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Abstract—With the development of economic globalization,
coastal harbors have become an increasingly important gateway
for international trade. Synthetic aperture radar (SAR) is an im-
portant microwave sensor with high resolution imaging capability.
Harbor detection in SAR images is of great significance for timely
obtaining coastal intelligence of a country. However, due to its
complexity and diversity, harbor detection is challenging. In this
article, a harbor detection method based on multidirectional one-
dimensional scanning is proposed. First, discrete coastline to obtain
control points, and multiple directions are selected at each control
point, values of scanned pixels in each direction are recorded to
obtain the representation vector. Then, a one-dimensional con-
volutional neural network for harbor features identification of
representation vectors is designed. Finally, the harbors are located
by clustering feature points. The proposed method can extract
vectors to characterize the distribution of land, waters, and wharfs.
Therefore, the problem of object detection in two-dimensional
images is transformed into the identification of representation
vectors. The method is effective for harbors with various scales
and forms and has low computational complexity. Experimental
results on spaceborne SAR images demonstrate the effectiveness
of the proposed method.

Index Terms—Convolutional neural network (CNN), harbor
detection, multidirectional one-dimensional scanning, synthetic
aperture radar (SAR).

1. INTRODUCTION

ARBORS are important fixed facilities for cargo distribu-
H tion and ship docking, which is an important transporta-
tion center for a country [1]. With the development of economic
globalization and increase of international trade activities, har-
bors have become increasingly important gateways in interna-
tional economic development, and their strategic significance for
national development is self-evident [2]—-[4]. Harbor detection
has been widely applied in many fields, in civil applications such
as maritime management, harbors planning and construction,
and military aspects such as coastal surveillance and intelligence
reconnaissance [5]-[7].
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With the advantages of all-day and all-weather, wide swath
and high resolution imaging observation, synthetic aperture
radar (SAR) has become an important microwave remote sens-
ing sensor for ocean monitoring and management in modern
society [8]-[13]. Harbor detection in SAR images is conducive
to further effective detection of harbor objects such as ships,
oil tanks, containers, etc., [14]-[25]. Therefore, reliable harbor
detection in SAR images is of great significance for timely
obtaining of coastal intelligence.

Although SAR can achieve high-resolution imaging of har-
bors regions, how to identify the harbor region automatically
remains a thorny issue. A harbor is a multiscene mixed facility
consisting of roads, buildings, wharfs, ships, waters, and other
structures [26]—[28], which makes it a very complex areain SAR
images. In addition, in most cases, the site selection of harbors
depends on the existing coastal environment. Complex coastal
terrain and tortuous coastline result in the irregular external
contour of harbors, which is unlike regular-shaped buildings
such as airports, railway stations, and buildings. Also, due to
different functions and applications, the diversification of shapes
makes harbors difficult to describe with unified features [29],
[30]. Moreover, harbor detection is usually carried out in large
scene images, which requires low computational complexity of
detection methods, and can quickly locate regions of interest. So
harbor detection is a difficult problem in the field of SAR image
interpretation and recognition.

At present, related researches of harbor detection can be
roughly divided into two main directions, one is based on
geographic prior information [31], [32], and the other is based
on feature information [18], [27], [33]-[41]. These two types
of methods both have effective detection performance in some
cases, but there are some limitations. The detection methods
based on geographic prior information use geographic informa-
tion system (GIS) to obtain accurate latitude and longitude in-
formation of the harbors, then achieve harbor detection through
map matching. The methods are effective for the detection of
harbors with accurate GIS information. However, whether or
not the GIS information is updated in time and the coverage
targets are detailed will greatly affect the detection perfor-
mance of this method [38]. Feature-based detection methods
usually implement harbor detection by extracting key features,
which can also be roughly divided into two types. One is
based on coastline closure [33]—[37], and the other is based on
wharf features [18], [27], [37]-[41]. The methods based on
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coastline closure [33]-[37] are generally designed according to
two characteristics, one characteristic is the strong closure of the
harbor coastline, and the other is that the contour of the harbor
coastline is far longer than the distance of the harbor gate. Harbor
detection is achieved by calculating the closure metric between
every two feature points on the coastline. This kind of methods
can effectively achieve harbor detection. However, there is a
large amount of computation to calculate the closure metric of
entire coastline [27]. Besides, sea-land segmentation plays an
important role in the detection process of this method. Because
of the complex topography of the inshore regions, it is usually
affected by seawater fluctuation [42], [43], the segmentation
performance is unstable, which affects the prescreening accu-
racy of harbor detection. Different from this type of methods,
some researchers believe that from the perspective of the human
visual system, some key points and geometric features of the
object outline, such as corner points, high curvature points,
straight lines, and right angles, etc., have enough information
to represent the object shape [37], [44], [45]. Based on this,
some researchers have realized effective region edge detection
in SAR images [46]-[48]. They put forward the idea of detecting
transition points to get the positions of changes, which also
provides a valuable approach for detecting specific regions in
SAR images. Therefore, the methods based on wharf features
usually detect the harbors by extracting key points and geometric
features of harbors’ contours [18], [27], [37]-[41]. The method
has a remarkable effect when the wharf has obvious outline
characteristics and good straightness characteristics, however,
due to the influence of coherent speckle noise and docked ships,
these features are often fuzzy in SAR images. The detection
of fuzzy geometric features requires more accurate coastline
detection and more complex feature extraction methods, which
directly leads to the decrease of detection accuracy and the
increase of calculation time [49], [50].

Based on the idea that the wharf is a long and strip-shaped
land area surrounded by seawater, and it is an outlier in the sea, a
multidirectional one-dimensional scanning method is proposed
to realize harbor detection from SAR images. First, the adaptive
threshold method is used for sea-land segmentation to obtain the
coastline, and then several control points are selected along the
coastline. For each control point, three directions are selected,
and the pixel values passed by each scanning direction are
recorded in sequence, so that the representation vector of the
control point along this direction can be obtained. Then, a one-
dimensional convolutional neural network (CNN) is designed to
identify the harbors’ features of the representation vector. After
traversing all representation vectors, the feature points map is
obtained. Finally, the harbors can be located by harbor feature
points merging.

The main contributions of this article are as follows. 1) We
propose a multidirectional one-dimensional scanning method
for harbor detection in SAR images. The harbor detection prob-
lem in two-dimensional image is transformed into the problem of
representation vectors identification, which improves the accu-
racy and reduces the computational complexity. 2) We perform
experiments to verify its excellent performance. Compared with
the representative harbor detection method, our method realizes
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higher detection rate and lower false alarm rate, and it is more
robust and effective under different harbor conditions.

The rest of this article is organized as follows. In Section II,
the proposed harbor detection method is introduced in detail. In
Section III, we verify the effectiveness of the proposed method
through experiments. Finally, the Section IV concludes this
article.

II. PROPOSED METHOD

This section introduces the harbor detection method in SAR
images based on multidirectional one-dimensional scanning in
detail. We carried out the method in four steps. First, the sea-land
segmentation is performed to obtain the coastline. Then, the
multidirectional one-dimensional scanning method is emphat-
ically introduced. Through the selection of control points and
scanning directions, the representation vectors are obtained.
Next, an identification process is introduced, in which the CNN
is used as a discriminator to generate a harbor feature points
map. Finally, we carry out harbor feature points merging to
obtain the final harbor location. At the end of this section, the
time complexity is analyzed. The whole process of the proposed
method is summarized in Fig. 1.

A. Preprocessing and Coastline Extraction

SAR images in the field of remote sensing are generally large
scene images, which requires high computational efficiency of
detection methods. Therefore, to avoid redundant operations,
we achieve the sea-land edge detection [51], [52] by sea-land
segmentation based on prior information, so as to greatly narrow
the region of interest.

Before the sea-land segmentation, in order to avoid overseg-
mentation caused by too detailed description of the scene, the
image processing is carried out, including downsampling and
mean filtering [53], which can improve the speed of the follow-
ing sea-land segmentation algorithm. Meanwhile, because our
harbor detection method does not require high precision of coast-
line extraction, even if the preprocessing step causes the loss of
information, and therefore leads to a decrease in the accuracy of
sea-land segmentation, it does not affect the performance of our
harbor detection method. This is demonstrated in Section III.

After the preprocessing, we use the maximum interclass
variance method (OTSU) [54] to obtain an adaptive threshold
for sea-land segmentation. Its basic principle is to select the
optimal threshold ¢* to divide the gray level histogram into two
parts, so that the variance interclasses of the two parts o2 (t) can
be maximized, that is, the separation can be maximized. The
optimal segmentation threshold ¢* is calculated by

t* = arg max {a )} (D)

1<t<L

where the interclass variance o2 (t) is given by

sz (= (t

where L represents the number of the image gray level,
p; is the probability of each gray level i(i =1,2,...,L)

Z pi (2

i=t+1

o?(t) = (p — polt
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Fig. 1. Flowchart of proposed harbor detection method.

in the whole image, uo(t), p1(t), and p express the intra-
class mean value of two parts, and the global mean value,
respectively.

Therefore, the sea and land can be separated by binary seg-
mentation with the obtained optimal adaptive threshold. Then,
we use the boundary tracking algorithm [53] to extract the
boundary of land region from the sea-land segmentation result,
so we can get the chain code of coastline. Chain code refers to the
boundary composed of a set of sequentially connected straight

!

< Detection results of harbors )

lines with specified length and direction [53]. Therefore, the
coastline information is recorded in the chain code.

B. Multidirectional One-Dimensional Scanning

Through the research on harbors configuration and geometric
outline, it is found that although there are many types and shapes
of harbors, what remains unchanged is docks and breakwaters.
They are the basic configuration of a harbor to ensure its basic
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Coastline

——— Reference direction

® Control point Scanning directions

Fig.2. Schematic diagram of multidirectional one-dimensional scanning. The
white area represents land, the black area represents ocean. The red dots represent
control points selected along the coastline. The red parallel lines represent the
reference direction of each control point for the scanning directions calculation.
Three yellow lines with arrows (straight lines, short dashed lines, and long
dashed lines) represent three scanning directions of the current control point,
respectively.

functions [27]. The wharf and breakwater are strip-shaped and
straight, and both sides are surrounded by waters, which is an
abnormally prominent value for coastal waters.

Therefore, based on the above feature, we propose a multidi-
rectional one-dimensional scanning method. The method scans
both sides of the coastline at the control points on the coastline,
so as to obtain the representation vectors that can represent the
relationship between land, wharf, and water area.

1) Control Points Selection: First, sampling the entire coast-
line with an appropriate step size to obtain multiple control
points. As shown in Fig. 2, the red points represent the selected
control points.

2) Scanning Directions Calculation: After the control points
are obtained, the scanning directions of each control point are
calculated in this step. Due to the complex coastal situation and
the tortuous coastline, if the scanning directions of all control
points are fixed and same, it will inevitably cause regional
omission. Therefore, to achieve a comprehensive and exhaus-
tive scanning of the coastal region, for each control point, the
scanning directions are adaptively selected. First, calculate the
tangent direction along the coastline as the reference direction
of the current control point as

0 — Y(Nm+A) ~ Y(Npm—A)

m 3

L(Np+A) — T(Np—A)

where kU is the reference direction of the mth con-
trol point. N,, is the position number of the mth con-
trol point on the coastline chain code, N,, = (m — 1) - step,
m=1,2,..., M. M expresses the number of control points.
M = |length(coastline) /step|. A is the variation of the posi-
tion. x;, y; represent the horizontal and vertical coordinates of
the position ¢ on the coastline chain code, respectively.

Then, based on the reference direction, the scanning direc-

tion of the current control point is calculated according to the
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Fig. 3. Geometric model for parameter selection.

formula (4), so the slope of each scanning line is obtained.

no__ 4. ™ .
Ak, = tan {(N n 1) n] “4)

where n = 1,2,..., N. N represents the number of scanning
directions of each control point. Ak} expresses the slope incre-
ment of the nth scanning direction of the mth control point

3) Representation Vector Acquisition: Then, use the point-
slope formula (5) to obtain the scanning linear equation. After
that, as shown in Fig. 2, we take each control point as center,
the calculated straight line as the scanning direction, and [
as the length of each scanning, extend from land side to sea
side, the scanning length on both sides of the sea and land is [ /2
m. Then by sequentially recording all the pixels passed in this
process, a representation vector along the scanning direction can
be obtained

B k) + AR @
Y7 UNe = T00 Ak

“m ‘m

—zn,,)- )

The lengths of the obtained representation vectors are differ-
ent because the scanning direction is not vertical or horizontal.
We use zero padding and truncation to unify the length of all
vectors as L. When the length of the obtained vector is less than
L, zero padding is performed at the tail, and if it exceeds L, take
the first L pixel values as the vector.

4) Parameters Selection: The selection of the sampling dis-
tance step, the number of scanning directions N, and the length
of each scanning [ does have an impact on the final performance
of the proposed method. Itis very important to select appropriate
parameters. Inappropriate parameters selection will result in
regional omissions or calculation redundancy.

We establish a geometric model to analyze the selection of
these three parameters, as shown in Fig. 3. Here, in a local area,
the coastline can be approximated as a straight line, which is
represented by the blue line in the figure. The red dots represent
the control points. The yellow lines represent multiple scanning
directions. h expresses the length of wharf, ¢ depends on the

. o o
number of scanning directions N, 9——]\, -



WANG et al.: MULTIDIRECTIONAL ONE-DIMENSIONAL SCANNING METHOD FOR HARBOR DETECTION FROM SAR IMAGES

Amplitude

(b)

Amplitude

(d)

Fig. 4. Two types of representation vectors. (a) Nonharbor region. (b) Rep-
resentation vector of nonharbor region. (c) Harbor region. (d) Representation
vector of harbor region.

As can be seen from the Fig. 3, to ensure that at least one
scanning direction can pass through the wharf, as long as the se-
lected sampling distance step satisfies the formula (6), effective
harbor detection result can be achieved

step < min (t;rlle,cosﬁ . é) . (6)
In practice, the wharf length generally ranges from 250 to
2000 m. In order to ensure that the wharfs of all lengths can be
scanned, we take h = 250 m in this article.
5) Motivation:

Reason a) Representation vectors can effectively charac-
terize the existence of the harbor features : The motive of the
multidirectional one-dimensional scanning method is that, as the
basic facilities in the harbors, the wharfs and breakwaters show
as abnormal values in the waters. The one-dimensional vector
obtained by the multidirectional one-dimensional scanning con-
tains the distribution of land, harbor, and water area, which can
effectively represent the existence of harbor features. As shown
in Fig. 4, Fig. 4(b) and (d) corresponds to the pixel values, where
the yellow line passes in Fig. 4(a) and (c), respectively. It can be
seen from Fig. 4(c) and (d) that when the control point is located
in the harbor area, the values corresponding to the wharf are
abnormal compared with the water area, showing a peak value.
Otherwise, in Fig. 4(a) and (b), the pixel values in the waters are
basically stable. Therefore, we can use this difference to identify
the harbors.

Reason b) Fully cover both sides of coastline: The complex
coastal terrain and the tortuous coastline both result in the
irregular external contour of harbors, if only one direction is
scanned, the whole area around the coastline cannot be fully
covered, so the target will inevitably be missed. As shown in
Fig. 2, the yellow lines in the figure represent the scanning
directions. By scanning in multiple directions, the buffer areas
on both sides of the coastline can be covered, and most docks
can be correctly scanned without omission.
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() (C))

Fig.5. Fourtypes of sea-land segmentation results. (a) Accurate segmentation.
(b) Part of wharfs is within the coastline. (c) Part of the land is out of the coastline.
(d) Whole wharfs are within the coastline.

Reason c¢) Low computational complexity: Multidirec-
tional one-dimensional scanning transforms the harbor detection
problem from the original two-dimensional image space to
the one-dimensional space by discretizing the coastline chain
code and defining multiple scanning directions, which has low
computational complexity. In the experimental part, the compu-
tational complexity is analyzed in detail.

Reason d) Low dependence on sea-land segmentation:
Through the scanning operation proposed in this article, taking
the control points as the center and extending the scanning
direction on both sides, we can avoid the influence of sea-land
segmentation accuracy on detection performance. Since the
sea-land segmentation is greatly affected by the environment, the
topography of the inshore area is complex, and it is also affected
by waters’ fluctuation [42], [43], the segmentation results are
unstable and inaccurate. As shown in Fig. 5, there are four types
of sea and land segmentation. Fig. 5(a) is the case of accurate
segmentation, in which land and water are separated correctly
and completely, and Fig. 5(b)—(d) are the cases of inaccurate
segmentation. It can be seen from Fig. 5 that even if the obtained
coastline is inaccurate, the representation vectors representing
the distribution of wharf, land, and sea can still be obtained by
this method.

C. Harbor Representation Vectors Identification

After obtaining the representation vector of M control points
along the scanning directions, we design a discriminator to
identify the existence of the wharf feature in the representation
vector. The discriminator classifies each representation vector
as a harbor representation vector or a nonharbor representation
vector.

A one-dimensional CNN is proposed to identify the existence
of harbor features. CNN is a kind of feed-forward depth neu-
ral network with depth structure and convolution calculation.
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Fig. 6.  Structure of one-dimensional convolutional neural network.

This method is suitable for extracting structural features from in-
put data and capturing local correlations. It has powerful feature
representation capability and can be effectively applied to the
classification and recognition of SAR data. The structure of the
network is shown in Fig. 6. The one-dimensional convolutional
neural network is composed of three convolutional layers, three
pooling layers, and one fully connected layer. The input is
representation vectors, and the output is the final classification
decision with high confidence.

By minimizing the classification loss function, the whole
network model can automatically extract the features of the
representation vectors and classify them in an end-to-end man-
ner. We use cross-entropy to define our loss function, which is
defined as (7)

C
L=-=> ylog(p) @)
1=1

where y; represents the class label, C' is the number of classes,
p; represents the posterior probabilities for each class.
Therefore, the representation vector obtained by multidi-
rectional one-dimensional scanning is input into the one-
dimensional CNN, and the identification result of whether it is a
harbor representation vector is obtained. The identification result
of the representation vector can reflect whether the control point
to which it belongs is located in a harbor area or a nonharbor
area. This means that if the representation vector of a control
point is classified as a harbor representation vector, we consider
the control point is a candidate harbor feature point, otherwise,
the control point is definitely a nonharbor feature point. After
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traversing all the representation vectors, according to the identi-
fication results, the M control points can be classified into harbor
feature points and nonharbor feature points, so a harbor feature
points map can be obtained.

D. Harbor Feature Points Merging

In this part, we perform points merging based on the harbor
feature points map obtained in the previous step. These harbor
feature points are distributed sparsely or densely along the
coastline. The region where the points appear densely is the
possible harbor location, while the outliers are false alarms and
misjudgments. By points merging, the adjacent points in space
are merged into a cluster. Therefore, the final harbor locations
can be obtained according to the regional scope of different
clusters.

Based on the above considerations, we have three require-
ments for the merging algorithm. First of all, it can realize
points merging based on density. Second, it can automatically
determine the number of clusters. Last, be insensitive to outliers.
Therefore, we choose the method of density-based spatial clus-
tering of applications with noise (DBSCAN) [55] as the merging
method. This is a classical clustering algorithm, and its key idea
is to separate the parts with higher density from the parts with
lower density. In this way, the points in the high density region
are classified into one class, and the points in the low density area
are regarded as noises. At the same time, this algorithm does not
need to set the number of clusters, and can avoid the influence
of noises on the performance of the clustering. Therefore, the
algorithm is very suitable for solving the problems in this article.

The basic steps of the algorithm are as follows: First, set the
density threshold MinPts and search radius Eps, then, select a
random point from the dataset D, take the point as the start
point to search for points according to MinPts and Eps, and
classify the points that meet the requirements into classes with
similar density. Finally, the algorithm ends until all points are
classified, and no new classes are generated. The input is the
location coordinates of all harbor feature points, and the output
is the set of points divided into multiple clusters. The detailed
algorithm steps are shown in Table 1.

So far, the proposed harbor detection method has been de-
scribed. Next, we analyze the time complexity of the proposed
method.

E. Time Complexity Analyses

In this part, the calculation amount of harbor detection method
based on multidirectional one-dimensional scanning is analyzed.
The time complexity mainly depends on the following four
aspects.

1) OTSU:Suppose that the image gray level is divided into L
levels and the total number of pixels in the input SAR image is
N.The whole OTSU algorithm calculates the interclass variance
for L time, the calculation of each interclass variance is mainly
in Y0, i-p; and 3'_ | p;, the time complexity of these two
things is L - N in total, therefore, the total time complexity of
OTSU is L? - N, where L < 256. As a result, the total time
complexity is linear O(N).
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TABLE I
ALGORITHM FLOW OF HARBORS FEATURE POINTS CLUSTERING

Algorithm: Harbors feature points clustering.

Input: Dataset D, MinPts, Eps.

1) First, all points in dataset D are marked as unprocessed

2) for each point p in dataset D do

3) if p is already in a cluster or labeled as noise then

4) continue

5) else

6) check the Eps neighborhood N_Eps(p) of the point p
7) if N_Eps(p) contains fewer points than MinPts then
8) marks point p as a boundary point or noise point

9) else if

10) mark point p as the core point, establish a new cluster C'
11) add all points in the neighborhood of p to C

12) for all unprocessed points ¢ in N_Eps(p) do

13) check its Eps neighborhood N_FEps(q)

14) if N_FEps(q) contains at least MinPts points do
15) add the points that do not belong to any cluster in N_FEps(q) to C
16) end if

17) end for

18) end if

19) end for

Output: Clustering results

2) Multidirectional One-Dimensional Scanning:In this part,
the time complexity is mainly in the calculation of reference
directions and scanning directions, assuming that the original
number of pixels in the SAR image is IV, Considering the
worst case, all the points in the image are the control points
selected along the coastline, which requires /N times calculations
of reference directions and scanning directions. So the time
complexity is O(N). However, in general, the proportion of
coastline in an image is very low, and the selection of control
points is obtained by the discrete sampling of coastline, which
means that the calculation times are far less than N.

3) One-Dimensional Convolutional Neural Network:The time
complexity of CNN is mainly determined by the convolutional
layers and the full connection layers, the time complexity of a
single convolution layer is O(L - K - C;;, - Coy), L represents
the length of the output eigenvector of each convolution kernel,
the length of each convolution kernel is K, the number of input
channels and output channels of each convolution layer is Cj,,
and C,y, respectively. The calculation of the fully connected
layer is equivalent to the inner product of the input feature map
and the weight matrix. Therefore, the complexities of those two
parts are constant, which means the whole time complexity of
this part is O(1).

4) Clustering:The time complexity of DBSCAN is
O(M - K), M is the total number of points involved in clus-
tering, K is the number of times to traverse all points in Eps

neighborhood. In general, M < N, and in the worst case, M
is equal to N, which is the total number of pixels in the image.
For K, in this problem, instead of traversing all the points, the
search area can be narrowed according to the general scale of
harbors, so the time complexity is O(N).

Therefore, the total time complexity of this method has a
linear relation with the size of the input image, which can meet
the requirement of real-time processing.

III. EXPERIMENT AND ANALYSIS

In this section, the detection performance of the proposed
method is evaluated. First, experimental data and parameter
settings are introduced. Then, the harbor detection performance
of the proposed method is analyzed qualitatively and quanti-
tatively, meanwhile, we added three typical comparison meth-
ods. Finally, experiments under different sea-land segmentation
accuracy are carried out to analyze the impact of sea-land
segmentation on the proposed method.

A. Experimental Data and Parameter Setting

In this experiment, a total of 60 typical scenarios of SAR
images are involved, of which 35 are used to test the detection
performance of the proposed method, and the remaining 25 are
used for CNN training. Fig. 7 shows some of the images used
for CNN training. All the experimental data used in this article
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Fig. 7. Some SAR images used for CNN training.

TABLE II
RADAR PARAMETERS OF EXPERIMENTAL DATA

Parameter Value

Imaging mode Interferometric Wide swath
Centre frequency 5.405 GHz
Resolution 20mx22m
Polarization VV/VH

Incident angle 29°~46°

are SAR images from Sentinel-1 provided by European Space
Agency on Internet. The radar system parameters are shown in
Table II.

For the 35 scenarios used to test the harbor detection per-
formance, the pixel spacing is 10 x 10 m, and about 540 km
of coastline are covered, a total of 67 harbors are included.
The data are available on [56] to ensure the reproducibility and
replicability of this research [57].

Due to different natural conditions, functions, and uses, we
usually face different forms of harbors, which will greatly affect
the performance of harbor detection methods. In order to fully
verify the detection performance of the proposed method under
different harbor conditions, the selected 35 scenarios cover as
many harbors of various scales, types, and forms as possible,
such as F-shaped, T-shaped, dense harbors, sparse harbors, large,
medium, and small, etc. We extract four port characteristics to
evaluate the selected 35 scenes, including coastline condition,
harbor scale, wharf straightness, and wharf direction consis-
tency. Taking three representative scenes as examples, As shown
in Figs. 8(a), 9(a), and 10(a), the four characteristics of the
selected scenes are summarized in Table III. In Scenario 1, the
coastline is tortuous. The wharfs are straight, and the directions
of the wharfs in the same harbor are roughly parallel, that is, the
wharf straightness and directional consistency are quite good.
While in Scenario 2, the coastline is relatively flat, but the shape
of the wharfs is irregular, and some wharfs are curved, that
is, the wharfs have poor straightness, and also the wharfs are
arranged in disorder, and the directional consistency is poor.
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In Scenario 3, the coastline is flat, so the wharf straightness and
direction consistency are better than Scenario 1 and Scenario
2. Moreover, the three scenarios are also different in harbors
scales. In Scenario 1 and Scenario 2, there are mainly large
and medium-sized wharfs, while Scenario 3 contains a large
F-shaped wharf and two small T-shaped wharfs.

About the parameter setting, the parameters of the multi-
directional one-dimensional scanning are set as follows. The
variation of the position A = 10, the sampling interval of control
points step = 20, the number of scanning directions of each
control point N = 3, the length of each scanning [ = 3000 m,
the unified length of the vertors L = 400.

In the part of CNN training, the proposed multidirectional
one-dimensional scanning method is performed to select a total
of 2472 representation vectors and manually labeled from 25
scenes, including 1236 harbor representation vectors and 1236
nonharbor representation vectors. The input size of the network
is fixed at 1 x 400, and the output is the identification results
of two categories. All convolution filters in the network are
initialized to Gaussian random values with a mean value of 0 and
a standard deviation of 0.01, and the bias is initialized to a value
of 0.1. 20 samples from the training set are randomly selected
as the input of the network in each iteration. The learning rate
is 0.001.

B. Detection Performance

The detection performance of the proposed method is eval-
uated based on 35 harbor SAR images and compared with
three representative comparison methods. The three comparison
methods are the method based on parallel curve characteristics
in [37], the method based on jetty characteristics in [27], and the
method based on CFAR [58].

The harbor detection results of selected three typical scenarios
are shown in Figs. 8-10. Figs. 8(a), 9(a), and 10(a) are the
original scenes. Figs. 8(b), 9(b), and 10(b) are the coastline ex-
traction results. Figs. 8(c), 9(c), and 10(c) are the processes of the
proposed multidirectional one-dimensional scanning method.
Figs. 8(d), 9(d), and 10(d) are harbors feature points maps.
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(2

Experimental results of Scenario 1. (a) Original image. (b) Coastline extraction result. (¢) Multidirectional one-dimensional scanning. (d) Feature points

map. (e) Harbor detection result of proposed method. (f) Harbor detection result of [37]. (g) Harbor detection result of [27]. (h) Harbor detection result of CFAR.

TABLE III
ANALYSIS AND COMPARISON OF HARBORS FORMS

Harbor conditions Scenario 1 Scenario 2 Scenario 3
Coastline condition Tortuous Flat Flat
Wharf straightness Good Poor Good
Consistency of wharf direction Average Poor Good

Scales

Large, middle

Large, middle Large, small

The final harbor detection results of the proposed method,
the methods in [37] and [27] method, and the CFAR method
are, respectively, shown in Fig. 8(e), Fig. 9(e), Fig. 10(e); and
Fig. 8(f), Fig. 9(f), Fig. 10(f); and Fig. 8(g), Fig. 9(g), Fig. 10(g);
and Fig. 8(h), Fig. 9(h), Fig. 10(h). Among them, the blue line
represents the extracted coastline. Red asterisks represent con-
trol points. Yellow straight lines represent scanning directions.
Yellow asterisks represent harbor feature points, red triangles
represent missed detection, and red circles are false alarms. The
correctly detected harbors is marked with a green rectangle, the
false alarms are marked with a red rectangle, and the missed
detections are marked with a yellow rectangle.

It can be seen that the three comparison harbor detection
methods have different degrees of missed detection and false
alarms in the final detection results. In contrast, the proposed
method shows promising detection results. It can be seen from
Fig. 8(d), Fig. 9(d), Fig. 10(d) and Fig. 8(e), Fig. 9(e), Fig. 10(e)

that although there are false alarms and missed detections in
the feature points maps after identification, this error can be
eliminated in the clustering based on the density difference
between feature points, which manifests the effectiveness of our
method on harbor detection.

In addition, we introduce four indicators to quantitatively
evaluate the detection performance of the proposed method and
the three comparison methods. As shown in Table IV, N, is the
number of correct detection, Ny, is the number of false alarms,
N4 1s the number of missed detection. The figure of merit
(FoM) [59] is used to evaluate the detection performance. It is
the ratio of the number of correctly detected ships to the sum
of real ships and false alarms. FoM is defined as the following
formula:

N,
FoM = d

=—— 8
Nrut Ny ®)
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Fig. 9.

Experimental results of Scenario 2. (a) Original image. (b) Coastline extraction result. (¢) Multidirectional one-dimensional scanning. (d) Feature points

map. (e) Harbor detection result of proposed method. (f) Harbor detection result of [37]. (g) Harbor detection result of [27]. (h) Harbor detection result of CFAR.

TABLE IV
QUANTITATIVE RESULTS OF DIFFERENT DETECTION METHODS

Method ch Nfa de FoM

Proposed 61 8 6 81.33%
Reference [42] 59 15 8 71.95%
Reference [27] 58 15 9 70.73%
CFAR 56 20 11 64.37%

where N, is the number of real targets in the images. The higher
the FoM value indicates the better the detection performance.

It can be seen from Table IV that the proposed method has
obvious advantages in the number of correct detection, false
alarm, missed detection, and FoM.

C. Impact of Sea-Land Segmentation on Our Method

In order to prove that the proposed harbor detection method is
less affected by the sea-land segmentation, we compare the har-
bor detection results under three different sea-land segmentation
accuracies.

Generally speaking, due to the particularity of the locations of
harbors, the results of sea-land segmentation have a great impact
on harbor detection. In this article, this dependence is reduced by

TABLE V
QUANTITATIVE ANALYSIS OF COASTLINE EXTRACTION

Case A(accuracy) Fl-score Degree
Case 1 99.67 99.63 Fine

Case 2 98.81 98.70 General
Case 3 97.70 97.49 Coarse

the proposed multidirection one-dimensional scanning method.
Experimental results verify its effectiveness, We design three
degrees of sea-land segmentation: Fine, general, and coarse by
changing the preprocessing operation. As shown in Table V,
the accuracy rate and harmonic average are used to evaluate the
precision of sea-land segmentation.

The accuracy rate represents the proportion of the total num-
ber of correctly predicted samples to the total number of all
samples in the segmentation result, and its definition is shown
as follows:

_TP+TN

A= N ®

where M and N are the size of the image, TP is the total
number of land samples which are predicted as land samples.
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Fig. 10.

Experimental results of Scenario 3. (a) Original image. (b) Coastline extraction result. (c) Multidirectional one-dimensional scanning. (d) Feature points

map. (e) Harbor detection result of proposed method. (f) Harbor detection result of [37]. (g) Harbor detection result of [27]. (h) Harbor detection result of CFAR.

The total number of samples classified as marine samples, which
are actually marine samples, is recorded as T'NV.

Combining the precision rate and recall rate to comprehen-
sively evaluate the results, the harmonic average Fjg — score take
both of them into consideration, which can be regarded as a
weighted average of the two, and its definition is as

P-R
(62-P)+ R

where /3 adjusts the proportion of precision rate and recall rate in
Fjg — score. For sea-land segmentatio, accuracy rate and recall
rate are equally important, so here /3 is taken as 1, which is
denoted as F', — score, as follows:

2P R 2TP
" P+R 2TP+FP+FN

where the total number of samples predicted as sea samples,
which is actually land samples, is recorded as F'P, F'N is the
total number of sea samples which are predicted as land samples.

Fig. 11(a), (d), and (g) corresponds to the sea-land segmen-
tation results in the three cases, respectively. It can be seen that
Fig. 11(a) is the case of fine segmentation, and the extracted
coastline almost completely overlaps with the ground truth. In
Fig. 11(d), the sea-land segmentation result in some harbors
areas is dissatisfactory. The extracted coastline passes through
the wharfs and divides the wharfs into two parts. In Fig. 11(g),
in addition to the same misclassification as in Fig. 11(d), part
of the land area is misclassified as the sea area. Fig. 11(b), (e),

Fy= (144 (10)

Iy

(11)

and (h) are the harbors feature points maps after the identifi-
cation by CNN. Fig. 11(c), (f), and (i) are the final detection
results of harbors. It can be seen that under the three sea-land
segmentation conditions, even if the coastline is not accurate, the
multidirectional one-dimensional scanning solution proposed in
this article can still overcome this drawback and realize effective
harbor detection.

IV. CONCLUSION

In this article, a multidirection and one-dimensional scanning
method is proposed for harbor detection from SAR images.
The representation vectors are used to represent the distribution
information of the land, wharfs, and water. And the harbors
feature points are obtained by the identification of representation
vectors, then the locations of harbors is obtained by the clustering
of harbors feature points. It is effective for harbor detection of
various scales and shapes, and has low computational complex-
ity. Experiments are carried out on the spaceborne SAR images
from Sentinel-1. The experimental results show the effectiveness
of this method.

In the future, we will make further research on our proposed
method. First, study some new methods and ideas to improve the
harbor detection performance and efficiency. Many innovative
methods are worthy of attention [47], [51], [52]. Second, we
intend to use the proposed method to solve the problem of
inshore ship detection in SAR images, so as to study its potential
in this research direction.
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Fig. 11.  Experimental results of three sea-land segmentation cases. (a) Coastline extraction result of case 1. (b) Feature points map of case 1. (c) Harbor detection
result of case 1. (d) Coastline extraction result of case 2. (e) Feature points map of case 2. (f) Harbor detection result of case 2. (g) Coastline extraction result of
case 3. (h) Feature points map of case 3. (i) Harbor detection result of case 3.



WANG et al.: MULTIDIRECTIONAL ONE-DIMENSIONAL SCANNING METHOD FOR HARBOR DETECTION FROM SAR IMAGES

ACKNOWLEDGMENT

The authors would like to thank the Radar Detection and
Imaging Technology Laboratory, University of Electronic Sci-
ence and Technology of China, Chengdu, China, for providing
help and support and would like to thank the reviewers sincerely
for their helpful comments.

[1]
[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

REFERENCES

G. Till, Seapower: A Guide for the Twenty-First Century, Evanston, IL,
USA: Routledge, 2018.

C. Mathieson, “Introduction: The literature, history and culture of the sea,
1600—present,” in Sea Narratives: Cultural Responses to the Sea, 1600—
Present. London, U.K.: Palgrave Macmillan, 2016.

Z.Kotval and J. R. Mullin, “The changing port city: Sustainable waterfront
revitalisation,” J. Town City Manage., vol. 1, no. 1, pp. 31-46, 2010.

C. Hein, “Port cities and urban wealth: Between global networks and
local transformations,” Int. J. Glob. Environ. Issues, vol. 13, no. 2/3/4,
pp- 339-361, 2014.

T. VietMats I. VuM. PetterssonDahl, and Thomas K. Sjogren, “A measure-
ment campaign in harbor to detect changes of activities,” in Proc. [EEE
Int. Geosci. Remote Sens. Symp., 2019, pp. 1494—1497.

J. Gémez-Romero, M. Serrano, J. Garcia, José Molina, and G. Rogova,
“Context-based multi-level information fusion for harbor surveillance,”
Inf. Fusion, vol. 21, pp. 173-186, 2014.

N. Li, F. Liu, and L. Qiu, “Change detection approach on multitemporal
Radarsat-1 SAR imagery for port surveillance,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp., 2017, pp. 185-188.

Y. Pi, J. Yang, Y. Fu, and X. Yang, Principles of Synthetic Aperture Radar
Imaging, University of Electronic Science and Technology of China Press,
2007.

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P.
Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci.
Remote Sens. Mag., vol. 1, no. 1, pp. 643, Mar. 2013.

D. Mao, Y. Zhang, Y. Zhang, W. Huo, J. Pei, and Y. Huang, “Target fast
reconstruction of real aperture radar using data extrapolation-based parallel
iterative adaptive approach,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 14, pp. 2258-2269, 2021.

W. L. Melvin and J. A. Scheer, Principles of Modern Radar: Advanced
Techniques, vol. 2, London, U.K.: IET, 2013.

D. Mao et al., “Forward-looking geometric configuration optimization
design for spaceborne-airborne multistatic synthetic aperture radar,” [EEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 8033-8047,
2021.

F. Xu et al., “Heuristic path planning method for multistatic UAV-borne
SAR imaging system,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 14, pp. 8522-8536, 2021.

L. Zhai, Y. Li, and Y. Su, “Inshore ship detection via saliency and context
information in high-resolution SAR images,” IEEE Geosci. Remote Sens.
Lett., vol. 13, no. 12, pp. 1870-1874, Dec. 2016.

L. Zhi, Q. Changwen, Z. Qiang, L. Chen, P. Shujuan, and L. Jianwei, “Ship
detection in harbor area in SAR images based on constructing an accurate
sea-clutter model,” in Proc. 2nd Int. Conf. Image, Vision Comput., 2017,
pp. 13-19.

H. He, Y. Lin, F. Chen, Heng-Ming Tai, and Z. Yin, “Inshore ship detection
in remote sensing images via weighted pose voting,” IEEE Trans. Geosci.
Remote Sens., vol. 55, no. 6, pp. 3091-3107, Jun. 2017.

W. Ao, FE. Xu, Y. Li, and H. Wang, “Detection and discrimination of ship
targets in complex background from spaceborne ALOS-2 SAR images,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 2,
pp. 536-550, Feb. 2018.

L. Chun, X. Chunhua, Y. Jian, X. Yingying, and B. Junliang, “A method for
coastal oil tank detection in polarimetrie SAR images based on recognition
of T-shaped harbor,” J. Syst. Eng. Electron., vol. 29, no. 3, pp. 499-509,
2018.

C. Chen, C. He, C. Hu, H. Pei, and L. Jiao, “MSARN: A deep neu-
ral network based on an adaptive recalibration mechanism for multi-
scale and arbitrary-oriented SAR ship detection,” IEEE Access, vol. 7,
pp. 159 262-159 283, 2019.

H. Chen, T. Gao, W. Chen, Y. Zhang, and J. Zhao, “Contour refinement
and EG-GHT-based inshore ship detection in optical remote sensing im-
age,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 11, pp. 8458-8478,
Nov. 2019.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

10015

C. Chen, C.He, C. Hu, H. Pei, and L. Jiao, ““A deep neural network based on
an attention mechanism for SAR ship detection in multiscale and complex
scenarios,” IEEE Access, vol. 7, pp. 104 848-104 863, 2019.

X. Wang, Z. Cui, Z. Cao, and S. Dang, “Dense docked ship detection via
spatial group-wise enhance attention in SAR images,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp., 2020, pp. 1244—-1247.

D. Borghys, C. Perneel, and A. Bouaraba, “Activity monitoring in a com-
mercial harbor using multitemporal repeat-pass interferometric SAR data,”
in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2012, pp. 7440-7443.

T. Johnsen, “Coherent change detection in SAR images of harbors with
emphasis on findings from container backscattering,” in Proc. IEEE Radar-
Con, 2011, pp. 118-123.

F. Bovolo, C. Marin, and L. Bruzzone, “A novel hierarchical approach to
change detection with very high resolution SAR images for surveillance
applications,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2012,
pp- 1992-1995.

T Pullen, W. Allsop, T. Bruce, A. Kortenhaus, H. Schiittrumpf, and J. V. D.
Meer, EurOtop Wave Overtopping of Sea Defences and Related Structures:
Assessment Manual, Environ. Agency, Bristol, U.K., 2007.

C. Qi, “Harbor extraction from SAR imagery,” Ph.D. dissertation, College
Electron. Sci., Nat. Univ. Defense Technol., 2011.

L. Jiang, G. Huang, C. Huang, and W. Wang, “Data mining and opti-
mization of a port vessel behavior behavioral model under the Internet of
Things,” IEEE Access, vol. 7, pp. 139970-139983, 2019.

A. Arns, S. Dangendorf, J. Jensen, S. A. Talke, J. Bender, and C. Pat-
tiaratchi, “Sea-level rise induced amplification of coastal protection design
heights,” Sci. Rep., vol. 7, 2017, Art. no. 40171.

A.Dodaran, S. Park, K. Kim, and E. M. Shahmirzadi, “Effects of roughness
and vertical wall factors on wave overtopping in rubble mound breakwaters
in Busan yacht harbor,” J. Ocean Eng. Technol., vol. 29, pp. 62-69, 2015.
H. Zhao, W. Li, N. Yu, and H. Ao, “Harbor detection in remote sensing
images based on feature fusion,” in Proc. 5th Int. Congr. Image Signal
Process., 2012, pp. 1053-1057.

L. Guo, H. Xu, and Y. Wang, “Recognition and understanding of harbor
based on knowledge,” Fire Control Command Control, vol. 35, no. 6,
pp. 4649, 2010.

Y. Li and J. Peng, “Feature extraction and recognition of harbor contour,”
Proc. SPIE., vol. 4550, pp. 234-238, 2001.

Q. Chen et al., “Harbor detection of remote sensing images based on
model,” in Proc. 2nd Int. Conf. Future Comput. Commun., 2010, vol. 1,
pp. V 1-322-V1-325.

J. Zhou and H. Cheng, “The simulation application of wavelet transform
for harbor detection in map,” in Proc. 8th Int. Conf. Intell. Computation
Technol. Automat., 2015, pp. 1033-1035.

Y. Wang, L. Pan, D. Wang, and Y. Kang, “Detection of harbours from
high resolution remote sensing imagery via saliency analysis and feature
learning,” Int. Arch. Photogrammetry, Remote Sens. Spatial Inf. Sci., vol.
XLI-B7, pp. 573-578, 2016.

C. Liu, Y. Xiao, J. Yang, and J. Yin, “Harbor detection in polarimetric
SAR images based on the characteristics of parallel curves,” IEEE Geosci.
Remote Sens. Lett., vol. 13, no. 10, pp. 1400-1404, Oct. 2016.

D. Cheng, G. Meng, S. Xiang, and C. Pan, “FusionNet: Edge aware
deep convolutional networks for semantic segmentation of remote sensing
harbor images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 10, no. 12, pp. 5769-5783, Dec. 2017.

G. Wang, Y. Zhuang, H. Chen, and L. Chen, “A novel harbor detection
method based on pattern coding algorithm,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp., 2018, pp. 6915-6918.

J.He, Y. Guo, Z. Zhang, H. Yuan, Y. Ning, and S. Shao, “Harbor extraction
based on edge-preserve and edge categories in high spatial resolution
remote-sensing images,”’Appl. Sci., vol. 9, 2019, Art. no. 420.

C. Liu, J. Zheng, and X. Nie, “Port detection in polarimetric SAR images
based on three-component decomposition,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp., 2020, pp. 734-737.

L. Holthuijsen, Waves in Oceanic and Coastal Waters. Cambridge, U.K.:
Cambridge Univ. Press, Jan. 2007.

M. Zijlema, G. Stelling, and P. Smit, “SWASH: An operational public
domain code for simulating wave fields and rapidly varied flows in coastal
waters,” Coastal Eng., vol. 58, pp. 992-1012, 2011.

E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in Proc. Eur. Conf. Comput. Vision, 2006, pp. 430—443.

Y. Li, S. Wang, Q. Tian, and X. Ding, “A survey of recent advances in
visual feature detection,” Neurocomputing, vol. 149, pp. 736751, 2015.
E. Giron, A. Frery, and F. Cribari-Neto, “Nonparametric edge detection in
speckled imagery,” Math. Comput. Simul., vol. 82, no. 11, pp. 2182-2198,
2012.



10016

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

[57]

[58]

[59]

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

A. Nascimento, M. Horta, A. Frery, and R. Cintra, “Comparing edge
detection methods based on stochastic entropies and distances for POISAR
imagery,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7,
no. 2, pp. 648-663, Feb. 2014.

A. Borba, M. Marengoni, and A. Frery, “Fusion of evidences in intensity
channels for edge detection in PolSAR images,” IEEE Geosci. Remote
Sens. Lett., to be published, doi: 10.1109/LGRS.2020.3022511.

S. Qiang and R. Jensen, “Selecting informative features with fuzzy-rough
sets and its application for complex systems monitoring,” Pattern Recog-
nit., vol. 37, no. 7, pp. 1351-1363, 2004.

M. Sheikhan and M. SharifiRad, “Gravitational search algorithm-
optimized neural misuse detector with selected features by fuzzy grids-
based association rules mining,” Neural Comput. Appl., vol. 23, no. 7,
pp. 2451-2463, 2013.

J. N. Torres, J. Gambini, and A. Frery, “The geodesic distance between Q?
models and its application to region discrimination,” /IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 10, no. 3, pp. 987-997, Mar. 2017.
J. Gambini, M. Mejail, J. Jacobo-berlles, and A. Frery, “Accuracy of edge
detection methods with local information in speckled imagery,” Statist.
Comput., vol. 18, pp. 15-26, 2008.

R. Gonzalez, R. Woods, and B. Masters, “Digital image processing, third
edition,” J. Biomed. Opt., vol. 14, 2009, Art. no. 029901.

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE
Trans. Syst., Man Cybern., vol. 9, no. 1, pp. 62-66, Jan. 1979.

H. A. BicklundHedblom, and N. Neijman, “A density-based spatial clus-
tering of application with noise,” in Proc. Int. Conf. Knowl. Discovery
Data Mining, 1996, pp. 1-8.

R.  Wang, SAR-harbor-dateset,  2021.
https://dx.doi.org/10.21227/f3b3-pt89.

A. Frery, L. Deniz, and A. Souza, “A badging system for reproducibility
and replicability in remote sensing research,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 13, pp. 4988-4995, 2020.

C. H. Jung,H. J. Yang, and Y. K. Kwag, “Local cell-averaging fast CFAR
for multi-target detection in high-resolution SAR images,” in Proc. 2nd
Asian-Pacific Conf. Synthetic Aperture Radar, 2009, pp. 206-209.

X. Wang and C. Chen, “Adaptive ship detection in SAR images using
variance WIE-based method,” Signal, Image Video Process., vol. 10,n0. 7,
pp. 1219-1224, 2016.

[Online].  Available:

Rufei Wang (Student Member, IEEE) received the
B.S. degree in electronic information engineering
from Ocean University of China, Qingdao, China, in
2017. She is currently working toward the Ph.D. de-
gree in information and communication engineering
with the School of Information and Communication
Engineering, University of Electronic Science and
Technology of China, Chengdu, China.

Her research interests include radar signal process-
ing and radar target detection.

Jifang Pei (Member, IEEE) received the B.S. degree
in electronic information engineering from the Col-
lege of Information Engineering, Xiangtan Univer-
sity, Hunan, China, in 2010. He received the Ph.D.
degree from the School of Information and Communi-
cation Engineering, University of Electronic Science
and Technology of China (UESTC), Chengdu, China,
in 2018.

From 2016 to 2017, he was a joint Ph.D. Student
with the Department of Electrical and Computer En-
gineering, National University of Singapore, Singa-

pore. He is currently an Associate Research Fellow with the School of Informa-
tion and Communication Engineering, UESTC. His research interests include
radar signal processing, machine learning, and automatic target recognition.

Fanyun Xu (Student Member, IEEE) received the
B.S. degree in electronic information engineering,
in 2017, from the University of Electronic Science
and Technology of China (UESTC), Chengdu, China,
where he is currently working toward the Ph.D. de-
gree in information and communication engineering
with the School of Information and Communication
Engineering.

His research interests include distributed radar and
radar signal processing.

Weibo Huo (Member, IEEE) received the B.S. de-
gree in applied physics from the School of Science,
Shandong Jianzhu University, Jinan, China, in 2010,
and the Ph.D. degree in information and communi-
cation engineering from the School of Information
and Communication Engineering, University of Elec-
tronic Science and Technology of China, Chengdu,
China, in 2019.

His research interests include radar signal process-
ing, radar target detection, and sea clutter modeling
and simulation.

Yulin Huang (Senoir Member, IEEE) received the
B.S. and Ph.D. degrees in electronic information en-
gineering from the School of Electronic Engineering,
University of Electronic Science and Technology of
China (UESTC), Chengdu, China, in 2002 and 2008,
respectively.

From 2013 to 2014, he was a Visiting Researcher
with the University of Houston, Houston, TX, USA.
He is currently an Professor with the School of In-
formation and Communication Engineering, UESTC.
His research interests include synthetic aperture radar,

target detection and recognition, artificial intelligence, and machine learning.

applications.

Yin Zhang (Member, IEEE) received the B.S. and
Ph.D. degrees in electronic information engineering
from the University of Electronic Science and Tech-
nology of China (UESTC), Chengdu, China, in 2008
and 2016, respectively.

From 2015 to 2016, he was a Visiting Student
with the University of Delaware, Newark, DE, USA.
He is currently an Associate Research Fellow with
the School of Information and Communication En-
gineering, UESTC. His research interests include
radar imaging and signal processing in related radar

Jianyu Yang (Member, IEEE) received the B.S. de-
gree in electronic technology from the National Uni-
versity of Defense Technology, Changsha, China, in
1984, the M.S. and Ph.D. degrees in communications
and information systems from the University of Elec-
tronic Science and Technology of China (UESTC),
Chengdu, China, in 1987 and 1991, respectively.

In 2005, he visited Massachusetts Institute of Tech-
nology, Cambridge, MA, USA. Since 1999, he has
been a Professor with the School of Information
and Communication Engineering, UESTC. He has

authored more than 120 journal and conference papers. His research interests
are mainly in synthetic aperture radar and statistical signal processing.
Dr. Yang is a Fellow of the Chinese Institute of Electronics.


https://dx.doi.org/10.1109/LGRS.2020.3022511


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


