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Small Aerial Target Detection for Airborne Infrared
Detection Systems Using LightGBM and
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Abstract—Factors, such as rapid relative motion, clutter back-
ground, etc., make robust small aerial target detection for air-
borne infrared detection systems a challenge. Existing methods
are facing difficulties when dealing with such cases. We consider
that a continuous and smooth trajectory is critical in boosting
small infrared aerial target detection performance. A simple and
effective small aerial target detection method for airborne infrared
detection system using light gradient boosting model (LightGBM)
and trajectory constraints is proposed in this article. First, we sim-
ply formulate target candidate detection as a binary classification
problem. Target candidates in every individual frame are detected
via interesting pixel detection and a trained LightGBM model.
Then, the local smoothness and global continuous characteristic
of the target trajectory are modeled as short-strict and long-loose
constraints. The trajectory constraints are used efficiently for de-
tecting the true small infrared aerial targets from numerous target
candidates. Experiments on public datasets demonstrate that the
proposed method performs better than other existing methods.
Furthermore, a public dataset for small aerial target detection in
airborne infrared detection systems is constructed. To the best of
our knowledge, this dataset has the largest data scale and richest
scene types within this field.

Index Terms—Airborne, infrared detection system, light
gradient boosting model (LightGBM), small aerial target,
trajectory constraint.

I. INTRODUCTION

COMPARED to optical or radar detection, infrared de-
tection has the advantages of all-day and all-weather

operation, high resolution, and strong concealment simultane-
ously. Thus, the infrared detection systems have been widely
used in air platform early warning and guidance [1]. Small
infrared target detection is the key technology in such de-
tection systems. However, for the airborne infrared detec-
tion systems, which are subject to rapid relative motion and
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cluttered backgrounds, small aerial target detection is still a
challenge.

Small infrared target detection has been studied for a long
time. The information contained in a single frame or multiple
successive frames is used in small infrared target detection.
Accordingly, existing methods can be categorized into single
frame-based methods and multiple successive frames-based
methods [1]. Single frame-based methods detect the small in-
frared target mainly using the differences between the target
and background. The small infrared target is often modeled as
a spot target of isotropic distribution [3], [4]. The distribution
is determined based on the point spread function of the imag-
ing system or simply approximated by Gaussian distribution.
The background characteristic [5], [7] and the local contrast
[15], [16] are also widely used in single frame-based infrared
small target detection. Such methods are efficient and easy to
implement. However, cues provided by a single frame may be
inadequate for robust small infrared target detection, especially
in cases wherein the targets are extremely weak and the back-
grounds are cluttered. Temporal cues contained in multiple suc-
cessive frames, e.g., the high correlation of background and the
continuity of the target, are important for robust small infrared
target detection [1]. Multiple successive frames-based methods
boost the performance of small target detection by associating
multiple images [35], [42]. However, the adoption of temporal
cues increases the computational complexity in existing meth-
ods. Additionally, such methods cannot handle rapidly changing
backgrounds well. In conclusion, existing methods, including
single frame-based and multiple successive frames-based meth-
ods, have trouble in detecting small aerial targets for airborne
infrared detection systems.

Multiple successive frames-based methods perform better
than single frame-based methods generally. The fact indicates
that those temporal cues are important in robust small infrared
target detection, especially for complex cases. We analyze a large
number of small aerial target image sequences captured by an
airborne imaging platform. The backgrounds are varied, e.g.,
clouds, vegetation, water, and buildings. Cluttered backgrounds
may not show high correlation within image sequences, espe-
cially for cases in which the background is changing rapidly
due to the motion of the airborne infrared detection system.
In this situation, the cues of the backgrounds are inappropriate
choices for robust small infrared aerial target detection (SIATD).
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However, we find that true targets exhibit continuous and smooth
long trajectories while the clutter does not. Based on this fact,
this article tackles the challenge of small aerial target detection
for airborne infrared detection systems by using the light gradi-
ent boosting model (LightGBM) [2] and trajectory constraints
innovatively. Spatial and temporal cues within image sequences
are used in a simple and effective way. Spatial cues are used in
target candidate detection from each single frame. Target can-
didate detection is simply formulated as a binary classification
problem. LightGBM is firstly introduced in infrared small target
detection in this article. The proposed method detects the target
candidates from each frame using interesting pixel detection
and a trained LightGBM model. Temporal cues are used in
detecting the true target from numerous target candidates. A
simple piecewise uniform motion model is used to approximate
the continuous and smooth target trajectory. We use a short-strict
constraint to preserve the local linearity of the target trajectory
strictly, and a long-loose constraint to extend the continuous
target trajectory to the fullest extent. Based on the short-strict and
long-loose constraints, the true targets are detected via trajectory
segment growth and merging effectively. We evaluate the pro-
posed method on public datasets (SIRST [39] and SIATD) and
compare it with existing methods. Experimental results indicate
that our method can detect small infrared aerial targets under a
cluttered background robustly and achieve better performance
than existing methods.

A high-quality dataset is of considerable significance for
SIATD research. However, to the best of our knowledge, there is
no publicly available dataset for small aerial target detection for
airborne infrared detection systems at present. In this article,
a large-scale dataset for SIATD is built and made available
publicly.1 It contains the largest data scale and the richest scene
types in this research field thus far.

The main contributions of this article are as follows.
1) Target trajectory constraints are modeled as short-strict

and long-loose constraints innovatively. A simple and
effective SIATD method using LightGBM and trajectory
constraints is proposed. It demonstrates superior perfor-
mance compared to existing methods.

2) A publicly available high-quality dataset for small aerial
target detection for airborne infrared detection systems is
built.

The rest of the article is organized as follows: Section II
summarizes the related works. In Section III, we analyze the
small aerial target’s trajectory characteristics in image sequences
captured using airborne infrared imaging equipment. Details of
the proposed method are presented in Section IV. Section V
gives an elaborated description of the dataset. Experimental
results are given in Section VI. Finally, Section VII concludes
the article.

II. RELATED WORKS

As mentioned above, existing small infrared target detection
methods can be classified into single frame-based and multiple

1[Online]. Available: https://small-infrared-aerial-target-detection.grand-
challenge.org/.

frames-based methods. We also summarize the most recently
published representative convolutional neural network (CNN)
related methods separately.

A. Single Frame-Based Methods

Single-frame-based methods detect small infrared targets
from a single image. They mainly use the difference between
the target and the background. Based on the characteristics used,
such methods can be further subdivided as follows.

1) Target Appearance Characteristic-Based Methods:
These methods detect small infrared targets mainly based on
the target’s appearance. In remote imaging, a small infrared
target is often modeled as a spot in the image. Its appear-
ance distribution is determined by the imaging system. Moradi
et al. [3] modeled the spot target using the point spread func-
tion of the imaging system. Zhang et al. [4] adopted isotropic
distributions to approximate the target. Although such meth-
ods are simple and efficient, they perform poorly in cluttered
backgrounds.

2) Background Large Spatial Spread Characteristic-Based
Methods: Based on the remote imaging and infrared imag-
ing characteristics, researchers model the background approx-
imately using common or uniform components. Compared to
the background, the small target has a small spatial spread.
The small target is detected by subtracting the estimated back-
ground. Random walker and facet kernel filter are combined
in [5] to detect a small infrared target. Similar to random
walker, Huang et al. [6] proposed a structure adaptive clutter
suppression method named chain-growth filtering. Gao et al.
[7] modeled the background using Infrared Patch-Image (IPI)
reconstruction. In order to eliminate the negative influences of
the strong edges, Dai et al. adopted non-negative constraints in
[8]. A local and global priors reweighted infrared patch tensor
(RIPT) model was described in [9]. Zhang et al. [10] modified
IPI by introducing a three dimension tensor model. Xue et al.
[11] introduced multiple sparse constraints in reconstruction. Lv
et al. [12] proposed an efficient online update method to improve
the traditional dictionary learning algorithm for small infrared
target detection. In order to eliminate the negative influence of
complex backgrounds, Zhou et al. [13] introduced l1/2–metric
and dual-graph regularization in sparse component modeling.
Guan et al. [14] improved the IPT model using a non-convex
tensor rank surrogate merging tensor nuclear norm and the
Laplace function. This type of method performs well when
the background satisfies the large spatial spread assumption
but they cannot handle cluttered backgrounds satisfactorily.
Furthermore, the background modeling is often time consuming.

3) Local Characteristic Difference-Based Methods: The
small infrared target and background belong to different com-
ponents in images and exhibit different characteristics. The
characteristic difference in the target centered local region is
used to detect a small infrared target. The two widely-used
structures of the local region are shown in Fig. 1 [15].

The gray statistical information, i.e., mean and variance, are
computed for each part. The differences between them are
used as cues for small target detection. Modifications toward

https://small-infrared-aerial-target-detection.grand-challenge.org/
https://small-infrared-aerial-target-detection.grand-challenge.org/
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Fig. 1. Structure of target centered local region. (a) Eight neighbors. (b)
Concentric rectangles (from inside to outside: the internal (Inter), middle (Midd),
and external (Exter) area).

interferences, e.g., isolated spot noise, strong background edge,
clutter, and size changes, are made to improve performance.
Related works include improved local contrast measure [16],
multiscale local contrast measure [17], weighted local difference
measure [18], multiscale gray and variance difference (MGVD)
[15]. Zhao et al. [19] extracted contrast information of small
infrared target in the max-tree and min-tree and proposed a novel
detection method based on multiple morphological profiles. Li
and Zhang [20] use a local steering kernel to estimate the local
intrinsic structure of the local image patch. These methods suffer
from a high false-alarm rate for cluttered backgrounds.

B. Multiple Frames-Based Methods

Single frame-based methods are easy to implement. However,
they have trouble in detecting small infrared targets under a
cluttered background. Multiple frames-based methods introduce
temporal cues in target detecting via association between suc-
cessive frames. We subdivide related works into pixel and patch
association-based methods.

1) Single Pixel Association-Based Methods: Such methods
obtain the temporal gray distribution for each individual pixel by
associating multiple successive frames. The target is detected by
combining the priors of the target or depending on the differences
between the temporal gray distributions directly. Wu et al. [21]
detected a small infrared target by analyzing the correlation
between temporal profiles using a kernel algorithm. In [22],
researchers detected the small target robustly by combining
the movement and appearance cues. Rodriguez and Victor [23]
proposed a generalized likelihood ratio test-based method for
small target detection in an oceanic background. Nichols [24]
modified to the method by proposing an iterative solution for the
max likelihood estimation. Sun et al. [1] proposed an efficient
energy accumulation method for small target detection based on
dynamic programming analysis. James et al. [25] designed the
small target detection metric using the Markov model theory.
Fan et al. [26] adopted passion distribution in energy accumu-
lation for small infrared target detection. Kwan and Budavari
[27] adopted optical flow techniques to enhance small moving
infrared target detection performance, especially for low-quality
and long-range infrared videos. Single pixel association-based
methods are sensitive to cluttered backgrounds and isolated spot
noise.

2) Image Patch Association-Based Methods: Compared to
a single pixel, an image patch contains more meaningful cues
that can improve the robustness of small target detection. Li
et al. [28] constructed image patches sparsely and combined a
particle filter to detect small targets from an image sequence.

In order to eliminate the negative influence of clutter in image
patches, Qian et al. [29] adopted a guided filter and Gaussian
weight to suppress the cluttered background. Dong et al. [30]
first estimated the motion of the imaging platform using image
patch correlation and then detected the true target trajectory
based on the trajectory continuity. Li et al. [31] enhanced the
small infrared target via saliency analysis based on motion and
appearance. Lv et al. [32] suppressed the highly correlated
backgrounds within successive frames and then detected the
target based on local gray distribution. Ren et al. [33] treated the
small infrared target as noise and detected it using a denoising
algorithm. Gao et al. [34] expended IPI to multiple frames. The
background is modeled as a low rank matrix and a mixture
Gaussian model is adopted to model the target. The target is then
detected from the reconstructed result. Liu et al. [35] proposed
a nonconvex tensor low-rank approximation method to estimate
the clutter background accurately. Sun et al. [36] modified the
method by using a non-i.i.d mixture of Gaussian with modified
flux density. The spatio-temporal tensor model is adopted to
model the background in [37] and [38]. Sun et al. [39] proposed
a novel robust principal component analysis based on weighted
Schatten-p norm to improve the accuracy of background esti-
mation. Multiple subspace learning is adopted to modify [39] in
[40]. Taking edge and corner into consideration, Zhang et al. [41]
proposed a novel spatial-temporal tensor model to detect infrared
small target. Motivated by human visual perception, Li et al.
[42] proposed a novel spatio-temporal saliency approach for
dim moving target detection. Image patch association methods
perform well for cases in which the backgrounds are stable, but
cannot handle rapidly changing backgrounds satisfactorily. In
addition, the methods are often complex and cannot meet the
needs of real-time applications.

C. CNN Related Methods

CNNs have achieved considerable success in many vision
applications, e.g., detection, classification, and segmentation.
They have also been used in small infrared target detection.
Many deep networks mainly rely on object-appearance-centered
feature representation. However, given the scarcity of target
intrinsic characteristics and the presence of clutter in the back-
grounds, conventional deep networks easily fail in small infrared
target detection [43], [44]. Furthermore, most convolutional net-
works attenuate the feature map size to learn high-level semantic
features, which may result in the small infrared target being
over-whelmed by cluttered backgrounds. To address this, Dai
et al. [43] preserved and highlighted the small target feature by
exploiting a bottom-up attentional modulation integrating the
low-level features into the high-level features of deeper layers.
Zhao et al. [44] constructed generative adversarial networks
upon a U-Net to learn the features of small infrared targets and
directly predict the intensity of targets.

Most existing CNN related works are single-frame-based
methods. Temporal cues have not been adopted in the abovemen-
tioned works. They have difficulties in detecting small infrared
aerial targets under cluttered backgrounds, especially for small
and dim targets.
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Fig. 2. Sample image sequences of small aerial infrared target. Right: Sample images from sequences #1 and #2. Targets are labeled by rectangles. Left: Remapped
target candidates. The target candidates are remapped in the same coordinate system.

TABLE I
TRAJECTORY CANDIDATES OF DIFFERENT LENGTHS WITHIN SAMPLE

SEQUENCES #1 AND #2

III. ANALYZING SMALL INFRARED AERIAL TARGET’S

TRAJECTORY CHARACTERISTICS

This article focuses on small aerial target detection for air-
borne infrared detection systems. In remote imaging, the target
is often presented as a single spot in the image. Due to the motion
of the imaging platform, the cluttered backgrounds in the image
sequences change rapidly. Existing methods face difficulties in
dealing with such cases. We have analyzed numerous small
infrared aerial target image sequences. The movement of the
aerial target follows the basic laws of physics. In general, the
targets in successive multiframes form continuous and smooth
long trajectories. Fig. 2 presents two sample image sequences.

Sample sequences #1 and #2 each contain 200 frames. The
changes in the background are caused by the imaging system
motion. The target candidates in each frame are detected using
the method presented in Section IV-A. We adopt the homograph
transform to model the interframe movement. Inter-frame regis-
tration is performed based on feature point extraction and match-
ing (see Section IV-B). We remap the target candidates within the
sequence to the same coordinate system. The remapped results
in Fig. 2 show that the true targets’ trajectories are continuous
and smooth where the noises do not form continuous trajectories.
The characteristics of the target’s trajectory have been used in
small infrared target detection. Existing methods often make
assumptions about the target motion, e.g., the target moves at
a constant speed. Such assumptions may not hold in real-world
applications, especially over a long time range. The targets in
Fig. 2 move with changing velocity and form curved trajectories.
Thus, the related methods cannot track the target well over a long
time range. However, a long trajectory is important for robust
SIATD. Therefore, related methods have limitations in detecting
moving small infrared aerial target robustly in practice.

Although the strong assumptions mentioned above may not
hold for long trajectories, the characteristics of continuity and
smoothness hold for most targets’ trajectories. Table I gives
the trajectory candidates of various lengths formed by target

candidates within successive frames of sample sequences #1 and
#2. Details of the trajectory candidate generation are presented
in Section IV-B.

Sequence #1 contains one small aerial target and #2 contains
three. The targets may exit and re-enter the field of view. Thus,
the true target trajectory number may be larger than the target
number within the sequence. As given in Table I, with the
increase of the trajectory length, the number of false trajectories
decreases. False target trajectories are almost eliminated at a
length of 13. The results indicate that the extending of the tra-
jectory length has considerable significance for robust SIATD.

Motivated by the analysis above, this article adopts Light-
GBM and target trajectory constraints to robustly detect small
infrared aerial targets for airborne detection systems. Different
from existing methods, this article adopts trajectory constraints
in a simple but effective way. The proposed method finds the
true target trajectory by linking target candidates directly, not
by associating pixels or image patches as existing methods do.
The trajectory constraints include the short-strict and long-loose
constraints. Details of the proposed method are provided in the
following section.

IV. PROPOSED APPROACH

This article uses LightGBM and trajectory constraints in
robust SIATD for airborne detection systems. The proposed
method first extracts multiple spatial features and detects target
candidates from each frame using interesting pixel detection
and a trained LightGBM model. Then, in adopting trajectory
constraints, we use the piecewise uniform motion model to
approximate a continuous and smooth long target trajectory.
Local linearity is guaranteed by a short-strict constraint on target
motion. A long-loose constraint is proposed to link trajectory
segments to form a continuous and smooth long trajectory.
The true trajectories meeting the short-strict and long-loose
constraints are finally detected.

A. Target Candidate Detection for Each Frame

In remote imaging, the small aerial targets are often presented
as spot targets in the image. However, the spot targets may be
brighter or darker than their surroundings. In this article, the
target candidate detection for each frame is formulated as a
binary classification problem. For each pixel, we extract features
in the local region centered on it. Then, the trained LightGBM
model takes the features as input and determines whether the
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pixel is a target candidate or not. In order to accelerate the target
candidate detection, a positive and negative median filter is used
to detect interesting pixels first.

1) Interesting Pixel Detection: The small infrared targets
only correspond to a small portion of pixels in the images.
Most pixels belong to the background. In order to detect the
small infrared target efficiently, we first filter out the pixels that
obviously correspond to the background. The remaining pixels
are considered interesting pixels and subject to the following
process. As mentioned above, the small infrared aerial target is
often presented as a spot target. It may be brighter or darker
than its neighbors. This article proposes a positive and negative
median filter to detect interesting pixels, as given in

Label (x, y) =

⎧⎨
⎩

1, I (x, y) > (median ((x, y))+k1)
‖ I (x, y) < (median ((x, y))+k2)

0, otherwise
.

(1)
For the input image I , Label(x, y)=1 indicates that the pixel

(x, y) is an interesting pixel and Label(x, y)=0 denotes that
it is not. median((x, y)) calculates the median value in a local
region of a certain size centered on (x, y). We set the parameters
k1 > 0 to select the brighter targets andk2 < 0 for darker targets.
It should be noted that each connected domain in Label is
treated as a target candidate. The target candidate is denoted
by the brightest/darkest pixel within the brighter/darker target.
The values of k1 and k2 affects the number of target candidates
selected from the input image. We deduce the values of k1 and k2
by varying from both sides to middle according to the required
number of selected target candidates in practice.

2) LightGBM Model: Gradient boosting decision tree
(GBDT) is an ensemble model of the decision trees, which are
trained in sequence [45]. It learns the decision trees by fitting
the residual error in each iteration. GBDT has been widely used
in many machine learning tasks. However, its computational
complexity is proportional to the number of instances and the
number of features. This makes the traditional GBDT algorithm
time-consuming when handling big data. Ke et al. [2] meet this
challenge by proposing two techniques: gradient-based one-side
sampling (GOSS) and exclusive feature bundling (EFB). The
modified GBDT algorithm is called LightGBM.

By combining GOSS and EFB, LightGBM accelerates the
training process dramatically while achieving almost the same
accuracy as the previous GBDT algorithms.

3) Feature Extraction and Learning: To train the LightGBM
model, multiple spatial features are extracted for each pixel in
the local region centered on it. For simplicity, we set the shape
of the local region as a rectangle. In order to better capture the
characteristics of the small infrared target in the image, seven
features are computed from the local region, including kurtosis
γ2 , skew Sk, entropy H , mean μ, variance σ2, maximum vmax,
and minimum vmin. LetLR1×R2

(x, y) denote the local rectangu-
lar region centered on the pixel (x, y)of sizeR1 ×R2. We flatten
the region into a vector V={v0, v1, . . . . . . , vN−1}N=R1×R2

.
The definitions of the seven spatial features are given in (2).
The mean and standard deviation are denoted as μ=E(vi) and
σ. μ3=E((vi − μ)3) and μ4=E((vi − μ)4) are the third and

fourth central moment respectively. p(�) denotes the probability
of the intensity value and it can be inferred from the intensity
histogram of the input image.

kurtosis : γ2 =
μ4

σ4
− 3

skew : Sk =
μ3

σ3

entropy : H (V) = −
∑
vi∈V

p (vi) log p (vi)

mean : μ =
1

N

∑
vi∈V

vi

variance : σ2 =
1

N

∑
vi∈V

(vi − μ)

maximum : vmax = max
vi∈V

(vi)

minimum : vmin = min
vi∈V

(vi) (2)

In the training dataset, the small infrared aerial targets are
annotated. We take the pixels within the regions centered on the
label positions of size 3× 3 as positive samples. The remaining
pixels in the images can be taken as negative samples. A seven-
dimensional spatial feature vector, is calculated for each sample
to train the LightGBM model. In order to detect targets of varied
scales, we introduce a multiscale processing strategy.

B. Target Detection Using Trajectory Constraints

The target candidates in each frame are detected as men-
tioned above. Considering the remote imaging conditions in
small aerial target detection for an airborne infrared detection
system, the elevation variance of the background can be ignored
compared to the imaging distance. Therefore, the homograph
transform is adopted to model the interframe movement in this
article. The registration between successive frames is built via
SURF [46] feature point extraction and matching. The transform
parameters are solved via a RANSAC-based robust method.
Then we remap the target candidates in each frame to the
coordinate of the first frame within the time window.

We intend to detect the true targets whose trajectories obey
the short-strict and long-loose constraints. The trajectory of the
small infrared aerial target captured by an airborne infrared
detection system in Section III is analyzed. The analysis in-
dicates that the true target forms a continuous and smooth long
trajectory in the captured image sequence. The long trajectory
can be used to distinguish targets from clutter robustly. The
target’s movement is modeled as a piecewise uniform motion.
We impose the short-strict constraint, i.e., uniform motion, on
the trajectory in a short time interval to eliminate the interference
of clutter as much as possible. By contrast, we impose the
long-loose constraint on the trajectory in a long time range to
extend the length of the trajectory as much as possible. Other
than the short-strict and long-loose constraints, we do not make
strong assumptions about the speed of the small infrared aerial
target as previous algorithms do. The trajectory synthetizing and
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Fig. 3. Trajectory segment growth with short-strict constraint.

validation include trajectory segment growth and merging. They
are detailed as follows.

1) Trajectory Segment Growth With Short-Strict Constraint:
Trajectory segment growth links the target candidates in the
current frame to the existing trajectory segments suitably. In
this article, the target movement is modeled as a piecewise
uniform motion, i.e., the short-strict constraint, in a short time
interval. We set the short time interval as three successive frames.
Trajectory segments grow under the short-strict constraint. We
denote the existing trajectory segment set as {T i}M and the
target candidate set as {ctj}N in the current frame t.

As shown in Fig. 3, we take a sample trajectory segment
T i = {. . . , ni

t−3, n
i
t−2, n

i
t−1} to detail the implementation of

trajectory segment growth. ni
t−1 is the detected target in the

last frame (t− 1). Under the uniform motion constraint in the
short time interval, we define the cost of linking ctj to T i. The
link involves ni

t−2, n
i
t−1 and ctj . Using ni

t−2 and ctj , we get the
ideal middle point ni′

t−1 under the uniform motion constraint.
dij is the Euclidean distance between ni

t−1 and ni′
t−1. The cost

C(i, j) of the link is defined as

C (i, j) =
dij

‖ni
t−2 − ni

t−1‖2
=

∥∥ni
t−2 + ctj − 2ni

t−1

∥∥
2

2× ‖ni
t−2 − ni

t−1‖2
.

(3)

The smaller C(i, j) is, the more the link meets the short-strict
constraint. The cost matrix C contains all possible links’ cost
values. We define the binary linking matrix A1 in

A1 (i, j) =

{
1, C (i, j) ≤ σ1

0, C (i, j) > σ1
(4)

where σ1 is the cost threshold. We also restrict the absolute
velocity value of the target. The restriction for the target candi-
dates ct−1

j and ctj in successive frames is defined in (5). σ2 is an
absolute velocity threshold

CoV
(
ct−1
j , cti

)
=

{
1,

∥∥ct−1
j − cti

∥∥
2
≤ σ2

0,
∥∥ct−1

j − cti
∥∥
2
> σ2

. (5)

For an existing trajectory segment, if more than one target
candidate meets (3) and (4), we link the trajectory segment
to each target candidate and record every new link as a new
trajectory segment. In order to find a new target, we also link
the target candidates {ctj}N in the current frame t and the
candidates {ct−1

i }N ’ in the last frame (t−1) under (5) to form
new trajectory segments. Trajectory segment growth with the

Fig. 4. Trajectory segment pairs with different relative positions (the dot line
represents the extension of the trajectory segment).

Algorithm 1: Trajectory Segment Growth with the Short-
Strict Constraint.

Input: {T i}M—existing trajectory segment set,
{ctj}N—target candidate set in frame t

{ct−1
i }N ’ —target candidate set in frame (t−1)

Output: {T i}M ′—updated trajectory segment set
for i = 1 to M do

flag = 0
for j = 1 to N do

Calculate A1(i, j) using Equation (3∼4)
if A1(i, j) & CoV (ni

t−1, c
t
j)

[T i, ctj ] → {T i}M ′ ; flag = 1
end if

end for
if !flag

T i stop growth, T i → {T i}M ′

end if
end for
for i = 1 to N ′do

for j = 1 to Ndo
if CoV (ct−1

i , ctj)

[ct−1
i , ctj ] → {T s}M ′

end if
end for

end for

short-strict constraint is performed as presented in Algorithm 1.
It should be noted that we treat a reentry target as a new target.

2) Trajectory Segment Merging With Long-Loose Constraint:
As given above, we get a trajectory segment set {T i}M , which
meets the piecewise uniform motion short-strict constraint.
Given noise interference or a cluttered background, the true
target may not be detected correctly from each frame in Sec-
tion IV-A. Therefore, the true target trajectory is divided into
several segments. Trajectory segment merging intends to link
the trajectory segments corresponding to the same target. The
merging is performed based on the similarity between trajectory
segments. Fig. 4 presents three trajectory segment pairs with dif-
ferent relative positions. Compared to the segments in Fig. 4(a)
and (c), the segments in Fig. 4(b) are more likely to correspond
to the same target.

The features of the trajectory segments corresponding to the
same target are as follows.

1) The trajectory segments do not overlap in time.
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Fig. 5. Similarity measure for trajectory segment merging.

2) The extension of the trajectory segments is close to each
other.

3) The velocity values of different trajectory segments are
close to each other.

We take two track segments T 1 and T 2 as samples to detail
the definition of the similarity measure, as shown in Fig. 5.
T 1 andT 2 do not overlap in time.T 1 ends at frame (t− 4) and

T 2 starts from frame (t− 1). According to the uniform motion
constraint, we extend T 1 and T 2 to frame (t− 3) and (t− 2),
respectively. The extended target positions are {p1t−3, p

1
t−2} and

{p2t−3, p
2
t−2}, respectively. If T 1 and T 2 belong to the same

target trajectory, we link n1
t−4 and n2

t−1. Under the uniform mo-
tion constraint, the interpolated target positions are {pt−3, pt−2}
as shown in Fig. 5. The distances between the extended target
positions and the interpolated target positions are used to define
the similarity measure s(T 1, T 2) between T 1 and T 2 as in

s
(
T 1, T 2

)
=

(t− 1)− (t− 4)− 1∑t−2
k=t−3

(‖p1k − pk‖2 + ‖p2k − pk‖2
) . (6)

The equation above is a detailed description of the similarity
definition of two trajectory segments T 1 and T 2 with a time
interval 2. For other cases, the similarity is calculated in a
manner similar to the above definition. The similarity matrix
S=[s(T i, T j)]M×M is a symmetric matrix (S(i, j) = S(j, i))
with zero diagonal elements (S(i, i) = 0). The binary link ma-
trix A2 is given in

A2 (i, j) =

{
1, S (i, j) ≥ σ3

0, S (i, j) < σ3
(7)

where σ3 is a threshold to be set. The parameter corresponds to
the degree of relaxation of the long-loose constraint. Considering
the continuous target movement, we prioritize merging long
trajectory segments. We sort the trajectory segments according
to their lengths in descending order, i.e., the first row A2 corre-
sponds to the longest trajectory segment in {T i}M . Details of
the trajectory segment merging are described in Algorithm 2.
We delete trajectory segment showing no growth or merging in
the last σ4 frames from the list.

After trajectory segment growth and merging, we detect the
small infrared aerial target based on the length of the trajectory.
The length threshold σ5 is defined as

σ5 = 	μ× L
 (8)

where μ is a constant and L is the length of the time window.
If the length of a trajectory is larger than σ5, the corresponding
target candidates are detected as true targets. The target can be

Algorithm 2: Trajectory Segment Merging with the Long-
Loose Constraint.

Input: {T i}M—existing trajectory segment set,
A2—binary link matrix

Output: {T i}M ′—updated trajectory segment set
for i = 1 to M do

flag = 0
for j = i+1 to M do

if A2(i, j)
merge T i and T j to T i′ , T i′ → {T i}M ′ , flag =
1

for k = 1 to M do
if A2(k, j)

A2(i, k) = A2(k, i) = 0
end if

if A2(k, i)
A2(j, k) = A2(k, j) = 0

end if
end for

end if
end for
if !flag

T i → {T i}M ′

end if
end for

detected continuously through the trajectory segment growth.
We assume that there is only one single target in a position at
one time. Thus for the crossed trajectory segments, we keep the
longest trajectory and eliminate others.

V. SMALL AERIAL TARGET DETECTION FOR AIRBORNE

INFRARED DETECTION SYSTEM DATASET

A high-quality dataset is essential to promote the development
of research, e.g., ImageNet and MS-COCO for object recogni-
tion and segmentation. However, to the best of our knowledge,
there is no public dataset dedicated to this research so far. For
small infrared target detection, the lack of available images
is a serious concern, worthy of research attention. In general,
researchers expend considerable effort in collecting images
for algorithm evaluation and comparison. Experimental images
have the disadvantages of small scale and disunity. Table II gives
the scales of images used in recently published related works [6],
[11]–[15], [19], [36], [38], [40], [43], [44].

It should be noted that Dai et al. [43] used their public single
frame infrared small target (SIRST) dataset for experimental
evaluation. The dataset contains 427 images, including 480
instances of various scenarios. As reported in [43], the SIRST
dataset is the largest open dataset for small infrared target
detection from a single image at present. However, as given
in Table II, several hundred images are not enough to cover the
numerous complex situations in real applications. The scale of
such datasets are inadequate for learning-based algorithms to
train upon, especially for neural networks related algorithms.
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TABLE II
SMALL INFRARED TARGET IMAGES USED FOR EVALUATION AND COMPARISON

IN [6], [11]–[15], [19], [36], [38], [40], [43], AND [44]

The lack of test data makes the experimental results unconvinc-
ing. Furthermore, the authors of various works collected test
images individually, which resulted in disunity among the test
images. It is also difficult for researchers to compare their algo-
rithms with other representative algorithms without the released
implementation. Furthermore, available public benchmark has
not come out at present.

A. Dataset Description

To meet this need, a large scale dataset, called SIATD, is
built for airborne infrared detection systems. The images are
captured by airborne infrared imaging equipment. The details
of the dataset are given in Table III.

SIATD contains 350 image sequences, 150 185 images, and
detailed annotation files. The image sequences are categorized
into five scene types. The annotation file provides the target
positions in the images. There are at most three targets per
frame. The size of the target varies from 3× 3 pixels to 7× 7
pixels. The movements of the targets are diverse. To the best of
our knowledge, this dataset comprises the largest data scale and
richest scene types in this research field. It can be used in single
frame as well as multiple frames small infrared target detection
studies. The scale of the proposed dataset covers numerous
application scenes and provides a solid basis for algorithm re-
search. Specially, for neural networks related algorithms, SIATD
provides adequate images for model training.

The dataset contains training and testing subsets. Each con-
tains 175 image sequences. We released the SIATD dataset
through a publicly accessible website.2 The training subset has
been fully released, including the image sequences and annota-
tion files, while only the image sequences in the testing subset
have been released. We adopt public used metrics and provide

2[Online]. Available: http://dx.doi.org/10.11922/sciencedb.j00001.00231

a convenient testing interface on the website. Researchers can
upload their detection results on the testing subset in a standard
format to the website to evaluate the results. The website will
provide a real-time ranking leaderboard accordingly. The dataset
provides a public platform for researchers to perform algorithm
evaluation and comparison conveniently.

As mentioned above, the clutter and rapidly changing of
the background bring great difficulties to small moving target
detection for airborne infrared detection system. The two main
factors are the typical features of SIATD that different from
other existing datasets. The typical features make SIATD a more
challenge dataset for small aerial infrared target detection.

B. Evaluation Metrics

In remote imaging applications, dim and small infrared aerial
targets are often presented as spot targets in infrared images.
As shown Figs. 2 and 6, they only occupy a few pixels in the
images. Given the infrared imaging characteristics, the target
edges are blurred. The scarcity of target intrinsic characteristics
means that the shape of the target has little significance for
practical application. We can simply use the center position of
the spot to represent the small infrared aerial target in images.
Therefore, we do not use the signal to clutter ratio, background
suppression factor, intersection over union, or receiver operating
characteristics as metrics, as used in previous works. We adopt
a direct and publicly used metric, Fβ −measure, in SIATD to
evaluate the algorithm performance quantitatively. The metric
combines the precision and recall of the evaluated algorithm. It
is defined as

Fβ =

(
1 + β2

) · PrecisiongRecall
β2 · Precision + Recall

Precision =
TP

TP + FP

Recall =
TP

TP + FN
. (9)

Here, TP, FP, and FNdenote the correctly detected target
number, wrongly detected target number and the missed target
number, respectively. We set β2 = 1 in this article.

VI. EXPERIMENTS AND ANALYSIS

A. Experimental Settings

To validate the performance of the proposed algorithm
qualitatively and quantitatively, we conduct experiments on
the public datasets SIRST and SIATD. We also perform
comparisons between our method and representative existing
methods, including single frame-based methods (RIPT [9],
MLCM [17], ALCNet [43], and AGADM [47]) and multiple
frames-based method (TIPI[34], ASTTV-NTLA [35], STTV-
WNIPT [39]). For the compared methods, we use the imple-
mentations released by the authors and their suggested default
parameter settings. For the proposed method, the parameter
settings used are given in Table IV in this article, except the

http://dx.doi.org/10.11922/sciencedb.j00001.00231
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TABLE III
DETAILS OF SIATD DATASET

Fig. 6. Sample images picked form the dataset SIATD (from left to right: up-looking; head up looking; down looking (vegetation); down looking (water); and
down looking (building). The targets are labeled by rectangle).

TABLE IV
PARAMETER SETTINGS OF THE PROPOSED METHOD

experiments conducted in ablation study. Briefly, we denote
our target candidate detection algorithm as “Med-LGBM” and
the complete method as “proposed method.” Target is correctly
detected if the location detected is within the three-pixel neigh-
borhood of the ground truth.

All experiments run on a PC with NVIDIA 1080 GPU,
i7-8700K CPU and 24GB of RAM. The proposed method is
implemented in C++ and CUDA. Using the parameter setting
given in Table IV, it takes about 61 ms per image in average,
thereof 44 ms for target candidate detection, and 17 ms for
trajectory constraining. Further parallel design can improve the
efficiency of the proposed method.

B. Parameter Sensitivity Analysis

The parameters included in the proposed method and the
default settings are given in Table IV. We start by investigating
the sensitivity of the relatively important parameters: k1, k2, μ,
and L.

As mentioned above, k1 and k2 are used to select target
candidate from per frame. They are determined by varying from
both sides to middle according to the required number of selected
target candidate in practice. Here we vary the number of target

TABLE V
PERFORMANCE WITH VARYING TARGET CANDIDATE NUMBER ON SIATD

candidates selected from per image and the results on the testing
subset of SIATD are given in Table V.

As given in Table V, with the increase of the target candidate
number per frame, the performance of the proposed method
continues to improve. However, the range of improvement grad-
ually decreases. In addition, the increase of the target candidate
number will increase the computational burden for the following
process. A reasonable target candidate number should be chosen
to balance the efficiency and effectiveness of the proposed
method in practice.
μ and L determine the trajectory length threshold (	μ× L
).

We set L=20 and vary μ to evaluate the performance of the
proposed method with different trajectory length threshold. The
results are given in Table VI.

The results in Table VI indicate that the recall decrease and
precision increase with the increase of μ. A larger length thresh-
old means more stringent constraints. Only target candidates
with high confidence can be retained when using larger μ.
However, the comprehensive metric Fβ −measure deceases
while μ increases. The main reason is that many true targets
are removed by the larger trajectory threshold. Due to missed
detection of targets in adjacent frames, some correctly detected
targets cannot form long continuous trajectories.
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TABLE VI
PERFORMANCE WITH VARYING µ ON SIATD

TABLE VII
STATISTICS OF THE TARGET CANDIDATE DETECTION ON SIRST

C. Target Candidate Detection From Single Image

Med-LGBM detects the target candidates and suppresses the
background interferences through interesting pixel detection
and a trained LightGBM model. Actually, all existing single-
frame-based algorithms can be embedded in our framework to
detect the target candidate from a single frame. With trajectory
constraints, the detection of the true target is based on an under-
lying premise that it is first determined as a target candidate.
To ensure the effectiveness of SIATD, we require the target
candidate detection to be as effective as possible. High recall
means that the true targets are likely to be detected and high
precision means fewer false alarms. The lower the number of
target candidates is, the more efficient the subsequent trajectory
segment growth and merging will be. We compare the proposed
target candidate detection method with representative single-
frame-based methods on SIRST. For the methods that output
target region, e.g., ALCNet, we take the geometric center of the
detected target region as the final detection result. Fig. 7 shows
sample results of the target candidate detection. It is noted that
only the correct detections are labeled for the compared methods.
Owing to too many false alarms detected by some compared
methods (e.g., the third–fifth in Fig. 7), the false detections are
left unlabeled. However, as Med-LGBM does not have too much
false detection, we label them in presented results.

The results demonstrate that most of the true targets are
correctly detected by ALCNet and Med-LGBM. ALCNet and
AGADM have difficulties in detecting small dim targets as the
second image in Fig. 7 shows. The cluttered background presents
challenges for MLCM and RIPT.

TABLE VIII
STATISTICS OF THE TARGET CANDIDATE DETECTION ON

IMAGES PICKED FROM SIATD

The statistical results on SIRST are given in Table VII. We
compute the geometric center of the label mask for each labeled
target as the ground truth. The recall and precision are calculated
as given in Section V-B. The results in Table VII demonstrated
that Med-LGBM achieves slightly lower performance than AL-
CNet and performs better than other methods. The high recall
indicates that most true targets are detected as target candidates.
The high precision of Med-LGBM makes efficient trajectory
growth and merging possible. RIPT achieves the highest recall.
However, the low precision causes certain difficulties. It should
be noted that Med-LGBM aims at a small-sized spot target.
Some targets in SIRST are of large size and do not satisfy the
hypothesis of a small spot target. This causes the performance
of Med-LGBM to suffer.

ALCNet is a CNN-based method and needs sufficient training
data. As reported in [43], the SIRST dataset only contains 427
images. We adopt the ALCNet model and Med-LGBM trained
on the SIRST dataset to detect small infrared aerial targets in
images in the testing subset from SIATD dataset. The image in
SIATD is of size 640 × 512 pixels. ALCNet resizes the input
image to a standard size of 256 × 256 pixels. The direct resize
operation of the image from SIATD may make the small target
even smaller. For fairness, we crop the test images manually
and only preserve the local region of size 256 × 256 pixels
containing the target. Sample detection results of ALCNet and
Med-LGBM are presented in Fig. 8. The statistical results are
given in Table VIII. It should be noted that the LightGBM model
used in Med-LGBM is also trained on the SIRST dataset.

In general, the targets in SIATD are smaller than those in
SIRST. The results in Fig. 8 and Table VIII indicate that Med-
LGBM achieves better performance than ALCNet on images
picked from SIATD, especially for small dim targets. ALC-
Net also outputs false detections corresponding to cluttered
backgrounds (see the third–fifth column in Fig. 8). ALCNet
may need more training data to improve its ability compared
to other data-driven methods. Med-LGBM has better general-
ization ability than ALCNet, as the experimental results show.

D. Target Detection From Image Sequence

In this section, we conduct experiments of SIATD upon image
sequences in the SIATD dataset. The proposed method first de-
tects target candidates from each individual frame using interest-
ing pixel detection and a trained LightGBM model as described
in Section IV-A. For successive frames, a simple commonly-
used target candidate detection method is interframe differenc-
ing and thresholding. We compare the simple method with the
proposed target candidate detection method on the testing subset
of the SIATD dataset. For the inter-frame-differencing-based
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Fig. 7. Sample results of the target candidate detection from SIRST (the detected targets are labeled by “◦” and the true targets by “�”).

Fig. 8. Sample results of the target candidate detection on images picked from SIATD (the detected target candidates are labeled by “◦” and the true targets
by “�”).
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TABLE IX
TARGET CANDIDATE DETECTION ON THE TESTING SUBSET OF SIATD DATASET

Fig. 9. Detected trajectories for two sample image sequences form SIATD
dataset.

method, we perform inter-frame registration as described in
Section IV-B. Threshold is determined adaptively via Otsu [48].
The LightGBM model is trained on the training subset of the
SIATD dataset. The results are given in Table IX.

The results in Table IX indicate that the proposed target
candidate detection method achieves higher recall and precision
than the interframe-differencing-based method. Approximately
0.87 target candidates on average are detected by the proposed
method, which makes the trajectory growth and merging more
efficient. It should be noted that there are at most three true
targets in each frame and the targets may move out of view in
SIATD. Thus, the average number of target candidates per frame
of the proposed target candidate detection method is less than
one. The low average number indicates the high precision of the
proposed target candidate detection method to a certain extent.

The proposed method detects the true targets from target
candidates using trajectory constraints. The short-strict and
long-loose constraints described in Section IV-B enable the
proposed method to track long target trajectories. We present
two detected trajectories within two sample image sequences
from SIATD in Fig. 9. The detected targets in the sequence are
remapped to the same coordinate as in Fig. 2. It can be seen from
Fig. 9 that the targets’ trajectories are tortuous yet smooth and
continuous. The proposed method detects them correctly. Using
the trajectory constraints, the clutter within images is eliminated
effectively by the method.

It should be noted that the LightGBM model used in the
proposed method needs training using annotated data, while
the compared methods in this experiment do not. We train the
LightGBM model using the training subset in SIATD. To be fair,
we only report the results on the testing subset in this section.
ALCNet needs pixel-wise labeled target region as training data
while SIATD only provides the labeled target center position.
Furthermore, we have proved in Section IV-B that ALCNet has
trouble in detecting extremely small dim infrared aerial targets
in SIATD. Therefore, this article does not consider ALCNet as
a comparison method in this experiment. Fig. 10 shows sample

detection results from the SIATD dataset. As shown in Fig. 7,
we only label the correct detections for the compared methods.

The results in Fig. 10 show that existing algorithms have
trouble in detecting small infrared aerial targets, especially for
targets under cluttered backgrounds. Clutter causes considerable
difficulties for AGADM, RIPT, and MLCM. False targets are
detected in cluttered background areas as shown in Fig. 10. TIPI
has trouble in modeling the quick change in the background.
Strong edges cause false detections, as shown in the fifth row
in Fig. 10. In the latest published works, STTV-WNIPT and
ASTTV-NTLA adopt more advanced technics in reconstruction.
However, they still have trouble in detecting infrared small target
under clutter and changing backgrounds, as shown in the fifth
and seventh row in Fig. 10. The proposed method detects the
targets accurately and performs better than other algorithms. As
shown in the second column in Fig. 10, a darker target is located
in the building region. The proposed method detects it correctly
while others can not.

For quantitative evaluation, the quantitative evaluations of
each algorithm on the testing subset are given in Table VIII,
including results of each scene type and the entire testing subset.

As mentioned above, cluttered backgrounds bring consid-
erable challenges for existing single frame-based methods.
AGADM, RIPT, and MLCM achieve lower precisions than the
proposed method. The clutter degrees of the backgrounds within
the Down looking scene are higher than that within the Up
looking scene generally. The performances of the compared
methods decrease with the increase of the clutter degree, as given
in Table X. Our target candidate detection method Med-LGBM
achieves better performance than them. LightGBM is a learning-
based method. Its performance heavily depends on the training
data. We reported the results for each scene type separately and
the entire testing subset in Table X. The results on the entire
testing subset are similar to those on various scene types. This
indicates that Med-LGBM has the ability to deal with a variety
of complex scenes.

TIPI cannot handle a quick-changing cluttered background
satisfactorily. Consequently, it achieves poor performance on
the SIATD dataset. As illustrated in Fig. 10, rapidly changing
and clutter backgrounds also bring great challenges to STTV-
WNIPT and ASTTV-NTLA. They also achieve poorer perfor-
mances than the proposed method, especially for down look-
ing (vegetation) and down looking (building) scene types. By
introducing the short-strict and long-loose trajectory constraints,
the proposed method eliminates false detections and improves
the precision significantly. The proposed method achieves better
performance than existing algorithms in detecting small infrared
aerial targets.

The results in Table X indicate that the precision is improved
considerably from Med-LGBM to the proposed method by
introducing trajectory constrains. False detections are effectively
removed. In the image sequence, unlike the true target, the clutter
within the background cannot form smooth and continuous
trajectories. However, as Table X presents, the recall decreases
from Med- LGBM to the proposed method. This means that
some correctly detected targets are removed by mistake during
trajectory growth and merging. We analyzed the experimental
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Fig. 10. Sample detection results of AGADM, RIPT, MLCM, TIPI, STTV-WNIPT, ASTTV-NTLA and the proposed method from SIATD (the detected target
candidates are labeled by “◦” and the true targets by “�”).

TABLE X
QUANTITATIVE EVALUATION OF AGADM, RIPT, MLCM, TIPI, STTV-WNIPT, ASTTV-NTLA, AND THE PROPOSED METHOD ON THE TESTING SUBSET OF

SIATD. (U FOR UP LOOKING, H FOR HEAD UP LOOKING, D-V FOR DOWN LOOKING (VEGETATION), D-W FOR DOWN LOOKING (WATER), D-B FOR DOWN

LOOKING (BUILDING), P FOR PRECISION, R FOR RECALL AND F FOR Fβ − MEASURE)
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results and found that most of the mistaken removed target
candidates are isolated detected targets. There is no detected
target close to them in the preceding and succeeding frames.
Therefore, they cannot form valid trajectory segments and are
removed in the final detection.

Although the proposed method achieves superior perfor-
mance than existing methods in the above experiments, it still has
many limitations. The clutter background brings great troubles
to Med-LGBM. Missing or false detection will avoid the true
target to be correctly detected, e.g., a true target is missing in the
leftmost column in Fig. 10. In result, the recalls of the proposed
method given in Table X are low. The performance can be further
improved by exploring more advanced target candidate detection
methods and linking categories. We believe that neural networks
related achievements in spatial and temporal data processing
have immense potential for improving SIATD.

VII. CONCLUSION

This article focuses on the challenge of small aerial target
detection for airborne infrared detection systems. We first an-
alyze the characteristics of the target trajectory and point out
that the basic characteristics of the target trajectory, continuous
and smooth, are of immense significance for robust SIATD.
A simple and effective SIATD method using LightGBM and
trajectory constraints is then proposed. Target candidate detec-
tion from each individual frame using the spatial cuesis treated
as a binary classification problem. Interesting pixel detection
and a trained LightGBM model are applied to detect target
candidates. Multiple spatial features are extracted and inputted to
the LightGBM model. We adopt the piecewise uniform motion
model to approximate the target movement. The true targets
are detected from amongst the target candidates using trajectory
constraints, including the short-strict and long-loose constraints.
The constraints are used in trajectory segment growth and merg-
ing. Experiments on publicly available datasets indicate that the
proposed method detects small infrared aerial target robustly and
achieves better performance than existing methods. In order to
alleviate the lacuna between research needs and the availability
of testing data, we also build a high-quality SIATD dataset and
release it to the public. To the best of our knowledge, our dataset
possesses the largest data scale and the richest scene types in
this field at present.

For future work, neural networks related achievements in
spatial and temporal data processing can be harnessed in SIATD.
The powerful feature extraction and representation ability of
neural networks has immense potential to improve the perfor-
mance of SIATD.
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