTATION ARCHITECTURES

elements fij , the following calculations are done:

Po =
1

N

k∑

j=1

fjj (1)

ri =

k∑

j=1

fij∀i, and cj =

k∑

i=1

fij∀j (2)

Pe =
1

N2

k∑

i=1

rici (3)

where Po the observed proportional agreement (effectively the
overall accuracy), ri and cj are the row and column totals for
classes i and j, and Pe is the expected proportion of agreement.
The final measure of agreement is given by such statistic [93]

κ =
Po − Pe

1− Pe
. (4)

Depending on the value of Kappa, the observed agreement is
considered as either poor (0.0 to 0.2), fair (0.2 to 0.4), moderate
(0.4 to 0.6), good (0.6 to 0.8), or very good (0.8 to 1.0).
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Fig. 8. Accuracy curves during training and development for the fastest (BiSeNet) and the slowest (FC-DenseNet) model. The early-stopping criteria with
10 epochs of no improvement for development loss was applied.

TABLE IV
SUMMARY OF THE CLASSIFICATION PERFORMANCE AND EFFICIENCY OF DEEP LEARNING MODELS

5UA: User’s accuracy, PA: Producer’s accuracy.
The results with the best Kappa score and the smallest inference time are highlighted in bold.

TABLE V
CONFUSION MATRIX FOR CLASSIFICATION WITH FC-DENSENET MODEL

5UA: User’s accuracy, PA: Producer’s accuracy.

IV. RESULTS AND DISCUSSION

Using the experimental setup described in the previous
section, we evaluated the seven selected semantic segmen-
tation models: SegNet [65], PSPNet [66], BiSeNet [67],
DeepLabV3+ [68], [69], U-Net [70], [71], FRRN-B [72],
and FC-DenseNet [73]. The overall classification performance
statistics for all studied models is gathered in Table IV. Fig. 7
shows maps produced for several imagelets with the best per-
forming model, FC-DenseNet. Fig. 8 illustrates training and
development progress for the fastest (BiSeNet) and the slowest
(FC-DenseNet) models. Obtained results are compared to prior
work and classification performance for different LC classes is
discussed further.

A. Classification Performance

All the models performed relatively well on both datasets
achieving an overall accuracy above 87% for each model. Four
models performed particularly well, achieving an accuracy score
above 92% on both datasets; those are FRRN-B, U-Net, SegNet,
and FC-DenseNet. The two latter models were also somewhat
better than others in terms of Kappa statistics, and, along with
FRRN-B, were the best models also concerning classwise user’s
and producer’s accuracy.

The advantage for SegNet is that its training and inference
times were 2.5 times better compared to the FC-DenseNet of
similar accuracy. BiSeNet and DeepLabV3 were performing
somewhat worse than other five models particularly in terms
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of agreement (Kappa was 0.75–0.82) but also overall accuracy
was lower, most strongly for BiSeNet. Overall accuracy and
classwise accuracies obtained on completely independent test
dataset were still remarkably high compared to other reported
results in the literature when more conventional statistical or
traditional machine learning approaches were used with C-band
SAR data [30], [94]. Further in-depth comparison can be found
in Section IV-C.

Before further analysis, let us recall that CORINE is not
exclusively a LC map, but rather a LC and land use map,
thus some specific classes can differ from ecological classes
observed by Sentinel-1. Also, the aggregation to CLC Level-1 is
sometimes not strictly “ecological” nor it complies with physics
surface scattering considerations. For example, airports, major
industrial areas, and road networks often appear similar to fields,
the presence of trees and green vegetation near summer cottages
can cause them to exhibit signatures close to the forest rather than
urban, sometimes forest on the rocky terrain can be misclassified
as urban instead due to presence of very bright targets and
strong disruptive features, while confusion between peatland and
agricultural and grassland areas is also common. Finally, the ac-
curacy of the CORINE data is only somewhat higher than 90%.

As for the results across the different land classes, all the
models performed particularly well in recognizing the water
bodies and forested areas, while the urban fabric represented
the most challenging class for all the models. The urban class
was particularly challenging for the following main reasons.
First, this is still essentially a land-use class, with continuous
urban fabric (easy to recognize by radar) representing only a
moderate fraction of the whole class. It also changes the most,
as new houses, roads, and urban areas are built. Second, the
CORINE map itself does not have perfect accuracy, neither
aggregation rules are perfect. As a matter of fact, in a majority of
studies where SAR-based classification was done versus CLC or
similar data, a poor or modest overall agreement was observed
for urban land use areas [20], [41], [74], [95], while the user’s
accuracy was strongly higher than producer’s [21]. The latter
is exactly due to radar being able to sense sharp boundaries
and bright targets very well whereas such bright targets often
do not dominate the whole urban land-use class. Importantly,
relatively good performance was obtained in mapping agricul-
tural and wetland areas, particularly well differentiating between
them while this is often problematic with other remote sensing
instruments.

We mentioned the issues of SAR backscattering sensitivity
to several ground factors so that the same classes might appear
differently on the images between countries or between distant
areas within a country. An interesting indication of our study,
however, is that the deep learning models might be able to
deal with this issue. Namely, we used the models pretrained on
ImageNet and fine tuned-them with a relatively small number
of Sentinel-1 images. The models learned to recognize varying
types of backscattering signal across the country of Finland.
This indicates that with a similar type of fine-tuning, present
models could be relatively easily adapted to the other areas
and countries, with different SAR backscattering patterns. Such
robustness and adaptability of the deep learning models come

from their automatic learning of feature representation, without
the need for a human expert predefining those features.

B. Computational Performance

The training times with our hardware configuration took from
1 up to 2.5 days for the different models. This could be signif-
icantly improved by training each model using a multi-GPU
system instead of a single-GPU in our experiments.

In terms of the inference time, we also saw the differences in
the performance. In Table IV, we present the average inference
time per 512× 512− px imagelet that we worked with. The
results show that there is a tradeoff between classification and
computational performance: The best models in terms of clas-
sification results (i.e., FC-DenseNet and FRRN-B) take several
times longer inference time compared to the rest. A positive
exception in this regard is the SegNet model, which achieved the
best classification results together with FC-DenseNet but with
2.5 times better inference time. Depending on the application,
this might or might not be of particular importance.

C. Comparison to Similar Work

Obtained results compare favorably to previous similar stud-
ies on LC classification with SAR data [20], [28], [30], [41], [74],
[95]. Depending on the level of classes aggregation (4–5 major
classes or more), using mostly statistical or classical machine
learning approaches reported classification accuracies were as
high as 80–87% to as low as 30% when only SAR imagery were
used.

Two recent studies that employed neural networks to SAR
imagery classification (albeit in combination with satellite op-
tical data) for LC mapping were [28] and [57], with re-
ported classification accuracies of up to 97.5% and 94.6%,
respectively.

The best models in our experiments achieved the overall
accuracy of 93%. However, our results are obtained using solely
the SAR imagery. In contrast, SAR imagery (PALSAR) alone
yielded the overall accuracy of 78.1% in [28]. The types of
classes they studied are also different compared to ours (crops
versus vegetation versus LC types) and our study is performed
on a larger area. Importantly, the previous studies have applied
different types of models (regular NNs versus CNN versus
semantic segmentation). In particular, the CNN models work
on the 7× 7 resolution windows, while we have applied more
advanced semantic segmentation models, which work on the
level of a pixel. Keeping in mind findings from [28] that the
addition of optical images on top of SAR improved the results by
over 10%, we expect that our models would perform comparably
well or outperform these previous works if applied to a combined
SAR and optical imagery.

In terms of the deep learning setup, the most similar to ours are
the studies [50] and [61]. However, RapidEye optical imagery
at 5-m spatial resolution was used in [50], and the test site
was considerably smaller. Study [61], similar to our research,
relied exclusively on SAR imagery, however, fully polarimetric
images, and acquired by RADARSAT-2 at considerably better
resolution. They have developed an FCN-type of a semantic
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segmentation model “specifically designed for the classification
of wetland complexes using PolSAR imagery.” Using this model
to classify eight wetland map classes, they achieved an overall
accuracy of 93%. However, because their model is designed
specifically for wetland complexes, it is not clear if such a model
would generalize to other types of areas. Compared to our study,
they have focused on a considerably smaller area (nearly the size
of a single imagelet we used), and on a very specific task (wetland
types mapping). Thus, it is not readily clear how general their
approach is and how it compares to our presented approach.

D. Outlook and Future Work

There are several lines for potential improvement based on
the results of this study, as well as future work directions.

First, using even a larger set of Sentinel-1 images can be
recommended since for the supervised deep learning models
large amounts of data are crucial. Here, we processed only
7 K imagelets altogether, but deep learning algorithms become
efficient typically only once they are trained with hundreds of
thousands or millions of images.

Second, if SAR images and reference data of a higher resolu-
tion are used, we expect better classification performance, too,
as smaller details could be potentially captured. An interesting
extension of the study could be to use a digital elevation model as
additional input along with SAR data to deep learning models,
as this could potentially improve accuracies for several land
classes. In our opinion, such models should, however, be not
global topographical DEMs but rather high-resolution lidar dig-
ital surface models, if improvements in mapping, for example,
urban class are sought.

The reference maps should represent reality as accurately as
possible. The models in our experiments were certainly limited
by the CORINE’s limited accuracy.

Third, in this study, we have tested the effectiveness of off-
the-shelf deep learning models for LC mapping from SAR data.
While the results show their effectiveness, it is also likely that
the novel types of models, specifically developed for the radar
data (such as [61]), will yield even better results. Based on our
results, we suggest DenseNet- and SegNet-based models as a
starting point. In particular, one could develop the deep learning
models to handle directly the SLC data which preserve the phase
information.

Focusing on a single season is both an advantage and a lim-
itation. Importantly, we have avoided confusion between SAR
signatures varying seasonally for several LC classes. However,
multitemporal dynamics itself can be potentially used as an
additional useful class-discriminating parameter. Incorporating
seasonal dynamics of each LC pixel (as a time series) is left
for future work, perhaps with the additional need to incorporate
recurrent neural networks into the approach.

As discussed in Section IV-A, it could be suitable to use more
detailed (specific) LC classes, as an aggregation of smaller LC
classes into CORINE super-classes is not exactly ecological,
leading to mixing several distinct SAR signatures in one class
and thus causing additional confusion for the classifier. Later,
classified specific classes can be aggregated into larger classes,
potentially showing improved performance [19] .

Finally, we have used only SAR images for the presented
large-scale LC mapping. If one were to combine other types
of remote sensing images, in particular the optical images, we
expect that the results would significantly improve. This is true
for those areas where such imagery can be collected due to cloud
coverage, while in operational scenario it would potentially
require the use of at least two models (with and without optical
satellite imagery). It is also important to access the added value
of SAR imagery with deep learning models when optical satellite
images are available, as well as possible data fusion and decision
fusion scenarios before a decision on the mapping approach is
done [19].

V. CONCLUSION

Our study demonstrated the potential for applying state-of-
the-art semantic segmentation models to SAR image classifi-
cation with high accuracy. Several models were benchmarked
in a countrywide classification experiment using Sentinel-1
IW-mode SAR data, reaching nearly 93% overall classification
accuracy with the best performing models (SegNet and FC-
DenseNet). This indicates strong potential for using pretrained
CNNs for further fine-tuning and seems particularly suitable
when the number of training images is limited (to thousand or
tens of thousands instead of millions). In addition to suggest-
ing the best candidate semantic segmentation models for LC
mapping with SAR data (that is, the SegNet or DenseNet-based
models), our study offers baseline results against which the
newly proposed models should be evaluated. Several possible
improvements for future work were identified, including the
necessity for testing multitemporal approaches, data fusion, and
employing DEM models, very high-resolution SAR imagery, as
well as developing models specifically for SAR.

V. DATA AVAILABILITY

The implementation scripts with documentation are available
on GitHub,6 the original Sentinel-1 images can be downloaded
from SciHub,7 and the processed train/development and test data
are published on Zenodo8 and IEEE DataPort.
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