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Spectral–Spatial Attention Feature Extraction for
Hyperspectral Image Classification Based on

Generative Adversarial Network
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Abstract—Recent research shows that generative adversarial
network (GAN) based deep learning derived frameworks can
improve the accuracy of hyperspectral image (HSI) classification
on limited labeled samples. However, several studies point out that
existing GAN-based methods are heavily affected by the complex-
ity and inefficient description issues of HSIs. The discriminator
in GAN always attempts to interpret high-dimensional nonlinear
spectral knowledge of HSIs, thus resulting in the Hughes phe-
nomenon. Another critical issue is sample generation. The genera-
tor is only used as a regularizer for the discriminator, which seri-
ously restricts the performance for classification. In this article, we
propose SSAT-GAN, a semisupervised spectral–spatial attention
feature extraction approach based on the GAN that feeds raw data
into a deep learning framework, in an end-to-end fashion. First,
the unlabeled data is added into the discriminator to alleviate the
problems of training samples and supplies a reconstructed real HSI
data distribution through adversarial training. Second, to enhance
the description of HSIs, we build spectral–spatial attention modules
(SSAT) and extend them to the discriminator and the generator
to extract discriminative characteristics from abundant spatial
contexts and spectral signatures. The SSAT modules learn a three-
dimensional filter bank with spectral–spatial attention weights to
obtain meaningful feature maps to improve the discrimination
of the feature representation. In terms of the mode collapse of
GANs, the mean minimization loss is employed for unsupervised
learning. Experimental results from three real datasets indicate
that SSAT-GAN has certain advantages over the state-of-the-art
methods.

Index Terms—Attention module, generative adversarial network
(GAN), hyperspectral image (HSI) classification, semisupervised
deep learning, spectral–spatial information.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) obtains hundreds of
numerous narrow and contiguous spectral bands from

Manuscript received July 3, 2021; revised September 2, 2021; accepted
September 23, 2021. Date of publication September 28, 2021; date of current
version October 14, 2021. This work was supported in part by the Natural Science
Foundation of Ningxia Province of China under Grant 2020AAC02028 and in
part by the Natural Science Foundation of Ningxia Province of China under
Grant 2021AAC03179. (Corresponding author: Wenxing Bao.)

Hongbo Liang, Wenxing Bao, and Xiaowu Zhang are with the School of Com-
puter Science and Engineering, North Minzu University, Yinchuan 7500021,
China, and also with the Key Laboratory of Images, and Graphics Intelli-
gent Processing of State Ethnic Affairs Commission: IGIPLab, North Minzu
University, Yinchuan 750021, China (e-mail: 876502548blue@gmail.com;
bwx71@163.com; 2012033@nun.edu.cn).

Xiangfei Shen is with the School of Microelectronics and Communication
Engineering, Chongqing University, Chongqing 400044, China (e-mail: xf-
shen95@outlook.com).

Digital Object Identifier 10.1109/JSTARS.2021.3115971

the surface which provide abundant characteristics to enhance
the identification ability of ground materials [1]. With high-
resolution imaging technology rapidly developing, HSI becomes
an ideal tool to effectively detect the surface, which spans a broad
range of applications, including mineral substance [2], monitor-
ing of plant diseases [3], anomaly detection [4], and land-cover
mapping [5]. HSI classification plays a substantial role in these
fields, intending to analyze discriminative characteristics of HSI
and classify each pixel according to a corresponding land-cover
category [6]. Therefore, two major characteristics of HSI should
be considered. First, the high-dimensional nonlinear spectral
signature, which originates from redundant bands of spectrums,
enables the accurate distinction of homologous surface cate-
gories. Second, high spatial correlation provides spatial auxiliary
contexts for accurate mapping of pixelwise classification, which
derives from homogeneous regions [7].

Since the spectral information can natively reflect the charac-
teristics of different materials, one set of traditional methods
identifies the classification maps in a pixelwise way, which
can be divided into two steps: 1) feature engineering, such as
principal component analysis (PCA) [8], bands selection [9]
and 2) classifier development, including support vector machine
(SVM) [10], random forest [11]. This kind of approach is
constrained by the high-dimensional nonlinear characteristics,
which leads to an unsatisfactory result. To further improve the
representation of HSIs, another set of approaches implements the
positive effect on the spectral–spatial expression. Existing meth-
ods introduced the spatial contexts in the feature engineering
step. For instance, Kang et al. [12] proposed the feature fusion
framework combined with the edge-preserving filtering (EPF)
and SVM. Jiang et al. [13] regarded the superpixel as a carrier to
extract potential features. However, the models mentioned above
consist of shallow structures which cannot provide an efficient
description.

With the advancement of artificial intelligence, CNN-based
approaches have attracted increased focus due to the fact that
their objective functions directly aim at classification instead of
two independent steps to obtain remarkable results [14], [15].
In 2016, Zhao et al. [16] adopted CNN to learn local spatial
contexts for HSI classification. Chen et al. [17] designed a
3-D CNN to extract neighboring spectral cubes, which originate
from HSIs instead of dimensionality-reduced data. Nonetheless,
a deeper network may lead to the Hughes phenomenon, under the
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conditions of both complexity of the spectral–spatial distribution
and the scarcity of training samples.

Meanwhile, with the development of deep learning, a se-
ries of deep-learning-derived methods have been applied for
HSI classification and proven to be successful. Many works
of classification frameworks obtains superior achievements by
constructing high efficiency spectral–spatial feature extraction.
For instance, Zhong et al. [18] built a spectral–spatial residual
network (SSRN) to reduce the complexity of the network design
and achieved advanced performance. In [19], a dense convolu-
tional block was employed for accurate identification. A 3D-
Conv-Capsule model [20] was presented for HSI classification,
which attempted to consider the pixel position attributes to en-
hance the spatial awareness. In addition, in Sellami’s work [21],
a spectral–spatial graph was constructed to fully exploit the
inherent spatial distribution.

Another line of approaches accomplished spectral–spatial
classification by exploiting attention mechanisms, which per-
forms classification after aggregating features from the homo-
geneous regions. Xu et al. [22] designed a control gate attention
mechanism for the quick acquisition of key features. In [23],
a spectral–spatial classification framework was proposed by
performing CNN with a self-attention module to enhance the
correlation of features. In [24], a multiattention fusion network
(MAFN) was designed to mine significant features for classifi-
cation. Yu et al. [25] presented a dense CNN framework with
a feedback attention mechanism to further improve the com-
putation efficiency. However, the attention weight embedding
was placed behind the spectral–spatial representation, which
introduced the influence of interference pixels and redundant
spectral bands. He et al. [26] designed an HSI-BERT to capture
global dependence among pixels at the receptive field. However,
the transformer-based method needs multiple nonlocal areas to
capture global long-term dependence.

In contrast to classical optical image classification objectives
in the computer vision fields, which consist of hundreds of
categories, the land cover classification of HSI takes much fewer
targets for identification. Therefore, the theory that deep learning
takes a high amount of data for training might not apply to
HSIs which lack in labeled samples. Several works focus on
the semisupervised learning via both labeled and unlabeled HSI
samples for training. For instance, Fang et al. [27] presented a
resampling strategy for training CNN sufficiently. In [28], the
uncertainty of unlabeled samples of HSIs are considered for
classification. Although these studies have acquired significant
results, they may stem from the regions of high spatial correla-
tion context, instead of deep learning methods.

Recently, generative adversarial network (GAN) have been
applied for HSI classification to alleviate the issue of limited
labeled samples. Specifically, GAN-based classifiers start from
semisupervised HS-GAN proposed by Zhan et al. [29], which
used 1-D spectral vectors as the input. To exploit the benefit
of spatial information, a neighborhood majority voting strat-
egy [30] is applied to the prediction, lately. He et al. [31] built
a 3-D bilateral filtering-based GAN framework to improve the
ability of spatial awareness. A 3D-GAN is proposed for HSI
classification that keeps only the first three principal components

of raw data as input. In [33], a semisupervised GAN with a con-
ditional random field (GAN-CRF) was designed that regards the
softmax prediction as conditional probabilities of HSI to refine
classification maps. To enhance the meaningful semantic con-
texts, an adaptive DropBlock-enhanced GAN (AD-GAN) [34]
was established to stabilize the training state of the model.

Although these GAN-based methods have achieved satisfying
ability over the contemporaneous benchmarks, there are still two
drawbacks over HSI classification to be solved.

The first challenge is the mode collapse of GAN. The genera-
tor G deceives the discriminator D through generating data from
the limited labeled data distribution [35]. The restricted narrow
redundant spectral signatures limit the representation ability of
GAN and lead to terrible data generation. In Wang’s work [34],
an adaptive DropBlock is employed as a regularization method
to alleviate the mode collapse. However, the supervised GANs
generate the data distribution that is similar to that of labeled
training ones and, thus, difficult to learn the complete real HSI
distribution. In addition, the unlabeled data of HSI remains an
unexploited gold mine for efficient data utilization. Recently, in
response to this characteristic, Liang et al. [36] implemented
the mean minimization loss that considers the constraint over
unlabeled data of HSI and acquired superior achievement. The
reason for this phenomenon is that it may minimize the values
and variances of high-dimensional feature maps from D. As this
point, the GAN model can hardly be subject to the impact of
complex parameter calculation, which guaranteed the stability
of the training state.

Another critical issue is the complexity, inefficient
description of spectral–spatial characteristics. The classifica-
tion performance seems to deteriorate when the extraction of
spectral–spatial characteristics is affected by interference pixels.
Therefore, it is hard to guarantee that the GAN always works
toward the authentic HSI distribution, particularly for high-
dimensional spectral signature or texture-dependent context. In
Feng’s work [37], the joint spatial spectral hard attention mech-
anism was employed in G to cooperate D discards misleading
and confounding information for HSI classification. However,
it only focused on a specific area of the input patches in one
batch, which requires more complex technology for training.
In a disparate line of work, the attention-aware block [38] was
designed in ResNets to enhance the representation of HSI data.
It demonstrated that the attention-aware block can learn more
valuable and valid representations. However, when dealing with
objects with variable spectral or irregular areas, the attentive
architecture is inefficient. We argue that if the homogeneous
spectrum and adaptive receptive fields are taken into account,
the complexity issue of the HSI data can be alleviated.

To tackle the above-mentioned challenges of GAN-based
methods, we suggest a spectral–spatial attention feature extrac-
tion approach based on GANs (SSAT-GANs) for HSI classifi-
cation. The purpose of the proposal can build a significant rep-
resentation for spectral–spatial characteristics and enhance the
robustness and stability of GANs in the way of semisupervised
learning. On the one hand, the SSAT-GAN takes the unlabeled
data into account to alleviate the scarcity of labeled samples,
which enables the generator G to implicitly reconstruct real HSI
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cubes. Meanwhile, we adopt the mean minimization loss as an
unsupervised constraint item used in the discriminator D to avoid
overfitting. On the other hand, the complicated spectral–spatial
characteristics of local adjacent pixels herald the redundancy
and inefficiency problem, which result in more insufficient clas-
sification with more complex regions. Inspired by the fact that
the attention weights can enhance the effective representation
of the saliency neighborhood of an object, the spectral–spatial
attention modules (SSAT) are designed separately to capture
the discriminative representation in this article, in which both
intraspectrum and contextual relations of HSIs participate in the
attention calculation through the feedback, and the weighted
feature maps are considered to enhance intraclass consistency.
In this way, we extend the SSAT to consecutive feature spreading
and generation blocks and pass through them to build D and G,
respectively. Unlike traditional semisupervised GANs, which
require a deeper convolutional architecture for feature represen-
tation, our proposal is feature-efficient because both D and G
share the weights of parameters with the corresponding attention
modules and further improve the feature description. To this
end, the well-trained D can achieve satisfactory classification
accuracy.

The main contributions of this article are listed as follows.
1) We design a novel semisupervised GAN-based HSI clas-

sification framework using a small number of labeled and
unlabeled data for training. The mean minimization loss
is employed for unsupervised learning, which boost the
backpropagation of the gradient and stabilize the training
of GAN.

2) For the purpose of alleviating the inefficient description,
we integrate the spectral–spatial attributes into SSAT for
representation discrimination of the HSI data.

3) The alternately optimized architecture design makes the
SSAT-GAN a framework that generalizes well in three
real HSI datasets and achieves satisfactory classification
accuracy over state-of-the-art methods.

The rest of this article is organized as follows. Section II
reviews the basic concepts of GANs. The scheme of the proposed
SSAT-GAN and its components are introduced in Section III.
Experimental results and analysis are presented in Section IV.
The superiority of SSAT-GAN is discussed in Section V. Finally,
the conclusion is drawn in Section VI.

II. RELATED WORK

A. Generative Adversarial Network

GAN is an unsupervised deep learning model proposed by
Goodfellow et al. [39], which provides a reasonable scheme
to implicitly reckon real data distribution. GAN incorporates a
generator G and a discriminator D in a unified network, where G
generates samples to fool D into believing it, and D distinguishes
the genuineness of the samples. Contradictory results make G
and D reach Nash equilibrium in the zero-sum game, which is
finally expressed as a minimax optimization problem

min
G

max
D

Loss = Ez∼pz
[log (1−D (G (z)))]

+ Ex∼pdata [logD (x)] (1)

where z ∼ pz and x ∼ pdata denote the random noise vectors and
input images following real data distribution, respectively. E(·)
is the expectation. D(x) and G(z) represent the sigmoid output
obtained from D by training on real input vectors, and synthetic
data from G by random noise, respectively. D(G(z)) gives the
real expectations of D with the input derives from G(z).

In the optimization process of GAN, G and D are opti-
mized alternately. Given G(z) of G, the model will optimize D
by maximizing Ex∼pdata [logD(x)] + Ez∼pz

[log(1−D(G(z)))].
When D arrives at a stationary score, G is optimized by min-
imizing Ez∼pz

[log(1−D(G(z)))]. Since D and G achieve the
Nash equilibrium during adversarial training, GAN will learn
the probability estimation of real data and produce promising
results.

III. SSAT-GAN FRAMEWORK

The SSAT-GAN flowchart is shown in Fig. 1. Suppose the raw
HSI dataset X contains m pixels {x1, x2, x3, . . . , xm} ∈ R1×1×b ,
where b is the bands of spectrum. The neighboring cubes cen-
tered at the labeled pixels form the labeled datasets X1 = {xi

1} ∈
Rw×w×b×ml . Take unlabeled cubes X2 = {xi

2} ∈ Rw×w×b×mu ,
where w, ml , and mu are the spatial size of HSI cubes and
the number of labeled and unlabeled HSI samples, respectively.
We send these two datasets to the discriminator to learn the
real distribution of HSI. The generator synthesizes HSI cube
Z = {z1, z2, z3, . . . , zm}, with samples of size X2. In addition,
the labeled X1 has its corresponding annotation Y1 = {yi

1} ∈
R(1+ny)×ml , where ny is the number of land cover categories,
and yi

1[0] is the first item of yi
1, which indicates the authenticity

of the corresponding HSI cube. The classified prediction of HSI
is carried out with a well-trained discriminator.

SSAT-GAN incorporates the spectral and spatial attention
modules in both discriminator and generator to extract dis-
criminative features, where the discriminator and generator are,
respectively, composed of convolutional and transposed layers.

A. Spectral and Spatial Attention Modules

The purpose of SSAT is to enhance the feature analysis of a
salient and effective domain, which is inspired by CBAM [40].
Given an intermediate feature map, it sequentially calculates
attention weights along spectral and spatial dimensions, sepa-
rately.

1) Spectral Attention Module: The spectral attention module
aims at exploring the intraclass consistency of spectrums. As
each band of spectral energy is considered as a class feature
detector, our spectral attention focuses on “which” bands are
meaningful given an input cube. To highlight discriminative
signature from spectral knowledge while retaining uniform
characteristics, we use both depthwise separable convolution
(Depth_CONV) [41] and 3-D convolution (3D_CONV) op-
erations. For aggregating intraspectrum information, average-
pooling and max-pooling have been commonly adopted so far. In
addition, we employ a spectral squeeze mechanism to assign an
independent weight to each element along spectral dimension.
Finally, the spectral attention weights will be generated by a
dynamic activation function.



10020 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 1. Flowchart of SSAT-GAN framework for HSI classification. First, the unlabeled group X2 is established to initialize the parameters of a discriminator,
and a generator transforms the noise vectors z to a set of fake HSI cubes Z, which implicitly learns the real HSI distribution. Then, the discriminator attempts to
identify the authenticity of the input HSI cubes that derive from X2 or Z. Finally, the categorical information Ŷ is predicted by the discriminator that feeds labeled
X1 during training. The corresponding annotation Y1 is adopted for the evaluation and acquire supervised partial loss of the GAN.

Fig. 2. Spectral attention module utilizes both Depth_CONV and 3D_CONV
descriptors with pooling operations, followed by a spectral squeeze mechanism
to predict spectral attention weights.

As demonstrated in Fig. 2, take n HSI cubes Xp of size
w × w × d as the p + 1th input feature map. It first captures
the available homogeneous area using both Depth_CONV and
3D_CONV operations with n spectral kernels of size 1× 1×
m , generating two different spatial context descriptors: XDep and
X3-D. Both descriptors are then forwarded to average-pooling and
max-pooling operations, which denote the salient and effective
features, respectively. After an elementwise addition strategy,
the feature vectors are passed through a squeeze mechanism
to extract spectral energy relationship, producing our spectral
attention weights Attespc. It can enlarge the weights of HSI pixels
with discriminative signatures in the spectral distribution and
suppress those of adverse pixels for identification. The squeeze
mechanism is composed of fully connected layers (FCs) with
one embedding layer. To optimize the parameter efficiency,
the embedding units are set to Nd/1×1×r, where the r is the
optimization ratio. The Attespc can be formulated as

Attespc = σ
(
FCs

(
AvgPool

(
XDep

)
+MaxPool

(
X3−D

)))
= σ

(
W1

(
W0

(
XDep

avg + X3-D
max

)))
, (2)

where σ(·) is a sigmoid activation, which constrains the proba-
bilities in the range of [0, 1]. W0 ∈ Nd/r×d and W1 ∈ Nd×d/r

note that the FCs squeeze weights along spectral dimension.

Fig. 3. Spatial attention module combines two similar feature maps that are
convolved with Atrous_CONV and 3D_CONV, and pooled along the spectral
axis, and then feeds them to a convolution layer.

It can be considered as the signal-to-noise ratio (SNR) enhance-
ment from the physical level, that is, the ratio of the validity
spectral energy considered as signal energy specified by W1 to
the squeezed features considered as noise energy W0.

2) Spatial Attention Module: For exploiting the interclass
differences of spatial contexts, we build a spatial attention mod-
ule to generate spatial attention map. As a reasonable theory,
a pixel does not always share the category of its neighbors,
and the spatial attention providing “where” are interesting areas,
which is complementary to the spectral attention. As illustrated
in Fig. 3, we apply the atrous convolution (Atrous_CONV)
and 3D_CONV operations along the spectral axis, generating
two different intermediate feature maps, which aim at extend-
ing receptive field and reducing the interference of abnormal
pixels. Atrous_CONV has been proved effectively for learning
intraclass consistency homogeneous areas of HSIs [42], which
has a shared kernel with multiple dilations for learning spatial
contexts. For the “gridding problem” [43], both intermediate
maps are then forwarded to average-pooling and max-pooling
to enhance the spatial representation and generate a contextual
descriptor with pixelwise addition strategy. The spatial attention
weights will be predicted after activating the neural parameters
of the contextual descriptor.

Supposing an HSI cube Xq of size w × w × d is the q + 1th
input of the spatial attention module, we first aggregate spectral
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Fig. 4. Four feature spreading blocks with lightweight spectral–spatial attention modules aiming for HSI feature extraction and generation in SSAT-GAN.
(a) and (b) Spectral and spatial attention feature spread blocks in discriminators; (c) and (d) Spectral and spatial attention feature generation blocks in generators.

information by two convolutional operations with kernel size
a × a × d , generating XAtr and X3-D. Then they passed through
both pooling operations and generate two maps: XAtr

avg and X3-D
max.

Each denotes local effective information and uniform contexts
across the spectral knowledge. The spatial attention weights
Attespa are then predicted by a standard convolution after the
pixelwise addition, which is computed as

Attespa = σ
([

AvgPool
(
XAtr

)
;

MaxPool
(
X3-D

)]) ∗ Hq+1 + bq+1

= σ
([

XAtr
avg;X3-D

max

]) ∗ Hq+1 + bq+1. (3)

where ∗ denotes the convolutional operation and Hq+1 ∈
Ra×a×2 is the spatial convolutional kernel, in which a denotes
the spatial sampling size and bq+1 denotes the bias. Note that
their spatial sizes are fixed at w × w under the padding strategy,
which means that the spatial attention module can explore the
adaptive neighboring correlation at the dilated receptive regions.
Therefore, the spatial attention module can provide supplemen-
tary information for accurate spectral feature mapping.

B. Spectral–Spatial Attention Discriminator and Generator

We incorporate our SSAT in the generator and discriminator
and extend them to four spectral–spatial attention spread learn-
ing and generation blocks. Fig. 4 shows the architecture of four
attention blocks, each of which can be regarded as an extension
of successive convolution and transposed convolution.

1) Spectral Attention Feature Spread Block: For the redun-
dant spectral bands, as shown in Fig. 4(a), the spectral attention
module is introduced in the p+1th layer to assign an attention
weight to the spectral tensor of HSI and aggregates the intra-
class correlation of the narrow spectrum. Next, the p+2th layer
utilizes a 3-D convolution layer with batch normalization [44]
(CONV_BN) to update the parameters according to the spectral
attention feature. The skip connection is applied instead of
directly mapping between the p+1th and the p+2th layers and
builds the spectral attention feature extraction function F(Xp ;θ).

If Xp and Xp+1, respectively, represent the input intermediate
feature cube of the pth layer and the output feature cube of
the p + 1th spectral convolutional layer, then the architecture of
F(Xp ;θ) can be formulated as

Xp+2 = Xp + F (Xp ;θ) , (4)

F (Xp ;θ) =
(
Attespc ⊗ R

(
X̂
p+1
))

∗ hp+2 + bp+2, (5)

X = R
(

X̂
p
)
∗ hp+1 + bp+1, (6)

X̂
p
=

Xp − E (Xp)

Var (Xp)
(7)

where θ = {hp+1, hp+2, bp+1, bp+2} ∈ R1×1×m,n. Note that θ
is the weights and biases of the spectral convolutional kernels,
which sharing their parameters for the whole training. Attespc

is the spectral attention weights proposed by (2). R(·) is the
ReLU activation function, which sets negative values to zero.
E(·) and Var(·) indicate the expectation and variance functions
of the input HSI cubes, which is applied in BN, respectively. ∗
represents the convolution operation, and ⊗ is the elementwise
multiplication. Furthermore, Attespc retains the weights among
spatial dimensions to the same, under aggregating intraspectrum
information to improve radiant energy efficiency from each
band.

2) Spatial Attention Feature Spread Block: The spatial atten-
tion feature spread block aims to explore neighboring correlation
and intraclass consistency of central pixels in high-spatial re-
gions. Fig. 4(b) shows the detail of the spatial block. The depths
along the spectrum of kernels are in an identical size with that
of the input cubes Xq , which means the block extracts adaptive
spatial context while maintaining the spectral attention feature.
The architecture of the block can be formulated as

Xq+2 = Xq + F (Xq ; ξ) , (8)

F (Xq ; ξ) =
(
Attespa ⊗ R

(
X̂
q+1
))

∗ Hq+2 + bq+2, (9)
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Fig. 5. Spectral–spatial discriminator (top), which contains successive spectral and spatial attention feature spread blocks and outputs a vector consisting of
an indicative entry of real or fake data and categorical probabilities; spectral–spatial generator (bottom), which contains successive spectral and spatial attention
feature generation blocks and transforms a vector from random noise to a synthetic HSI cube.

X = R
(

X̂
q
)
∗ Hq+1 + bq+1, (10)

X̂
q
=

Xq − E (Xq)

Var (Xq)
(11)

where ξ = {Hq+1,Hq+2, bq+1, bq+2} ∈ Ra×a×d,1. Attespa is
the spectral attention weights proposed by (3). In contrast to
spectral attention, spatial attention can be also regarded as image
denoising widely used in computer vision, that is, Attespa

searches an adaptive relationship from local spatial, and feed-
back to the input feature tensor.

3) Spectral–Spatial Attention Feature Generation Blocks:
To overcome the challenge of a small-sample scenario, the
idea of spectral–spatial attention is extended to the generator
to improve the variety of generation. Fig. 4(c) and (d) shows the
details of spectral–spatial attention generation blocks; they em-
bed both attention modules to spread feature generation, which
contains successive transposed 3-D convolution (CONV−1_BN)
and generates HSI cubes with spectral–spatial distributions. The
architecture of the spectral attention generation block takes the
form

zp+2 = zp + F (zp ;θ) , (12)

F (zp ;θ) =
(
Attespc ⊗ R

(
ẑp+1

)) ∗T hp+2 + bp+2, (13)

z = R (ẑp) ∗T hp+1 + bp+1 (14)

where each element of θ indicates parameters of spectral trans-
posed convolutional layers, Attespc is the continuation of (2),
and ∗T denotes the transposed convolution operation. ẑp is the
normalization result of batch feature cubes zp , whose calculation
refers to (7). Similarly, the spatial attention generation block
takes the form

Zq+2 = Zq + F (Zq ; ξ) , (15)

F (Zq ; ξ) = Attespa ⊗ R
(

Ẑ
q+1
)
∗T Hq+2 + bq+2, (16)

Z = R
(
Ẑ

q
)
∗T Hq+1 + bq+1 (17)

where ξ denotes parameters of spatial transposed convolutions,
and Attespa is obtained from (3). Furthermore, Ẑ

q
is also the

BN results of batch feature input Zq , which is computed as (11).
Unlike traditional feature representation blocks, which per-

form the attention mechanism after the feature extraction for HSI
data characterization, the proposed spectral–spatial attention
feature spread and generation blocks are feature-efficient, i.e.,
the attention maps are executed during the feature extraction. It
can be described from two aspects. 1) The consecutive spectral–
spatial attention feature spread blocks of the discriminator draw
the SSAT into the architecture for training, which provides
learnable spectral and spatial attributes. On the one hand, be-
ing similar to SNR enhancement, the spectral attention weight
Attespc retains the high-frequency details of the HSI data and
improves the discrimination of high-level semantic description.
On the other hand, the spatial attention weights Attespa with
the denoising theory can emphasize a broader receptive field to
learn adaptive neighborhood relations. Under the guidance of
SSAT, the discriminator can always obtain excellent interpre-
tation ability for the HSI data, whether in high-purity spectral
domains or high texture local regions. 2) The spectral–spatial
attention feature generation blocks of the generator share both
Attespc andAttespa with that of feature spread blocks. It means
that the implicit synthetic HSI cubes produced by generator help
the discriminator learn more robust and efficient characteristics.

C. Semisupervised SSAT-GAN

Taking the Pavia University (UP) dataset as raw input HSI
cubes, Fig. 5 details the SSAT-GAN algorithm stream. The
discriminator D contains a spectral attention feature spread
block, spatial attention feature spread block, and one FC, and
it outputs the vectors with the softmax layer. The generator G
includes one FC, spectral attention generation block, and spatial
attention generation block to generate HSI cubes. In addition, we
extend the SSAT-GAN to semisupervised classification, which
adopts unlabeled training samples of a raw HSI cube to improve
HSI classification.
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In contrast to original GANs, semisupervised SSAT-GAN
leads a supervised item into the GAN loss to achieve the HSI
classification. The labeled HSI cube X1 = {xi

1} ∈ R7×7×103

has its corresponding annotation labels Y1 = {y1i } ∈ R1×(1+ny),
where ny is the total number of ground truth category, and the
extra “1” category denotes whether the HSI cube is from syn-
thetic or real data. Therefore, the prediction of the well-trained
D can take the form

Ŷ
1
= D

(
X1; θD

)
(18)

where θD denotes parameters for training D for each element
of y1i , which includes (1 + ny) entries. In particular, y1i [0] is
the authenticity of xi, and y1i [1 : ny ] denotes the output vectors
of softmax, which contain probabilities that y1i belongs to each
category.

Semisupervised GAN aims to alleviate the issue of small
samples by labeled and unlabeled data of HSI. The point of
view referred in [33] illustrated that D needs a bad G as a
regularizer for training GANs. An opposite theory cited in [34]
has pointed out that high-quality synthetic samples help D im-
prove generalization ability for HSIs. In our proposal, we extend
our spectral–spatial attention weights to G, reconstructing HSI
cubes, implicitly. It can be divided into two phases. First, G is
considered as the regularizer of D to improve HSI classification,
and it updates the penalty factor with the discriminative loss.
Thus, the optimized loss function of D takes the form

LSEMI (θD, θG) = LSUP (θD, θG) + LUNSUP (θD, θG)

= LSUP (θD) + LD1 (θD)

+ LD2 (θD, θG) (19)

where θD and θG are the optimization parameters of the D and
G, respectively. LSEMI is the total objective loss for optimizing
SSAT-GAN. LSUP,LD1, andLD2 are, respectively, the unsuper-
vised and supervised items of D, and the unsupervised item of
G. These items are all formulated as

LSUP (θD) = −EX1∼pdata
logD

(
X1; θD

)
[1 : n]

= −EX1∼Pdata
logŶ

1
[1 : n], (20)

LD1 (θD) = −EX1∼pdata

(
1− logD

(
X1; θD

)
[0]
)

= −EX1∼pdata
log
(
1− Ŷ

1
[0]
)
, (21)

LD2 (θD, θG) = −Ez∼pz
logD (G (z; θD)) [0]

= −Ez∼pz
logD (Z; θD) [0]

= −Ez∼pz
logŶ

1
[0] (22)

where LSUP is applied for optimizing the real HSI predictions of
softmax vectors, which corresponds to y1i [1 : ny ] from (18).LD1

aims at updating the recognition degree by unlabeled HSI cubes,
and LD2 focuses on increasing the authenticity of generated
samples, which both correspond to y1i [0] from (18).

It is to be observed that the optimization of a semisupervised
GAN focuses on exploring a real HSI data distribution by limited
labeled samples, which often causes overfitting. As the high

Fig. 6. Indian Pines dataset. (a) False-color image. (b) Ground-truth labels.

Fig. 7. Pavia University dataset. (a) False-color image. (b) Ground-truth labels.

dimensional feature learning of LD1 is not constrained, it will
contribute little to and even jeopardize the discriminator to
enhance the capability of HSI classification. Thus, we minimize
the high-dimensional output of (21) to update the gradient in
reverse and decrease the value and variance to inhibit overfitting,
which is available in another work [36] called mean minimiza-
tion loss. The function takes the form

θ∗ = argmin
θ

(
1

N

N∑
i=1

average (f (xi; θ))

)
(23)

where N is the total entities of batch samples, xi is the training
sample, and f(xi; θ) indicates the high-dimensional output of a
model, which, in this article, is the output before the FC. Second,
we employ the predictive spectral–spatial attention weights for
generating high-quality samples. Furthermore, LD1 + LD2 is
also part of the GAN loss for training G, whose corresponding
loss function LG can be formulated as

LG (θD, θG) = −Ez∼pz
log (1−D (G (z; θD)) [0])

= −Ez∼pz
log (1−D (Z; θD) [0])

= −Ez∼pz
log
(
1− Ŷ

1
[0]
)
. (24)

The training of SSAT-GAN involves two alternating steps
through rms or adjacent optimization fashions in every epoch.
First, the gradients of the discriminator −�θDLSEMI are em-
ployed to adjust θD to capture discriminative spectral–spatial
features of HSI. Second, the gradients of −�θDLG are applied
to adjust θG to ameliorate the adversarial training. The detailed
training process of SSAT-GAN is described in Algorithm 1.
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Algorithm 1: Training Process of SSAT-GAN.

Input: The labeled training data: X l
train, unlabeled training

data Xu
train, and the test data X test from ny classes,

corresponding annotation of training data Y l, the batch
size bt , and the number of training epochs e.

Output: The labels of the test samples X test

1: Begin
2: Initialize: Randomly initialize the parameters θD and

θG of the discriminator D and the generator G;
3: for i = 0 to epoch e do
4: for bt training samples of each batch do
5: Generate bt noises {z1, z2, . . . ,zbt} from the

Gaussian distribution μ(−1, 1);
6: Concatenate noises with labels {y1, y2, . . . , ybt};
7: Input X l

train into D to obtain real HSI features via
(4) and (8);

8: Calculate Attespc via (2);
9: Calculate Attespa via (3);
10: Predict classification vectors D(xl

i; θD)[1 : ny];
11: Compute LSUP via (20);
12: Input noises {z1, z2, . . . ,zbt}, class labels

{y1, y2, . . . , ybt}, Attespc, and Attespa to G;
13: Generate samples Z via (13) and (16);
14: Input Xu

train and Z to D;
15: Predict authentic vectors D(xu

i ; θD)[0];
16: Compute LD1 and LD2 via (21) and (22);
17: Compute LG via (24)
18: Update θD by minimizing LSUP + LG

19: Update θG by minimizing 1−D(zi; θD)[0];
20: bt = bt + 1;
21: end for
22: i = i+ 1;
23: end for
24: Classify X test by the well-trained D;

Fig. 8. Kennedy Space Center dataset. (a) False-color image. (b) Ground-truth
labels.

IV. EXPERIMENTAL ANALYSIS

We detail the experimental results from three real hyperspec-
tral datasets, including the Indian Pines (IN), the University of
Pavia (UP), and the Kennedy Space Center (KSC). Each of them
is standardized by mean variance operation. Three classification
evaluation metrics, including overall accuracy (OA), average
accuracy (AA), and kappa coefficient (κ), are employed to
validate the experimental performance of SSAT-GAN and the
comparison algorithms. In particular, OA considers the total
percentage of correctly classified pixels; AA details the average

percentage to the sum of correctly classified pixels in each
category; the kappa coefficient provides the corrected percent-
age of correctly classified pixels as expected purely by chance
based on confusion matrix. All experiments are implemented
with an NVIDIA TITAN V GPU with 12-GB graphic memory,
TensorFlow GPU 1.8.0 with CUDA 9.0, and Python 3.5.

A. Experimental Datasets

1) Indian Pines: IN was acquired by airborne visi-
ble/infrared imaging spectrometer (AVIRIS) from Northwest
Indiana in 1992 and includes 16 vegetation categories, with
an imbalance in pixel numbers over categories. It contains
145× 145 spectral pixels with a spatial resolution of 20 m per
pixel, retaining 200 bands of spectrum from 400 to 2500 nm
after removing corrupted water-absorption effects.

2) University of Pavia: UP was gathered by reflective optics
system imaging spectrometer (ROSIS) in 2001 from North-
ern Italy, consisting of 610× 340 spectral pixels with nine
urban land-cover classes, and 1.3 m spatial resolution per pixel,
employing 103 bands of spectrum from 430 to 860 nm after
abandoning 20 noisy bands.

3) Kennedy Space Center: KSC was obtained by AVIRIS in
1996 from Florida and includes 13 upland and wetland land-
cover types, with 512× 614 spectral pixels and 176 bands of
spectrums to assess the classification capacity, after discarding
information with a low-SNR, with a range from 400 to 2500 nm.

Figs. 6–8 illustrate the dataset, the corresponding ground
reference maps, and category information. All labeled samples
are split into two groups: the training group and the test group.
For the unlabeled group, the unlabeled training samples are ran-
domly selected from the background. GANs contain relatively
higher computational complexity, which is often guided to the
mode collapse. Thus, we refer to Monte Carlo sampling [45]
which is mentioned in [33] to marginalize noise during training.

B. Parameter Tuning

Fig. 5 takes the UP neighboring cube as an instance to
show the detail of the discriminator D and generator G. The
7× 7× 103 HSI cubes are randomly directly extracted from
raw 3-D HSI data as the real input, followed by feeding them
into D. G utilizes 1× 1× 200 noise vectors as the input and
outputs 7× 7× 103 fake HSI cubes. We alternately update
the parameters of the SSAT-GAN through backpropagation of
the gradients. For the efficiency of the grid search, we set the
learning rate to 0.0005 and the batch size to 16 and employ
the RMSProp optimizer [46] to alternately optimize them. Once
the hyperparameters of SSAT-GAN are configured, we analyze
four factors that avoid model collapse and influence the HSI
interpretation performance of SSAT-GAN.

1) Evaluation of Different Depths of Spectral–Spatial Atten-
tion Block: We assessed the impact of different depths of the
spatial–spectral attention feature spreading blocks on classifica-
tion results. For SSAT-GAN, the depths of blocks were validated
from four convolutional layers to eight convolutional layers on
all datasets. To maintain the stability of the model, the depth
of the generator was symmetric to that of the discriminator. As



LIANG et al.: SPECTRAL–SPATIAL ATTENTION FEATURE EXTRACTION FOR HSI CLASSIFICATION BASED ON GAN 10025

Fig. 9. OAs of SSAT-GAN with different depths of convolutional layers in
their spectral–spatial attention feature spread blocks using 500 labeled samples
on IN and UP, and 250 on KSC for training. The x + y formation on the abscissa
indicates x spectral and y spatial convolutional layers in discriminator.

Fig. 10. OAs of SSAT-GAN for varying kernel numbers in their spectral–
spatial attention spreading blocks using 500 labeled samples on IN and UP, and
250 on KSC for training.

illustrated in Fig. 9, it achieved the highest evaluation results on
both IN and UP datasets, when set the depths of spectral-spatial
attention feature spread blocks to “3 + 3”, i.e. the discriminator
which consists of 3 spectral and 3 spatial convolutional layers,
compared with other settings of convolutions. As for the KSC,
the differences of OAs between deeper SSAT-GANs and their
corresponding shallow depth get a small value. Meanwhile,
in contrast to the obvious overfit deeper layers under limited
training sample effects reviewed in [33], the quantitative HSI
classification performance of SSAT-GANs with varying depths
illustrated that our attention modules mitigate the overfitting
effects to other GANs.

2) Evaluation of Different Numbers of Kernels for SSAT-
GAN: Kernel numbers of each layer from feature spreading
blocks greatly affects computation consumption and expres-
siveness of SSAT-GANs. We evaluated the impact of different
numbers of kernels of the spectral–spatial attention feature
spreading blocks on the results. In Fig. 10, the discriminator
and the generator of SSAT-GAN set the same kernel number
in their convolution and transposed convolution layers, with the
number of kernels verified from {20, 24, 28, 32, 36}. As can be

seen from Fig. 10, when the kernel numbers were fixed at 28
and 32, it achieved the highest classification results on all three
datasets.

3) Influence of Unlabeled Real HSI Cubes: To evaluate the
influence of unlabeled real HSI cubes, we tested SSAT-GAN and
its three extensions using different numbers of unlabeled HSI
samples on the IN, UP, and KSC datasets. The three extensions
of SSAT-GAN are denoted as Spa-AT-GAN (the ones that only
contain the spatial attention feature spreading part), the Spc-AT-
GAN (the ones that only contain the spectral attention feature
spreading part), and the Spa-Spc-AT-GAN (the ones that contain
both spreading blocks, where the spatial attention module is set
before the spectral attention module). Table I recorded the clas-
sification results of SSAT-GANs. Each experiment randomly
selected 0, 300, 1000, and 5000 unlabeled samples for training.

For IN and KSC, the classification of SPA-SPC-AT-GAN did
not efficiently improve with the increase of unlabeled samples.
Among the four methods, SSAT-GAN had the best evaluation
on each dataset with various unlabeled samples due to the
spectral–spatial attentive feature learning guidance. Moreover,
models with 300 unlabeled samples had the most accurate
evaluation on all three datasets, and the improvement of 1000
unlabeled samples was not obvious. When the number increased
to 5000, the results showed a downward trend in all extensions
of SSAT-GAN on three datasets. This proves that adding too
many real samples does not greatly improve the classification,
which is caused by the abnormal distribution of unlabeled pixels.
In addition, it can be seen that the HSI classification has been
significantly improved if the unlabeled samples are set equal
to the labeled samples. This conclusion is consistent with the
opinions reported by Zhong et al. [33] and Liang et al. [36].

4) Evaluation of Different Spatial Data Sizes: To assess the
impact of spatial size on the experimental results, we tested
SSAT-GAN with spatial data sizes of {5× 5, 7× 7, 9× 9, 11×
11, 13× 13}. Fig. 11 shows that SSAT-GAN could capture rela-
tively high and stable results while the spatial size was equal to or
greater than7× 7. This is mainly because a larger spatial size has
more abundant spatial information. These experimental results
also indicate that spatial contexts gradually gain an important
role in HSI classification.

TABLE I
OAS (%) OF SSAT-GANS USING VARIOUS NUMBER OF UNLABELED SAMPLES

AND 300 LABELED SAMPLES IN THE IN, UP, AND KSC DATASETS
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Fig. 11. OAs of SSAT-GAN containing various spatial sizes of input cubes on
three datasets.

C. Comparison With Various Algorithms

This experiment aimed to compare the performance of the pro-
posed SSAT-GAN with the EPF-SVM [12] (EPF-based SVM)
and the state-of-the-art deep learning derived methods, such as
SSRN [18], 3D-Conv-Capsule [20], and HSI-BERT [26]. To
verify the improvement of GANs, we exploited three GAN-
based methods for comparison, including 3D-GAN [32], GAN-
CRF [33], and AD-GAN [34]. Moreover, to demonstrate the
effectiveness of the SSAT module, we also introduced the exten-
sions of SSAT-GAN: Spa-AT-GAN (only comprises one spatial
attention feature spreading block), Spc-AT-GAN (only com-
prises one spectral attention feature spreading block), and Spa-
Spc-AT-GAN (comprises one spatial attention feature spreading
block and one spectral attention feature spreading block). To
make a fair comparison, all the competitive algorithms were
tuned to their optimal settings.

Regarding the EPF-SVM, the two parameters of the joint
bilateral filter were set as follows: δs = 4 and δr = 0.2. Mean-
while, the hyperparameters of SVM were set as follows: γ = 4
and ε = 0.01. For SSRN and HSI-BERT, we set the input HSI
cubes with the same spatial size of 7× 7. For 3D-Conv-Capsule,
the routing interaction was set to three times to determine its
coupling coefficients. For 3D-GAN, the first three principal
components of HSIs were applied for channel input, and the
spatial size was set to 64× 64. For GAN-CRF, the neighborhood
of 9× 9 pixels was employed and configured three spectral and
spatial convolutional layers in the discriminator. For AD-GAN,
the 3-D HSI cubes of size 27× 27× 3 were considered as
input, and an AdapDrop block was executed once at both the
discriminator and the generator, each of which set k = 40 and
b_size = 7.

As for the proposed SSAT-GAN, we set the spatial size of
input HSI cubes to 7× 7 and trained 300 epochs. Both D and
G were built with consecutive spectral–spatial attention feature
spread blocks and spectral–spatial attention feature generation
blocks, each of whose kernel number was 28. The minibatch
was 16. To avoid the mode collapse, we set unlabeled samples
with the same number of the labeled training samples that were
used for training. Furthermore, all the comparison methods were

Fig. 12. Accuracy value of the IN dataset with SSAT-GAN model under
different training data sampling. We report the average results of ten experiments.
(a) Randomly selection strategy. (b) Monte Carlo sampling strategy.

Fig. 13. Classification visualization of comparison models on IN dataset.
(a) EPF-SVM. (b) SSRN. (c) 3D-Conv-Capsule. (d) HSI-BERT. (e) 3D-GAN.
(f) GAN-CRF. (g) AD-GAN. (h) Spa-AT-GAN. (i) Spc-AT-GAN. (j) Spa-Spc-
AT-GAN. (k) SSAT-GAN.

trained and evaluated using 10 randomly sampled experiments,
and the average results and their standard deviations for the
report were recorded.

1) Experimental Results on IN Dataset: For various meth-
ods, 500 labeled pixels were employed as training samples on the
IN dataset. Table II lists the quantitative classification results of
comparison methods, and the visualization maps are illustrated
in Fig. 13. As shown in Table II, EPF-SVM yielded poor ac-
curacies in the “Corn,” “Soybean-notil,” and “Buildings-Grass-
Trees-Drivers” classes, which are 63.09%, 67.93%, and 52.74%,
respectively. This is caused by their similarity of spectral curves,
which makes them difficult to identify. In contrast, we observed
that SSRN, 3D-Conv-Capsule, and HSI-BERT acquired better
results than EPF-SVM in the three classes. However, in the
HSI-BERT, it improved at least 12.21% in the “Corn” class.
It can be analyzed that deep-learning methods have a certain
positive effect on interpreting complex spectral characteristics.
Different from the former, GAN-based methods showed superior
prediction in the three classes, and 3D-GAN improved at least
26.66% in “Corn”. Besides, GAN-CRF achieved 93.05% in
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“Soybean-notil,” and AD-GAN had classified the “Corn” com-
pletely accurate. As for SSAT-GANs, both Spa-AT-GAN and
Spc-AT-GAN achieved advanced prediction in the three classes.

As SSAT can improve the intraclass aggregation, which effec-
tively distinguishes the difference between spectra during hyper-
spectral interpretation. In the “Alfalfa,” “Grass-pasture-mowed,”
and “Oats” categories, only 5, 3, and 5 pixels were used as
training samples. SSAT-GAN gains superior classification, all
with accuracies of 100%. This indicates that our SSAT-GAN
can extract sensitive features under the classes of small samples.
Among the competitive methods, SSAT-GAN also gathered the
best accuracies in the “Soybean-mintil” and “Soybean-clean,”
which contain redundant spectral signatures. Meanwhile, SSAT-
GAN outperformed various comparison methods according to
OA, AA, and kappa. In contrast to SSAT-GAN with its exten-
sions, SSAT-GAN improved the OA with extensions by at least
1.01%, AA by 1.35%, and kappa by 1.25%. This illustrates that
the SSAT module can extract discriminative spectral signatures
and adaptive homogeneous areas to mitigate the impact of
interfering pixels of HSIs. Besides, it should be noted that the
experiment in Spa-Spc-AT-GAN showed inferior performance
because the abundant spectral features are more difficult to learn
than spatial features.

To verify the results of the SSAT-GAN under the Monte
Carlo sampling, we also experiment with the randomly selection
strategy under the training sampling ratio (SR) fixed as 5% (500
training samples) and 10% (1000 training samples). As shown
in Fig. 12(a), the detailed class accuracy (CA) of each class
shows qualitative comparisons with different circumstances, in
which the “Soybean-notil” class obtained unsatisfactory results
under the randomly selection strategy, with 79.79% of SR = 5%
and 91.65% of SR = 10%. Besides, it is worth mentioning that
the experiment under the SR = 10% achieves better realistic
performance compared to that of SR = 5%. The reason is that
the randomly chosen samples for any other classes contain more
outstanding characteristics which confuse that of small-sample
classes, when the data distribution is imbalanced. To confirm this
stated opinion, we adopted the Monte Carlo sampling to redo the
experiment with our SSAT-GAN with the SR MCR = 5% and

MCR=10%. The Monte Carlo sampling considers the interclass
sample distribution under preserving the total random sampling
size (as shown in Table II). As can be seen from Fig. 12(b), the
performance of each class in the style of Monte Carlo sampling
has superior observations than the indication in Fig. 12(a).
From Fig. 13(a)–(k), EPF-SVM and Spa-Spc-GAN has got more
visual noise and had the most misclassified pixels; besides,
visualizations of SSRN and HSI-BERT got rough boundaries
in most classes. The reason is that the imbalanced sample
distribution of the IN dataset, in which part of classes with a large
number of samples may contain more discriminative character-
istics to the identification. 3D-GAN, GAN-CRF, Spa-AT-GAN,
and Spc-AT-GAN gained relatively little visual noisy scatter. In
contrast, 3D-Conv-Capsule and AD-GAN significantly reduced
the impact of noise and established homogeneous areas. Among
them, SSAT-GAN had more uniform regions and set up an
adaptive neighboring relationship, from which it can be noted
that SSAT can effectively suppress information detrimental to
classification.

2) Experimental Results on UP Dataset: The evaluation of
the comparison methods on the UP dataset is listed in Table III
using 500 labeled samples. We can see that OAs yielded with
SSRN, 3D-GAN, and GAN-CRF are 95.31%, 93.89%, and
94.95%. Our proposed model can further increase the per-
formance to 98.09% by incorporating the SSAT module. In
similarity, the AA values are 94.33%, 94.25%, and 97.16% for
the 3D-Conv-Capsule, HSI-BERT, and AD-GAN, respectively.
As can be observed, the proposed SSAT-GAN has a relatively
stable and balanced classification effect for each category un-
der high-resolution neighboring relationships and acquired the
maximum AA value (98.21%). It can be noted that the proposed
SSAT module can capture discriminative interclass differences
and is essential and beneficial for the proposed architecture.

The classification visualization on the UP dataset is described
in Fig. 14. It can be seen that the comparison methods produced
rough prediction maps, especially in 3D-GAN and Spa-Spc-AT-
GAN, which was caused by atmospheric effects and instrument
noises. SSAT-GAN aimed at neighboring correlation context as

TABLE II
CLASSIFICATION ACCURACIES AND TRAINING AND TESTING TIMES OF VARIOUS COMPARISON METHODS USING 500 LABELED SAMPLES AND

500 UNLABELED SAMPLES FOR THE IN DATASET

Note: The best values are highlighted in bold font.
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Fig. 14. Classification visualization of comparison models on UP dataset.
(a) EPF-SVM. (b) SSRN. (c) 3D-Conv-Capsule. (d) HSI-BERT. (e) 3D-GAN.
(f) GAN-CRF. (g) AD-GAN. (h) Spa-AT-GAN. (i) Spc-AT-GAN. (j) Spa-Spc-
AT-GAN. (k) SSAT-GAN.

auxiliary information and had the smoothest results and clearest
boundary.

3) Experimental Results on KSC Dataset: The last experi-
ment is performed at the KSC dataset using 250 labeled pix-
els as training samples. As shown in Table IV, the SSAT-
GAN achieved the best OA of 97.72% higher than GAN-CRF
(95.38%) and AD-GAN (96.15%). In comparison, the SSRN

Fig. 15. Classification visualization of comparison models on KSC dataset.
(a) EPF-SVM. (b) SSRN. (c) 3D-Conv-Capsule. (d) HSI-BERT. (e) 3D-GAN.
(f) GAN-CRF. (g) AD-GAN. (h) Spa-AT-GAN. (i) Spc-AT-GAN. (j) Spa-Spc-
AT-GAN. (k) SSAT-GAN.

yielded an OA of only 94.19%. The reasonable analysis is that
the KSC dataset contains a relatively sparse characteristic so
that the traditional network generally has more difficulties in
interpreting spectral–spatial features. With the SSAT operation,
the proposed model achieved superior performance in contrast
to the other state-of-the-art methods. In addition, it needs to be
noted that PCA-based 3D-GAN yielded the worst assessment
with an OA of 93.38%, which illustrates that the representation
of the primary components gains poor effect in the spectral–
spatial feature extraction for HSIs with the characteristic of high
sparsity. In contrast, our proposed architecture with the SSAT
model acquires better robustness for the sparsity.

Classification maps are shown in Fig. 15. In contrast, it can
be seen that SSAT-GAN achieved smoother and more adaptive
visual results, which indicates that its SSAT module can both
emphasize the intraclass consistency and increase interclass
differences for HSI classification with high sparsity distribu-
tion. All the quantitative experiments conducted on the three
datasets demonstrated that the SSAT-GAN framework reflects
the excellence and robustness of HSI classification.

TABLE III
CLASSIFICATION ACCURACIES AND TRAINING AND TESTING TIMES OF VARIOUS COMPARISON METHODS USING

500 LABELED SAMPLES AND 500 UNLABELED SAMPLES FOR THE UP DATASET

Note: The best values are highlighted in bold font.
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D. Investigation of the Impact of Attention Mechanism

To evaluate the effectiveness and the contribution of the
attention mechanism, we compared various classical and repre-
sentative attention modules which were executed over our GAN-
baseline in Table V, including SE_Block [47], CBAM [40],
FA [48], and MAFN [24], and reported OAs of three datasets.
It can be seen that both CBAM and our SSAT can obtain a
considerable result on all three cases. This is caused by their
forms of cascade connection that fit our architecture better.
Besides, the FA module has a more promising result on both
UP and KSC datasets in contrast to the IN dataset. The reason
is that it requires a high spatial resolution to calculate the utility
of covariance matrices over FA.

Moreover, we also investigated feature visualization with the
guidance of the attention weights under the SSAT modules. In
this experiment, only the 7× 7 neighboring HSI cubes were
used to train the SSAT-GAN over the UP dataset. Each category
of HSI cubes with the false color and their corresponding feature
maps from the penultimate layer of the discriminator are shown
in Fig. 16. As illustrated in Fig. 16, the more significant the
features, the darker the gradient distribution of the attention.
However, some target pixels to be classified in the fact do not
exactly belong to the same category as their neighboring pixels
in their corresponding HSI cubes, such as the central pixels
with its surroundings in Fig. 16(c), (e), and (g). In contrast,
it can be seen that there also consist of some bright areas in the
corresponding mixed attention distribution. The reason is that
our SSAT modules can effectively activate the spectral–spatial
attribute and assign an independent attention weight for each
pixel of the HSI cubes. In this case, our SSAT-GAN performs
the guidance of the attention weights with the feature extraction
simultaneously, which can improve the efficiency of hyperspec-
tral characterization.

E. Execution Time Analysis on Different Datasets

The training and testing time on the three datasets are also
illustrated in Tables II–IV. To assess the computational com-
plexity, we reported the execution time (in milliseconds, i.e.,
ms) at each epoch or iteration of various methods.

Fig. 16. Feature visualization with the guidance of the attention weights over
SSAT on the UP dataset. Each land cover category is randomly selected from
the labeled training set and described with the false color. The corresponding
feature visualization is obtained by applying Grad-CAM [49].

In general, EPF-SVM obviously consumed the shortest time
for training in all three cases. 3D-Conv-Capsule took the longest
time as the reason it needs to construct a dynamic route for
optimal vector search during training. GAN-based methods
need to optimize the discriminator and the generator alternately
and, thus, gathered a relatively long time for training. In addition,
Spa-AT-GAN took the shortest time to train on all three datasets,
among the deep learning methods, which took about 4–6 times
faster than GAN-CRF. In contrast, we can find that the time
cost is relatively similar between SSAT-GAN and HSI-Bert,
while our SSAT-GANs contains better accuracy as illustrated
in Tables II–IV.

For testing, 3D-GAN took more time to test because of its
large candidate neighboring areas and the deep network architec-
ture. In contrast, SSAT-GAN consumes relatively less time due
to the high efficiency that existed in the feature representation
of the spectral–spatial attention spread and generation blocks.
In summary, it can be concluded that the proposed framework
is the most efficient method with advanced performance under
fair comparison.

TABLE IV
CLASSIFICATION ACCURACIES AND TRAINING AND TESTING TIMES OF VARIOUS COMPARISON METHODS USING

250 LABELED SAMPLES AND 250 UNLABELED SAMPLES FOR THE KSC DATASET

Note: The best values are highlighted in bold font.
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Fig. 17. Impact of different number of labeled samples on OA results for training. OA results were obtained by all algorithms on (a) IN dataset, (b) UP dataset,
and (c) KSC dataset.

Fig. 18. Class accuracy results for each class with different number of total labeled samples for training over the SSAT-GAN on (a) IN dataset, (b) UP dataset,
and (c) KSC dataset.

F. Sensitivity Analysis on Different Number of Labeled Sample
for Training

To observe the effect of different number of labeled samples
on OAs, we randomly selected labeled pixels in the range of
{100, 300, 500, 700, 1000} on the IN, {50, 100, 200, 350, 500}
on the UP, and {50, 150, 250, 350, 500} on the KSC with the
Monte Carlo sampling strategy. Fig. 17(a)–(c) reports the OAs
of all competitors on three datasets, respectively. It should be
noted that the OAs gradually increase and then stabilize under
a different number of labeled samples on the IN, UP, and KSC
datasets. The reason is that the Monte Carlo sampling strategy
can provide sufficient labeled samples and, thus, construct a
complete dictionary for training. In addition, SSAT-GAN has an
obvious advantage in classification performance in contrast to
other methods.

To verify the contribution of different categories to both AA
and kappa with modification of labeled samples for training,
a new experiment was performed on the three datasets over the
proposed SSAT-GAN. Fig. 18 illustrated the CA of each class on
the three datasets. It is observed that the SSAT-GAN acquires
stable CAs for “Grass-trees,” “Hay-windowed,” and “Woods”

TABLE V
OVERALL ACCURACIES (%) OF SEMISUPERVISED GAN METHODS WITH

VARYING ATTENTION MODULES USING 300 UNLABELED SAMPLES AND

LABELED SAMPLES ON THE IN, UP, AND KSC DATASETS

class, no matter how many amounts of total labeled samples are
considered, owing to the discriminative spectral characteristics
of three ground materials in the IN dataset. Therefore, it still
achieves a satisfactory classification performance, even in a
relatively small labeled samples. Furthermore, the contribution
to the CA of the remaining classes in the IN dataset is im-
proved and then stabilizes since the number of labeled samples
increases.

For the UP dataset illustrated in Fig. 18(b), for the “Meadows,”
“Painted metal sheets,” and “Shadows” class, the CAs detail
a negligible variation as the labeled samples increase. As for
other classes, the accuracy values of the proposed SSAT-GAN
tend to be stabilized as the number of samples increases. Similar
achievements can be found in Fig. 18(b) and (c). Overall, not
all the classes contribute to both AA and kappa to the same
degree with modification of labeled training samples. The reason
may be that the spectral signatures suffer from the challenge
of spectral variability which stems from the illumination and
atmospheric conditions. However, our SSAT modules can al-
leviate such limitations of spectral characteristics, which can
be illustrated at those advanced accuracy values in the three
datasets.

V. DISCUSSION

There are three differences between the proposed SSAT-
GAN and the GAN-based methods for HSI classification [29],
[32], [33]. First, SSAT-GAN takes the attention information of
HSIs into account for both the discriminator and the generator.
Second, the discriminator in the adversarial framework adds
unlabeled samples for semisupervised learning and alleviates
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the impact of small samples. Third, a mean minimization loss
is employed for the unsupervised learning of SSAT-GAN to
reduce the complex calculation parameters of high-dimensional
features so as to achieve steady-state performance of GAN.

The SSAT-GAN models incorporate the SSAT as the feature
perception enhancement step in the feature extraction stage,
which builds a strong SNR spectral domain and a physical
denoising contextual area upon both spectral and spatial dimen-
sions, respectively. Compared with those attention mechanisms
used in the vision community, the SSAT considers the long-range
correlations between neighboring HSI cubes. This property
helps the SSAT-GAN framework to better filter noises in the
areas with different spectral purity and texture information.

We gain three major insights from the semisupervised HSI
classification outcomes of GANs in all three datasets. First, by
taking the spectral–spatial discriminative features of training
data into account, the discriminators of SSAT-GANs extract
efficient and significant HSI characteristics and achieve better
classification accuracies. Second, the unlabeled samples and
generated HSI samples of unsupervised learning make discrim-
inators more robust among adversarial framework and learning
complex real data distribution of HSIs to predict. This alternate
training mode enables semisupervised GANs to promote supe-
rior classification outcomes than that of supervised deep learning
derived frameworks. Third, the mean minimization loss takes
the constrained optimization of the high-dimensional feature
maps generated by the discriminators as the smooth filtering by
calculating the efficiency values, which imposes the correlation
in homogeneous regions including high texture areas or purity
spectral domain.

VI. CONCLUSION

In this article, an SSAT-GAN approach for HSI classifica-
tion is proposed by using a cascade feature representation of
spectral–spatial attributes with the SSAT. The proposed model
improves the transmission of the characteristics with extended
spectral–spatial attention feature spread and generation blocks to
represent the feature. It effectively applied the attention weights
to emphasize both spectral bands and spatial correlations to
improve the characterization during feature extraction. Besides,
SSAT-GAN constructs a semisupervised architecture by adding
unlabeled samples for training to alleviate the scarcity of training
samples. Furthermore, we employ the mean minimization loss
for unsupervised learning of the discriminator to avoid the
mode collapse. In terms of the accuracy and computation of
the experiments, an analysis on the three HSI datasets indicates
that our model achieves an excellent performance.
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