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Siamese Spectral Attention With Channel
Consistency for Hyperspectral Image Classification
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Abstract—Abundant spectral features are the precious wealth of
hyperspectral images (HSI). Nevertheless, well-designed spectral
feature is still a challenge that affects the performance of the
classifier, especially with insufficient number of training samples.
To make up the poor discriminability of spectral feature, double-
branch methods are proposed by fusing parallel spectral and
spatial branches. However, this structure does nothing to improve
the quality of spectral feature, which is regarded as the most valu-
able information for HSI information. In this article, we propose
a siamese spectral attention network with channel consistency
(SSACC) to focus on obtaining discriminative spectral features,
thus improving the generalization ability of the classifier. Two kinds
of HSI cubes with different patch sizes are generated as the input of
SSACC. The two cubes are divided into top and bottom branches
and then be fed into the siamese network to obtain the refined spec-
tral features. Then, self-attention is conducted to interacting with
each channel for the spectral features enhancement. Meanwhile,
two attention maps are obtained to display the spectral structures
of each branch. A channel consistency regularization is performed
on the two attention maps by enforcing the two branches to possess
similar spectral patterns when identifying the same centric pixel.
Extensive experiments conducted on the three HSI datasets verify
the superiority of the obtained spectral feature. Furthermore,
the proposed method applying convolution only on the spectral
domain outperforms the state-of-the-art double-branch methods
which integrate the spectral and spatial features simultaneously.

Index Terms—Channel consistency, double-branch,
hyperspectral image (HSI) classification, spectral siamese.

I. INTRODUCTION

A S a special remote sensing, hyperspectral image (HSI)
integrates the unique advantages of spectrograph and

optical cameras, owning high-resolution spectral signature and
large-scale spatial information. The task of HSI classification is
to assign a specific land-cover label to each hyperspectral pixel.
By analyzing the spectral signature and spatial information,
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HSI classification possesses powerful discriminability on
observation objects with wide application in earth observation
tasks, such as agriculture estimation [1], atmospheric
environment forecast [2], water quality monitoring [3], ocean
species identification [4], and urban development [5]. However,
due to the well-known Hughes phenomenon and the curse of
dimensionality [6], the exploitation of redundantly continuous
spectral and spatial information remains a hot yet challenging
topic in remote sensing field [7], [8].

Conventionally, HSI is described as a 3-D cube data, involving
1-D spectral signatures and 2-D spatial information [9]. Ac-
cording to the type of information utilized, HSI classification
can be roughly categorized into spectral-based methods and
spectral–spatial-based methods. HSI contains abundant spectral
signatures owing to its hundreds of narrow contiguous wave-
length bands. Each pixel in HSI is represented as a signature, en-
coding plentiful physical properties. Spectral-based approaches
primarily focus on the spectral signatures, taking an original
pixel as the input, such as logistic regression [10], linear dis-
criminant analysis [11], and support vector machine (SVM) [12].
The aforementioned methods are of shallow-layer, with limited
representation capacity to handle complex and new situations.
With the breakthrough of deep learning (DL) [13]–[16], deep
models have also been exploited to incorporate plentiful spectral
signatures. Hu et al. [17] treated the spectral signature as a 1-D
signal and conducted the 1-D convolutional neural network on
spectral domain for HSI classification. Mou et al. [18] handled
the hyperspectral pixel as sequential data and performed the re-
current neural network (RNN) to infer the semantic label. How-
ever, they suffered from the lack of adequate training samples to
fit the data distribution. Therefore, the trained models often lead
to poor generalization and, thus, are sensitive to the disturbance
on spectral signatures. It has been common to increase the
amount of training data in a disguised form to address the issue.
With the aid of pixel-pair, Li et al. [19] augmented the training
data by a wide margin so as to maintain the advantage of CNN.
Similarly, generative models have also been explored to handle
the sore point of insufficient labeled HSI pixels [20], [21], while
only an individual pixel was used during the testing phase. The
nature of spectral variability that is susceptible to atmospheric
effects, instrument noises, and incident illumination, has not
been resolved effectively. Different from common RGB image
classification, HSI classification is worthy of a deep plowing on
spectral signatures.

Spectral–spatial-based methods incorporate spatial infor-
mation to complement the spectral signatures for HSI
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classification. By holding the label coherence of adjacent pixels,
spectral–spatial-based methods use a pixel centric 3-D cube as
the input, whose label is determined by its centric pixel [22].
Up to now, CNN has been seen as one of the most effec-
tive ways to extract spectral–spatial features by modeling the
relationship of adjacent pixels. Chen et al. [23] proposed a
3-D CNN-based model with combined regularization to extract
effective spectral–spatial features. Lee et al. [24] adopted a
multiscale convolutional filter bank to explore local contextual
interactions by jointly exploiting local spectral–spatial rela-
tionships of neighboring pixels. With the CNN architecture
evolution, ResNet [25], CapsuleNet [26], and DenseNet [27]
have been introduced into HSI classification to obtain discrimi-
native spectral–spatial features. However, these state-of-the-art
CNN-based methods adopted a single 3-D cube input style,
subject to the fixed patch size. Zhang et al. [28] exploited diverse
region-based inputs to investigate the contextual interactional
spectral–spatial features to alleviate these restricts, while it still
adheres to the adjacent pixels coherence assumption, where
the adjacent pixels are assumed to share the same labels [29].
Besides, LSTMs have also been incorporated to manage the
dependencies among the dense spectral–spatial sequences [30].
Zhou et al. [31] regarded each hyperspectral data as data se-
quences and use LSTM to model the dependency in the spectral
and spatial domains, respectively. Hu et al. [32] proposed a
spatial-spectral ConvLSTM 3-D neural network by extending
LSTM to the 3-D version to preserve the intrinsic structure
information in the hyperspectral data. However, the fundamental
problem of exploiting spatial information, the negative influence
of interfering pixels in the 3-D cube, whose label is different from
that of the centric pixel, remains untouched. Consequently, most
of spectral–spatial-based methods perform significantly better
in homogenous regions than in heterogeneous regions. Totally
different land-cover labels may be obtained due to the variations
on the patch size of the same centric pixel. Scholars all deem
the spatial information as the complementary to the spectral
signatures, as proved by the classification accuracy. However,
there are not explicit explanations on the exact role of spatial
information and whether it is irreplaceable to obtain high-quality
classifiers.

The superpixel is also adopted for spectral–spatial-based
HSI classification by taking segmented superpixel as input
to alleviate the interference of interfering pixels [33]–[35].
Superpixel-based methods are subject to the preselected
superpixel segmentation algorithm. Moreover, different
neighborhoods should make differentiated contributions to the
centric pixel recognition. How to emphasize informative pixels
and suppress interfering pixels in spatial region is a challenging
yet hot topic in HSI field [36]–[38]. Inspired by the human
visual perception, attention mechanism (AM) has also been
encoded into HSI classification, which selectively attend to the
most task-relevant parts of the input signal [39]. By highlighting
discriminative features, AM aided CNN model shows the supe-
riority of HSI classification on both spectral and spatial domains.
Given that not all bands are equally informative and predictive
for HSI classification, Mou et al. [40] designed spectral attention
module to adaptively recalibrate spectral bands by selectively

emphasizing informative bands and suppressing less useful
ones. By merging spatial information, a spectra-wise AM with
3-D patches was introduced to enhance the distinguishability
of spectral features by Fang [41]. In this study, although spatial
information was considered, in influence of interfering pixels
was not mentioned [41]. Zhu et al. [22] proposed spectral–spatial
attention network by cascading spectral AM and spatial AM in
sequential, which emphasizes useful bands and pixels simulta-
neously. Two-branch spectral–spatial attention networks, such
as SSAtt [37], DBMA [42], and DBDA [43], were also proposed
for HSIC by exploiting spectral attention subnetwork and spatial
attention subnetwork separately. However, the two subnetworks
have no necessary interaction until the eventual combination.
In addition, most of AM-based methods intermix spatial pixels
by performing 2-D or 3-D CNN. The complementarity between
the spectral and spatial branches is well exploited. However,
the exact relationship between spatial and spectral information
has not been well investigated yet.

Through the review of the abovementioned literature, some
problems arise as follows.

1) Is it feasible and reliable to identify the land-cover labels
using only spectral signature without dealing with com-
plex spatial information? If so, how to extract discrim-
inative and robust spectral features with fewer training
samples?

2) Is it necessary to perform a subtle identification of every
pixel located in the 3-D input cube to obtain prominent
label separability. If not, how to alleviate the influence of
harmful neighborhood pixels?

An end-to-end siamese spectral attention network with chan-
nel consistency (SSACC) for HSIC is proposed to address
the abovementioned problems. The goal of this article is to
improve spectral representation ability by exploring the cor-
relations within a continuous spectrum aided by the adjacent
spatial information. Different from previous spectral and spatial
attention-based two-branch methods, the proposed SSACC ap-
plies only spectral attention to the multipatches with different
scales. The multiscale patches are of the same centric pixel and
with the same semantic labels. The SSACC is proposed based on
the assumption that different patches with the same centric pixel
may pay close attention to the spectral channels (see Fig. 1).
From the perspective of AM, the emphasized spectral chan-
nels should be as similar as possible. The spatial information
is used to reduce the interference of spectral representability.
Specifically, a pixel can be represented as two pixel centric
3-D cubes with different patch sizes that can act as different
branches to capture spectral features, respectively, by perform-
ing siamese spectral networks. Spectral AMs are then performed
on the two branches to adaptively learn the weights of each
spectral channels. The interactions between the branches are
established by conducting the channel consistency assumption
on the attention maps. The channel consistency term is exploited
on the two branches to promote the robustness of learned spec-
tral features for HSI classification. Different from traditional
spectral–spatial-based methods, all convolutions are conducted
on the spectral domain with the kernel size of 1 ∗ 1 ∗ d to keep
the original spatial relationship without any transformation. As
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Fig. 1. Schematic diagram of spectral structure for the proposed methods. The
input cubes for the same centric pixel with similar spatial size should share the
similar spectral structure when identifying the same land-cover. The spectral
consistency may improve the generalization ability of network, alleviating the
dependency on the number of labeled samples.

an auxiliary information, neighborhood pixels are explored to
enhance the discriminative spectral features.

The main contributions of this article are as follows.
1) A siamese spectral attention network is proposed to estab-

lish the implicit interaction between two branches. The
siamese strategy is exploited to allow the two branches
to possess the identical network structure and share the
same parameters. The convolution operations are con-
ducted only on the spectral dimension, and the subtle
identification of every pixel is not required to alleviate
the influence of interfering pixels.

2) The channel consistency term is proposed to establish
the explicit interactions between two different spectral
branches. The channel consistency is performed to enforce
the two branches to possess similar spectral patterns when
identifying the same centric pixel.

3) Extensive experiments are conducted on the three public
HSI datasets. Experimental results demonstrate that the
proposed SSACC achieves the best performance with
fewer parameters compared with the state-of-the-art two-
branch networks.

The rest of this article is organized as follows. Section II in-
troduces the related work and Section III describes the proposed
SSACC in detail. Next, the experimental results and compre-
hensive analysis are given in Section IV. Finally, Section V
concludes this article.

II. RELATED WORK

In this section, the background information of AM is reviewed
and a summary of the double-branch methods in HSI classifica-
tion is presented.

A. Attention Mechanism

The sophisticated data processing capability of humans en-
ables them to perceive the information efficiently and achieves

precise consciousnesses and awareness. Inspired by the hu-
man perceptions, the AM is exploited to selectively focus on
the informative elements and ignore the irrelevant contents,
which has been a popular concept in the DL community in
recent years. Various AMs (e.g., self-attention [44], CBAM [45],
nonlocal [46], GCA [47], ECA [48]) are proposed to handle
different tasks (e.g., image caption [49], object localization [50],
and image classification [51]). No matter what AMs is, the
crucial issue lies in the identification of the parts worthy more
attention of the task. In the HSIC community, the AM has also
been widely used to selectively focus on important spectral
of spatial information. Mou et al. [40] proposed a learnable
spectral attention module that explicitly allows the spectral
manipulation of hyperspectral data within a CNN. However, the
model did not take spatial information into consideration. Pan
et al. [52] proposed to combine bi-RNN-based spectral attention
and CNN-based spatial attention. For spectral domain, each
pixel was represented as a continuous spectral curve. Different
attention weights were assigned by modeling relationships of
inner channels. For spatial domain, spatial features are regarded
as a complementary to spectral ones, where the inner-spatial
dependency were exploited to support spatial attention. Gao
et al. [53] added the AM into the preactivation residual block.
Sun et al. [54] make a attention module that can be embedded
anywhere in the spectral module and spatial module for HSIC.
Based on this model, Lu et al. [55] proposed a 3-D attention
module that consists of a channel attention module and a spatial
attention module. Swalpa et al. [56] proposed an attention-based
adaptive spectral–spatial kernel module that was introduced for
the first time to learn selective 3-D convolutional kernels for
HSIC. The abovementioned methods have achieved satisfactory
results by applying AMs to spectral or spatial domain. However,
this increased demands for training samples meet the need of
complex networks, which is a challenge for HSIC at this stage.

B. Double-Branch Methods

In the HSIC community, the double-branch is a representative
structure by taking advantage of the complementarity of spectral
and spatial information. Since HSIs have not only certain spatial
information but also rich spectral information, Xu et al. [57]
proposed a band grouping-based LSTM and a multiscale CNN
as the spectral and spatial feature extractors, respectively. Zhong
et al. [25] developed two consecutive residual blocks to learn
spectral and spatial representations separately, through which
discriminative features can be extracted. Wang et al. [58] pro-
posed an end-to-end fast and dense spectral–spatial convolu-
tion network framework for HSI classification. Ma et al. [42]
proposed a double-branch multiattention mechanism network
(DBMA) for HSI classification. With two branches to extract
spectral and spatial feature, respectively, this network can re-
duce the interference between the two types of features. Deng
et al. [59] incorporated active learning into double-branch net-
work, where the learned deep joint spectral–spatial features are
more generic and robust. Hao also proposed a double-branch
methods for HSIC, with one branch employing a stacked de-
noising autoencoder to encode the spectral signatures and the
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Fig. 2. Overall framework of SSACC. The siamese strategy is used in the top and bottom branches of spectral feature refinement module, aiming to capture
effective spectral features with 1 ∗ 1 ∗ d convolutions. The spatial information is incorporated in the spectral feature enhancement module, where the channel
consistency is used to promote the robustness of spectral features, meanwhile, suppress the influence of interfering pixels. The channel consistency can also be
regarded as the constraint strategy of the siamese structure. Finally, the refined features are squeezed after global average pooling for classification.

other branch exploiting a CNN to deal with the corresponding
HSI cubes. However, most of the methods mentioned above
incorporated the spectral branch and spatial branch separately,
which simply aims to improve the accuracy of classification, and
they failed to improve the quality of spectral or spatial features.
The aim of this article is to obtain a highly discriminative spectral
feature by establishing the interactions between the separated
branches.

III. METHODOLOGY

A. Problem Formulation

Given an HSI dataset, it is denoted as X =
{x1, x2, . . ., xHW } ∈ RH×W×B , where H and W are
the spatial height and weight, respectively, and B is the
band number of spectral signature. Consequently, the
total number of pixels in X is represented as N = HW .
Without loss of generality, the first Nl pixels are randomly
sampled from each land-cover category, where Nl � N . Let
XL = {x1, x2, . . ., xNl

} be the available labeled pixel set, and
the land-cover label set that corresponds to XL be denoted as
YL = {y1, y2, . . ., yNl

} ∈ R1×1×L, where L is the number of
land-cover categories with yi ∈ {1, 2, . . ., l}. The unlabeled
pixel set is then represented as XU = {xNl+1, xNl+2, . . ., xN}.
The task of HSI classification on X is to assign a proper
land-cover label to each pixel xi ∈ XU by building HSIC
models on (XL,YL).

B. Overview of SSACC

The motivation of this article is to extract discriminative
spectral feature to alleviate the spectral mixing effect by in-
troducing channel consistency hypothesis, which refers to that
the same material may appear with different spectral or different
materials may have the same spectral signatures [60]. Therefore,
the double-branch spectral attention network is exploit based on
the channel consistency hypothesis.

The introduced channel consistency hypothesis is:

When ε is infinitely small, a centric pixel xi with different
window length p and p+ ε may show similar spectral patterns
and obtain the same results on identifying and classifying the
land-cover categories.

In order to clearly illustrate the proposed SSACC, the overall
framework is shown in Fig. 2. In general, SSACC combines
the double-branch strategy with channel consistency to avoid
spectral redundancy and achieve better class separability. As
shown in Fig. 2, the proposed SSACC contains two parallel
branches, and both branches have the same modules. Specifi-
cally, the framework is split into the following five modules.

1) Dataset generation. Preparations are made to generate two
different sized patch sets for the inputs of the model.

2) Spectral feature refinement. The highly correlated spectral
signatures are generally refined with the dense block [61].

3) Spectral feature enhancement. The spectral feature is en-
hanced by highlighting the key channel with the applica-
tion of AM.

4) Channel consistency regularization. A special bond is es-
tablished to link the top and bottom branches by modeling
the channel consistency hypothesis.

The classification losses from the two branches and channel
consistency loss are integrated into a unified network for the
end-to-end training. In the inference stage, the final prediction
results are obtained by fusing predictions from the top and
down branches, without considering channel consistency. In the
following sections, each module is be presented in detail.

C. Dataset Generation

In the CNN-based HSIC models, each pixel xi ∈ X is
routinely cropped into a square box with fixed length p1 to
generate a 3-D cube set Z = {z1, z2, . . ., zN} ∈ Rp1×p1×B

with xi as the central pixel vector. The label of HSI cube
zi is considered as the same as that of xi, i.e., yi. The
labels of other neighboring pixels in the p1 × p1 centric
window are unknown. Different from traditional CNN-based
HSIC methods, another 3-D cube set Z̃ is established by a
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new square box during the dataset generation phase, whose
length is a tiny increment ε on p1, denoted as p2 = p1 + ε.
Based on the original split principle on X = {XL,XU}, the
training set is generated as Ztrain = {ZL, Z̃L, YL} and the
validation set is generated as Zval = {ZV , Z̃V , YV} and the
testing set is represented as Ztest = {ZU , Z̃U}, where ZL =

{z1, z2, . . ., zNl
} ∈ Rp1×p1×B , Z̃L = {z̃1, z̃2, . . ., z̃Nl

} ∈
Rp2×p2×B , ZV = {zNl+1, zNl+2, . . ., zNl+l} ∈ Rp1×p1×B , Z̃V
= {z̃Nl+1, z̃Nl+2, . . ., z̃Nl+l} ∈ Rp2×p2×B , ZU ={zN2 l+1,

zN2 l+2, . . ., zN} ∈ Rp1×p1×B , and Z̃U = {z̃N2 l+1, z̃N2 l+2,

. . ., z̃N} ∈ Rp2×p2×B . After that, (ZL, YL) and (Z̃L, YL) are
then fed into the top and bottom branches, respectively, to train
the model. The input of each branch has the same channel
number, but different in the spatial size.

D. Spectral Feature Refinement

The high spectral resolution is the most prominent characteris-
tic of HSI, which provides hundreds of spectral bands. However,
the highly correlated spectral signatures result in high intraclass
variation and low interclass difference. Therefore, direct explo-
rations of the original spectral signatures may yield a poor class
separability caused by the spectral redundancy. Inspired by the
dense connections, the spectral dense block serves to handle
the complex spectral property preliminarily. The role of the
spectral feature refinement module is similar to that of principal
component analysis. However, the spectral feature refinement
module benefits the whole framework from joint training in an
end-to-end manner with other modules.

Siamese strategy is adopted in the spectral feature refine-
ment module, i.e., the top and bottom branches have the same
configuration with the same parameters and weight. Siamese
focuses on learning discriminative embeddings that aggregate
the same classes. Parameter updating is mirrored across both
subnetworks, promoting its feasibility under small-samples con-
ditions.

To protect the original spatial relationship from being tam-
pered with by convolution operations, the convolutional kernels
of 1 ∗ 1 ∗ d (height * width * channel) are used throughout the
entire spectral feature refinement module, without spatial infor-
mation aggregations. d is a predefined convolutional parameter
in the channel dimension. Considering the large number of input
cubes, a 1 ∗ 1 ∗ d, k0 convolutional layer (CON1) with the down
sampling stride (1,1,2) is first applied to reduce the number of
bands for both branches, where k0 is the kernel number of the
3-D convolution. Consequently, feature maps in the shape of
(p1 ∗ p1 ∗ c, k0) and (p2 ∗ p2 ∗ c, k0) are obtained, respectively,
where c = (B − d+ 1)/2.

Then, the obtained feature maps are fed into m spectral dense
blocks sequentially, in which the kernel size, padding and stride
of convolution (CON2) are (1 ∗ 1 ∗ d, k1), “same” and (1, 1, 1).
The spectral dense block layer is designed to ensure maximum
information transmit during automatic feature learning, includ-
ing several convolution operations with direct connections. The
direct connections allow the previous features to be passed to
the all subsequent layers, which is regarded as a kind of feature

reuse. As a result, the output feature maps of the mth layer for
the top branch can be represented as

fm = Fm([f0, f1, . . ., fm−1]) (1)

where [f0, f1, . . ., fm−1] denotes the concatenation of feature
maps from layers 0, . . .,m− 1 in the channel dimension. Fm is
a module containing operations, such as convolution, activation
and batch normalization (BN). Similarly, the output feature maps
of the mth layer for the bottom branch can be found as

f̃m = F̃m([f̃0, f̃1, . . ., f̃m−1]). (2)

Therefore, two feature maps of (p1 ∗ p1 ∗ c, k0 +mk1) and
(p2 ∗ p2 ∗ c, k0 +mk1) are generated.

At last, another convolution (CON3) of (1 ∗ 1 ∗ c, C) are
adopted to get the refined spectral representations (p1 ∗ p1 ∗
1, C) and (p2 ∗ p2 ∗ 1, C), where C is the kernel number of
CON3. During the whole of this session, the convolutions are
conducted only on the spectral dimension of HSI cubes to keep
the original spatial information without neighbor aggregations.
Fig. 3 shows the detailed architecture of the spectral feature
refinement module.

E. Spectral Feature Enhancement

The representation of input HSI cubes is refined through the
spectral feature refinement module. However, the obtained C
channels make different contributions to HSIC. Inspired by the
AM, correlations among the C channels are captured to adjust
bands weights adaptively. Informative channels are highlighted
to enhance the spectral feature representation. Various AMs can
be used in this session, such as self-attention, context atten-
tion. To illustrate the effectiveness of channel consistency, the
classical self-attention is applied in SSACC. The procedure is
presented in Fig. 4.

By squeezing the output of the spectral feature refinement
module, the inputs of this module for the top branch are rep-
resented as A ∈ Rp1×p1×C . Without additional parameters, the
query, key, and value matrices are obtained by reshaping the
input A, denoted as Q, K, and V . Specifically, the shape
of Q, K and V are RC×n, Rn×C , and RC×n, respectively,
where n = p1 × p1 is the spatial area of input cubes. Then,
a matrix multiplication operation is conducted on Q and K,
following a softmax layer to obtain the normalized attention
map D ∈ RC×C

Dji =
exp(Qi ∗Kj)∑n
i=1 exp(Qi ∗Kj)

(3)

where D describes the similarity between query and key and Dj

indicates the correlation of other channels with the jth channel
of HSI cubes. After that, a matrix multiplication operation is ex-
ecuted on V and D with a reshape operation r(.) to generate the
attention feature. Finally, a summation operation is performed
on the attention feature and the inputAwith the skip connection.
As a result, the final output of spectral feature enhancement for
the top branch E ∈ Rp1×p1×C could be obtained

E = r(DV ) +A (4)
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Fig. 3. Detailed architecture of the spectral feature refinement module.

Fig. 4. Architecture of self-attention in the spectral feature enhancement
module.

where reshape is utilized to convert attention feature RC×N

to Rp1×p1×C . The channel AM aims to enhance the extracted
spectral features to benefit the feature representations.

Likewise, the attention map D̃ ∈ RC×C and enhanced feature
Ẽ ∈ Rp2×p2×C for the bottom branch can also be obtained
through the spectral feature enhancement module.

In the process, spatial information is used in the spectral AM
to learn the enhanced spectral representation. The neighborhood
pixels could improve the generalization ability of learned spec-
tral feature. Meanwhile, the influence of harmful neighborhood
pixels is alleviated. Compared to the traditional spatial branch,
there is no need to perform a subtle identification of every pixel
located in the 3-D input cube.

F. Channel Consistency Regularization

In the classification stage, the enhanced features E and Ẽ
are fed into batch normalization and nonlinear layer in order to

stress the nonlinear internal structures hidden in the data. Then,
the features are squeezed through the global average pooling
layer to generate a channel descriptor for each channel. The
squeezed descriptors S ∈ RC and S̃ ∈ RC , which are served as
the final representation of the input cubes, are sent to the fully
connection layer with a softmax activation function to determine
the final categories, respectively. Cross entropy is employed as
the loss function of SSACC for classification. The classification
loss functions for top (Lt) and bottom (Lb) branches are given
as follows:

Lt = − 1

K

K∑
k=1

L∑
l=1

1{yk = l}log
eθ

T
l Sk∑L

l=1 e
θT
i Sk

(5)

Lb = − 1

K

K∑
k=1

L∑
l=1

1{yk = l}log
eθ

T
l
˜Sk∑L

l=1 e
θT
i
˜Sk

(6)

where Sk and S̃k represent the final extracted features of the
original HSI cube xk for top and bottom branches, respectively,
yk is the truth land-cover label of HSI cube xk, K is the number
of samples in a minibatch, L is the number of land-cover labels,
1{yk = l} is the indicator function

1{yk = l} =

{
1 yk is the same as l

0 otherwise
. (7)

3-D cube-based HSIC methods hold the rule that the HSI
cube can be identified as the label of centric pixel. Therefore,
different views (path size) of the same central pixel have the
identical land-cover labels. Furthermore, different views within
a certain scale should also show similar spectral patterns. To
address the issue, a channel consistency regularization is intro-
duced to extract the discriminative spectral features. It serves
to compare the difference between the attention maps D and
D̃ produced in the spectral feature enhancement module. The
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channel consistency regularization is formulated as

Lc =
1

K

K∑
k=1

‖ Dk − D̃k ‖ (8)

where ‖ . ‖ calculates the distance of Dk and D̃k. The channel
consistency regularization enables the network to learn discrim-
inative spectral features by forcing the top and bottom branches
to receive homologous channel correlations explicitly.

The final loss function pays attention to the loss of the correct
category, and considers the loss of channel structure consistency.
Therefore, the final loss function is defined as follows:

L = Lb + Lt + λLc (9)

where λ is a hyperparameter to balance the classification loss
and channel consistency regularization. The parameters in the
SSACC are learned by back propagation and stochastic gradient
descent.

For testing, the final land-cover labels are determined by
averaging the results of the two branches. However, the channel
consistency regularization is not carried out in the testing phase.

IV. EXPERIMENTS AND ANALYSIS

A. Datasets Description

Indian Pine (IP): IP was captured by the AVIRIS sensor over
the IPs test site in North-Western Indiana. It consisted of 145×
145 pixels with a spatial resolution of 17 m/pixel. There were
224 spectral reflectance bands in IP, where the wavelength ranges
from 400 to 2500 nm. By removing the bands covering the region
of water absorption, the final number of bands was reduced to
200. The ground truth covered 16 classes of interest, which were
mostly various crops in different growth phases. The numbers
of training, validation, and testing samples for each class are
detailed in Table I.

Pavia University (PU): PU data were gathered by the ROSIS
sensor during a flight campaign over Pavia, northern Italy.
It consisted of 610× 340 pixels with a spatial resolution of
1.3 m/pixel. There were 115 spectral reflectance bands in PU
with a spectral resolution of 4 nm, where the wavelength ranges
from 430 to 860 nm. By removing 12 noisy channels affected
by the absorption of water vapor, the final 103 bands were used
in the experiments. The samples contained 9 classes of interest,
which were mostly various crops in different growth phases. The
numbers of training, validation and testing samples for each class
are detailed in Table II.

Salinas Valley (SV): The SV dataset was acquired over Salinas
Valley, California by the Airborne Visible/Infrared Imaging
Spectrometer sensor. It consisted of 512× 217 samples with
a spatial resolution of 3.7 m/pixel. There were 224 spectral
reflectance bands in SV ranging from 400 to 2500 nm. After
removing 20 water absorption bands, the final 204 bands were
retained in the experiments. The available land-cover category
covered 16 classes of interest. Table III shows the detail informa-
tion on the numbers of training, validation, and testing samples
for each class of interests.

TABLE I
NUMBER OF TRAINING, VALIDATION, AND TESTING SAMPLES FOR THE

IP DATASET

TABLE II
NUMBER OF TRAINING, VALIDATION, AND TESTING SAMPLES FOR THE PU

DATASET

B. Experiments Setup

In the experiments, overall accuracy (OA), average accu-
racy (AA), and Kappa coefficient (κ) was used to evaluate
the proposed method quantitatively. OA indicates the ratio of
the number of correctly predicted pixels to the total number
of pixels. AA refers to the mean of accuracies in different
categories. κmeasures the consistency between the ground truth
and classification results. The higher of the three metric values,
the better the classification results are.

All experiments were carried out on a system with NVIDIA
GeForce RTX-2070 GPU and 16 GB main memory. The Adam
optimizer with the learning rate of 0.0005 was used for model
training. The convolutional kernels used in the spectral feature
refinement module were all 1× 1× 7. The balance parameter λ

was set to 0.1. The channel of refined spectral feature C and the
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TABLE III
NUMBER OF TRAINING, VALIDATION, AND TESTING SAMPLES FOR THE SV

DATASET

length of squeezed channel descriptor were both set to 60. The
optimal patch sizes combination were p1 = 7, p2 = 11 for IP,
p1 = 5, p2 = 13 for PU and p1 = 9, p2 = 11 for SV. Table IV
provides the implementation details for IP. The implementation
details for PU and SV are displayed in the same way.

C. Comparing With Other Methods

To demonstrate the effectiveness of the proposed method,
we compared the proposed SSACC method with several
widely used methods such as SVM, SSRN [25], FDSSC [58],
DBMA [42], MAFN [62] and the state-of-the-art double-branch
dual-AM network DBDA [43] methods. All parameters of each
classifier were set according to the original papers.

As shown in Tables I–III, 1%, 0.5%, and 0.5% of the pixels
were randomly chosen as training samples for IP, PU, and
SV, respectively. Tables V–VII reports the average values and
standard deviations for the metrics: OA, AA, and κ over 10 runs
on the three datasets. Generally, the proposed SSACC achieves
the best results. In all but one case, it shows great advantages over
other methods for all the metrics, which verify the effectiveness
of the proposed SSACC.

Specifically, SVM performed the worst among all the
methods, which confirmed that the deep models have their
advantages on HSIC than the conventional methods. Among
the deep models, the classification accuracy of SSRN was lower
than other methods on the three datasets. This was due to the

fact that the SSRN adopts Resnet as backbone, while other
methods employed DenseNet. It demonstrated the superiority of
dense connection structure for HSIC, where multilevel features
were reused to improve the generalization ability of network.
Furthermore, the results of FDSSC were lower than most of
attention-based methods, such as DBDA, MAFN, and SSACC.
The main reason was that the AM can suppress interfering
information for feature learning, which was useful and beneficial
for HSIC. However, DBMA performs worse than FDSSC on the
IP dataset, where attention was also used for HSIC. The results
demonstrated that the AM could not fully resolve the problem
of discriminative HSI feature extraction, especially when the
number of training samples was insufficient. Moreover, DBMA,
DBDA, and SSACC are all double-branch methods. DBMA and
DBDA employed the two branches to extract spectral and spatial
features separately, aiming to utilize the complementarity of
spectral and spatial features to improve the performance of
HSIC. Nevertheless, the purpose of the proposed SSACC is
to find effective spectral structure hidden in the HSI. It is
believed that HSI provides a wealth of spectral information,
which is the most important information for HSIC. As shown
in Tables V–VII, SSACC achieves the best performance by
only spectral features, demonstrating the effectiveness and
discriminability of the extracted spectral features. SSACC built
the explicit and implicit interactions between the two branches,
which was the major competitive advantage on obtaining
discriminative spectral features. The implicit interaction
derived from the siamese structure, while the explicit one
stems from the channel consistency regularization. The channel
consistency assumption could also alleviate the influence of
interfering pixels with similar effects as that of spatial attention.
Finally, SSACC was noted to have the minimum standard
deviations, which was an important characteristic related to
the generalization capability of the HSIC methods. Variance
reduction of the network guarantees a reduction in generalization
error [60]. The special effect could also be attributed to the
effects of interactions between the top and bottom branches.

Figs. 5–7 visualize the classification maps of different meth-
ods on the three datasets. The visual classification maps are
consistent with the results listed in Tables V–VII. It can also be
found that SSACC obtains smooth classification maps, which
alleviates the influences of spectral variability effectively.

D. Comparisons With a Varied Number of Training Samples

In this part, the generalizability of the compared methods
toward different numbers of labeled training samples was inves-
tigated. 0.5%, 1%, 3%, and 5% labeled samples were randomly
selected as training data for the IP dataset while. 0.25%, 0.5%,
1%, and 2% labeled samples for the PU and SV datasets. Fig. 8
shows the overall accuracies of different methods on the three
datasets with varied training samples proportions. Generally,
more training samples could improve the performance of all the
methods. It could be found that SSACC produces the highest OA
values in all cases. The merit was superior particularly when
the percentage of labeled samples for training was small. It
demonstrated that SSACC captures more discriminative
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TABLE IV
IMPLEMENTATION DETAILS OF THE MODULE

TABLE V
CATEGORIZED RESULTS FOR THE IP DATASET WITH 1% TRAINING SAMPLES

The bold numbers indicate the best performance.
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TABLE VI
CATEGORIZED RESULTS FOR THE PU DATASET WITH 0.5% TRAINING SAMPLES

The bold numbers indicate the best performance.

TABLE VII
CATEGORIZED RESULTS FOR THE SV DATASET WITH 0.5% TRAINING SAMPLES

The bold numbers indicate the best performance.

features than other methods. Meanwhile, SSACC improved the
generalization ability of network due to the implicit and explicit
interactions between the double branches.

E. Comparisons on the Parameters

Fig. 9 reports the model complexity and OA of different
methods in terms of the number of trainable weight parameters
updated during backpropagation. It could be seen that the
proposed SSACC achieves the best classification accuracy with
the least number of trainable parameters for all three datasets.
Noteworthily, FDSSC, DBMA, DBDA, and SSACC were all
DenseNet based methods. FDSSC obtained the spectral–spatial
by performing spectral and spatial networks sequentially. In
contrast, DBMA and DBDA employed spectral and spatial

networks parallelly, which reduced the number of parameters.
Moreover, the proposed SSACC had a similar architecture
as DBDA and DBMA. The difference was that SSACC
performs two parallel spectral networks where only 1× 1× d
convolution kernels were used, without spatial convolutional
operations. In addition, channel consistency regularization
would not introduce any additional trainable parameters.
Therefore, SSACC achieved the best classification accuracy
with the fewest parameters among the compared methods.

F. Influence of ε

The patch size of cropped HSI cubes has a great influence
on HSIC results. For SSACC, it was essential to set patch sizes
for the top and bottom branches, respectively. To evaluate the
influence of the patch size combination, the performance of
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Fig. 5. Classification maps for the IP dataset. (a) Ground-truth.(b)–(h) Classification map of SVM, SSRN, FDSSC, DBMA, DBDA, MAFN, and SSACC.

Fig. 6. Classification maps for the PU dataset. (a) Ground-truth. (b)–(h) Classification map of SVM, SSRN, FDSSC, DBMA, DBDA, MAFN, and SSACC.

SSACC was investigated by fixing the patch size of the bottom
branch (p2) and vary the patch size of the top branch (p1) to
investigate the performance of SSACC. The fixed p2 is set to
11, 13, and 11 for IP, PU, and SV, which was the optimal
value through experimental verification for a single branch.
p1 was chosen from {1, 3, 5, 7, 9, 11}. As shown in Fig. 10, a

proper spatial size deviation ε = p2 − p1 can improve the OA
of classification. A small ε did not take spatial differentiation
into account, which was not conducive to obtaining discrimi-
native features. In contrast, a large ε might bring unanticipated
interfering pixels beyond the scope of the channel consistency
hypothesis.
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Fig. 7. Classification maps for the SV dataset. (a) Ground-truth. (b)–(h) Classification map of SVM, SSRN, FDSSC, DBMA, DBDA, MAFN, and SSACC.

Fig. 8. OA (%) with varied training samples proportions for different methods in the three datasets.

Fig. 9. Comparisons on the number of parameters and OA (%) for different methods in the three datasets.
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TABLE VIII
CLASSIFICATION ACCURACIES OF SSACC WITH VARIED λ IN THE THREE DATASETS

TABLE IX
ABLATION STUDY IN TERMS OF OA(%) FOR THE PROPOSED SSACC

Fig. 10. OA (%) of SSACC with different input patch sizes in the three datasets.

G. Influence of λ

Parameter λ was employed to balance the classification loss
and channel consistency regularization in SSACC. To verify the
contribution of channel consistency regularization, experimental
results were reported with varied λ on the three datasets in Ta-
ble VIII. Parameter λ was chosen from {0, 0.01, 0.1, 1, 10, 100}.
It was observed that SSACC achieves the best performance when
λ was around 0.1 for all the three datasets, indicating that the
channel consistency regularization played an important role in
capturing discriminative spectral structure. Meanwhile, λ was
insensitive when the value varies from 0.01 to 1. It demonstrated
that channel consistency regularization was an effective auxil-
iary term for HSIC. When λ ≥ 10, the classification accuracies
dropped rapidly. If we overemphasize on spectral structure con-
sistency, the network could pay more attention to assign the same
weights to spectral structure, regardless of what the semantic
label should be. Therefore, an overemphasis of spectral structure
consistency would cause the performance degradation.

H. Ablation Study

In this part, experiments were conducted to verify the
effectiveness of siamese structure and channel consistency reg-
ularization. The siamese structure was employed in the spectral
refinement module and channel consistency regularization was
conducted on the attention maps. Both of the two measures were
exploited to obtain discriminative spectral features and high
generalization HSIC models. To shed light on the contributions
of the two components, Table IX reports the classification results
of SSACC without siamese structure or channel consistency
on the three datasets. SSACC-P represents that pseudosiamese
structures are adopted to replace the siamese structure in the
spectral refinement module, where the parameters are not shared
between the double branches. SSACC-O denotes the reduced
SSACC by removing channel consistency regularization.
SSACC-PO represents both the components are replaced. It
can be observed that lacking any one of the components will
inevitably hurt the OA and standard deviation. Therefore,
the siamese structure and channel consistency regularization
turned out to be contributive for discriminative spectral feature
extraction. The two components work collaboratively to render
satisfactory classification performance for HSIC.

I. Consistency Visualization

To validate that the spectral consistency are captured by
the proposed SSACC, we visualize the difference values of
attention maps of top branch D1 and bottom branch D2. Three
kinds of input combinations for top and bottom are chosen for
visualization. The visualization results are shown in Fig. 11.
Comparing the difference values of attention maps, the proposed
SSACC obtains cleaner maps by performing siamese strategy
and channel attention consistency, which validates SSACC can
capture the spectral consistency.
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Fig. 11. Spectral consistency visualization.

V. CONCLUSION

In this article, an SSACC was developed for discriminative
spectral feature learning and HSI classification. The proposed
SSACC consists of two branches with implicit and explicit
interactions. The siamese structure is the implicit interaction,
which reduces the demands for the number of training samples
to a certain extent. The channel consistency regularization is the
explicit interaction, which is a key term to capture discriminative
spectral features. These measures improve the classification
accuracy and generalization ability of the proposed SSACC.
The experimental results on three public HSI datasets indicate
that the proposed SSACC can yield better performance than the
state-of-the-art HSI classification methods with fewer number
of parameters.

REFERENCES

[1] L. Liang, L. Di, L. Zhang, M. Deng, and H. Lin, “Estimation of crop LAI
using hyperspectral vegetation indices and a hybrid inversion method,”
Remote Sens. Environ., vol. 165, pp. 123–134, 2015.

[2] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N.
Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing data analysis
and future challenges,” IEEE Geosci. Remote Sens. Mag., vol. 1, no. 2,
pp. 6–36, Jun. 2013.

[3] B. Arabi, M. S. Salama, J. Pitarch, and W. Verhoef, “Integration of in-
situ and multi-sensor satellite observations for long-term water quality
monitoring in coastal areas,” Remote Sens. Environ., vol. 239, 2020, Art
no. 111632.

[4] P. Mohanty, S. Panditrao, R. Mahendra, H. S. Kumar, and T. S. Kumar,
“Identification of coral reef feature using hyperspectral remote sensing,”
Proc. SPIE - Int. Soc. Opt. Eng., vol. 9880, 2016, Art no. 98801B.

[5] P. Ghamisi, M. D. Mura, and J. A. Benediktsson, “A survey on spec-
tral & spatial classification techniques based on attribute profiles,”
IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2335–2353,
May 2015.

[6] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Deep
learning for hyperspectral image classification: An overview,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 9, pp. 6690–6709, Sep. 2019.

[7] D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, and J. Chanussot, “Graph con-
volutional networks for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 7, pp. 5966–5978, Jul. 2021.

[8] Y. Zhang, W. Li, R. Tao, J. Peng, Q. Du, and Z. Cai, “Cross-
scene hyperspectral image classification with discriminative coopera-
tive alignment,” IEEE Trans. Geosci. Remote Sens., to be published.
doi: 10.1109/TGRS.2020.3046756.

[9] H. Sun, X. Zheng, X. Lu, and S. Wu, “Spectral-spatial attention network
for hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 58, no. 5, pp. 3232–3245, May 2020.

[10] M. Khodadadzadeh, J. Li, A. Plaza, and J. M. Bioucas-Dias, “A subspace-
based multinomial logistic regression for hyperspectral image classifica-
tion,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 12, pp. 2105–2109,
Dec. 2014.

[11] T. V. Bandos, L. Bruzzone, and G. Camps-Valls, “Classification of
hyperspectral images with regularized linear discriminant analysis,”
IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862–873,
Mar. 2009.

[12] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sens-
ing images with support vector machines,” IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural information
processing systems, vol. 25, 1097–1105, 2012.

[14] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2014, pp. 580–587.

https://dx.doi.org/10.1109/TGRS.2020.3046756


10240 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

[16] A. R. Sharma and P. Kaushik, “Literature survey of statistical, deep and
reinforcement learning in natural language processing,” in Proc. Int. Conf.
Comput., Commun. Autom., 2017, pp. 350–354.

[17] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep convolutional neural
networks for hyperspectral image classification,” J. Sensors, vol. 2015,
2015, Art. no. 258619.

[18] L. Mou, P. Ghamisi, and X. X. Zhu, “Deep recurrent neural networks for
hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 7, pp. 3639–3655, Jul. 2017.

[19] W. Li, G. Wu, F. Zhang, and Q. Du, “Hyperspectral image classification
using deep pixel-pair features,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 2, pp. 844–853, Feb. 2017.

[20] Y. Zhan, D. Hu, Y. Wang, and X. Yu, “Semisupervised hyperspectral image
classification based on generative adversarial networks,” IEEE Geosci.
Remote Sens. Lett., vol. 15, no. 2, pp. 212–216, Feb. 2018.

[21] X. Wang, K. Tan, Q. Du, Y. Chen, and P. Du, “Caps-tripleGAN: Gan-
assisted capsnet for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 9, pp. 7232–7245, Sep. 2019.

[22] M. Zhu, L. Jiao, F. Liu, S. Yang, and J. Wang, “Residual spectral-spatial
attention network for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 1, pp. 449–462, Jan. 2021.

[23] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extrac-
tion and classification of hyperspectral images based on convolutional
neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10,
pp. 6232–6251, Oct. 2016.

[24] H. Lee and H. Kwon, “Going deeper with contextual CNN for hyperspec-
tral image classification,” IEEE Trans. Image Process., vol. 26, no. 10,
pp. 4843–4855, Oct. 2017.

[25] Z. Zhong, J. Li, Z. Luo, and M. Chapman, “Spectral-spatial residual
network for hyperspectral image classification: A 3-D deep learning frame-
work,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 847–858,
Feb. 2018.

[26] P. V. Arun, K. M. Buddhiraju, and A. Porwal, “Capsulenet-based
spatial-spectral classifier for hyperspectral images,” IEEE J. Sel. Top-
ics Appl. Earth Observ. Remote Sens., vol. 12, no. 6, pp. 1849–1865,
Jun. 2019.

[27] C. Zhang, G. Li, and S. Du, “Multi-scale dense networks for hyperspectral
remote sensing image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 57, no. 11, pp. 9201–9222, Nov. 2019.

[28] M. Zhang, W. Li, and Q. Du, “Diverse region-based CNN for hyperspec-
tral image classification,” IEEE Trans. Image Process., vol. 27, no. 6,
pp. 2623–2634, Jun. 2018.

[29] L. He, J. Li, C. Liu, and S. Li, “Recent advances on spectral-spatial
hyperspectral image classification: An overview and new guidelines,”
IEEE Trans. Geosci. Remote Sens., vol. 56, no. 3, pp. 1579–1597,
Mar. 2018.

[30] Q. Liu, F. Zhou, R. Hang, and X. Yuan, “Bidirectional-convolutional
LSTM based spectral-spatial feature learning for hyperspectral image
classification,” Remote Sens., vol. 9, no. 12, 2017, Art no. 1330.

[31] F. Zhou, R. Hang, Q. Liu, and X. Yuan, “Hyperspectral image classification
using spectral-spatial LSTMs,” Neurocomputing, vol. 328, pp. 39–47,
2019.

[32] W.-S. Hu, H.-C. Li, L. Pan, W. Li, R. Tao, and Q. Du, “Spatial-spectral
feature extraction via deep convLSTM neural networks for hyperspectral
image classification,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 6,
pp. 4237–4250, Jun. 2020.

[33] C. Shi and C.-M. Pun, “Superpixel-based 3 D deep neural networks for hy-
perspectral image classification,” Pattern Recognit., vol. 74, pp. 600–616,
2018.

[34] S. Jia, X. Deng, M. Xu, J. Zhou, and X. Jia, “Superpixel-level weighted
label propagation for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 7, pp. 5077–5091, Jul. 2020.

[35] P. Sellars, A. I. Aviles-Rivero, and C.-B. Schönlieb, “Superpixel contracted
graph-based learning for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 6, pp. 4180–4193, Jun. 2020.

[36] J. M. Haut, M. E. Paoletti, J. Plaza, A. Plaza, and J. Li, “Visual attention-
driven hyperspectral image classification,” IEEE Trans. Geosci. Remote
Sens., vol. 57, no. 10, pp. 8065–8080, Oct. 2019.

[37] R. Hang, Z. Li, Q. Liu, P. Ghamisi, and S. S. Bhattacharyya, “Hyperspectral
image classification with attention-aided CNNs,” IEEE Trans. Geosci.
Remote Sens., vol. 59, no. 3, pp. 2281–2293, Mar. 2021.

[38] S. Pande and B. Banerjee, “Adaptive hybrid attention network for hyper-
spectral image classification,” Pattern Recognit. Lett., vol. 144, pp. 6–12,
2021.

[39] L. A. I. Qiuxia, S. Khan, Y. Nie, S. Hanqiu, J. Shen, and L. Shao,
“Understanding more about human and machine attention in deep neu-
ral networks,” IEEE Trans. Multimedia, vol. 23, no. 7, pp. 2086–2099,
2021.

[40] L. Mou and X. X. Zhu, “Learning to pay attention on spectral domain: A
spectral attention module-based convolutional network for hyperspectral
image classification,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1,
pp. 110–122, Jan. 2020.

[41] B. Fang, Y. Li, H. Zhang, and J. Cheung-Wai Chan, “Hyperspectral images
classification based on dense convolutional networks with spectral-wise
attention mechanism,” Remote Sens., vol. 11, no. 2, pp. 159–177, 2019.

[42] W. Ma, Q. Yang, Y. Wu, W. Zhao, and X. Zhang, “Double-branch multi-
attention mechanism network for hyperspectral image classification,” Re-
mote Sens., vol. 11, no. 11, 2019, Art no. 1307.

[43] R. Li, S. Zheng, C. Duan, Y. Yang, and X. Wang, “Classification of
hyperspectral image based on double-branch dual-attention mechanism
network,” Remote Sens., vol. 12, no. 3, p. 582–607, 2020.

[44] A. Vaswani et al., “Attention is all you need,” 2017, arXiv:1706.03762.
[45] S. Woo, J. Park, J.-Y. Lee, and I.-S. Kweon, “CBAM: Convolutional block

attention module,” in Proc. Comput. Vis. - ECCV, 2018, pp. 3–19.
[46] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,”

in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 7794–7803, 2018.
[47] Y. Cao, J. Xu, S. Lin, F. Wei, and H. Hu, “GCNET: Non-local networks

meet squeeze-excitation networks and beyond,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. Workshops, pp. 1971–1980, 2019.

[48] Q. Wang, B. Wu, P. Zhu, P. Li, and Q. Hu, “ECA-Net: Efficient channel
attention for deep convolutional neural networks,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., pp. 11531–11539, 2020.

[49] P. Anderson et al., “Bottom-up and top-down attention for image cap-
tioning and visual question answering,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2018, pp. 6077–6086.

[50] J. Choe, S. Lee, and H. Shim, “Attention-based dropout layer for
weakly supervised single object localization and semantic segmen-
tation,” IEEE Trans. Pattern Anal. Mach. Intell., to be published.
doi: 10.1109/TPAMI.2020.2999099.

[51] D. Zoran, M. Chrzanowski, P.-S. Huang, S. Gowal, A. Mott, and P. Kohli,
“Towards robust image classification using sequential attention models,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 9483–
9492.

[52] E. Pan, Y. Ma, X. Mei, X. Dai, and J. Ma, “Spectral-spatial classification of
hyperspectral image based on a joint attention network,” in Proc. IGARSS
IEEE Int. Geosci. Remote Sens. Symp., 2019, pp. 413–416.

[53] H. Gao, Y. Yang, D. Yao, and C. Li, “Hyperspectral image classification
with pre-activation residual attention network,” IEEE Access, vol. 7,
pp. 176587–176599, 2019.

[54] H. Sun, X. Zheng, X. Lu, and S. Wu, “Spectral-spatial attention network
for hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 58, no. 5, pp. 3232–3245, May 2020.

[55] Z. Lu, B. Xu, L. Sun, T. Zhan, and S. Tang, “3D channel and spatial atten-
tion based multi-scale spatial spectral residual network for hyperspectral
image classification,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 13, no. 7, pp. 4311–4324, 2020.

[56] S. K. Roy, S. Manna, T. Song, and L. Bruzzone, “Attention-based
adaptive spectral-spatial kernel resnet for hyperspectral image classifi-
cation,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 9, pp. 7831–7843,
Sep. 2021.

[57] Y. Xu, L. Zhang, B. Du, and F. Zhang, “Spectral-spatial unified networks
for hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 10, pp. 5893–5909, Oct. 2018.

[58] W. Wenju, D. Shuguang, J. Zhongmin, and S. Liujie, “A fast dense
spectral-spatial convolution network framework for hyperspectral images
classification,” Remote Sens., vol. 10, no. 7, 2018, Art no. 1068.

[59] C. Deng, Y. Xue, X. Liu, C. Li, and D. Tao, “Active transfer learning
network: A unified deep joint spectral-spatial feature learning model for
hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 57, no. 3, pp. 1741–1754, Mar. 2019.

[60] S. Shabbir and M. Ahmad, “Hyperspectral image classification-traditional
to deep models: A survey for future prospects,” 2021, arXiv:2101.06116.

[61] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 2261–2269.

[62] Z. Li et al., “Hyperspectral image classification with multiattention
fusion network,” IEEE Geosci. Remote Sens. Lett., to be published.
doi: 10.1109/LGRS.2021.3052346.

https://dx.doi.org/10.1109/TPAMI.2020.2999099
https://dx.doi.org/10.1109/LGRS.2021.3052346


WANG et al.: SIAMESE SPECTRAL ATTENTION WITH CHANNEL CONSISTENCY FOR HSI CLASSIFICATION 10241

Leiquan Wang (Member, IEEE) received the Ph.D.
degree in communication and electrical systems from
Beijing University of Posts and Telecommunications,
Beijing, China, in 2016.

He is currently a Lecturer with College of
Computer and Communication Engineering, China
University of Petroleum (East China), Dongying,
China. His current research interests include multi-
modal fusion, cross modal retrieval, and image/video
caption.

Yao Lin is currently working toward the Postgrad-
uate degree with the College of Oceanography and
Space Informatics, China University of Petroleum
(East China), Dongying, China.

Her current research interests include hyperspec-
tral image classification.

Jinyun Liu received the bachelor degree from the
China University of Petroleum (East China), Dongy-
ing, China, in 2003.

He is currently an Engineer with the SINO-Pipeline
International Company Limited, Beijing, China. His
research interests include machine learning, remote
sensing image processing, and object detection.

Zhongwei Li received the Ph.D. degree from the
China University of Petroleum, Dongying, China, in
2011.

He is currently a Professor with the College of
Oceanography and Space Informatics, China Uni-
versity of Petroleum. His current research interests
include remote sensing image processing and ocean
numerical forecasting and cloud computing.

Chunlei Wu (Member, IEEE) received the Ph.D.
degree majoring in computer application technology
from Ocean University of China, Qingdao, China,
in 2014.

He is currently an Associate Professor with the Col-
lege of Petroleum (East China), Dongying, China. He
is currently with the University of Victoria, Victoria,
BC, Canada, as a Visiting Scholar. He has authored
and coauthored more than 30 journal and conference
papers and textbooks. His current interests include
image and video processing, and machine learning.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


