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Tensor Regression and Image Fusion-Based Change
Detection Using Hyperspectral and

Multispectral Images
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Abstract—Change detection is a popular topic in remote sensing
that is generally constrained to two remote sensing images captured
at two different times. However, the optimal type of remote sensing
image for change detection tasks has not yet been determined. The
use of only hyperspectral images (HSIs) with low spatial resolution
or multispectral images (MSIs) with low spectral resolution cannot
obtain satisfactory change detection results. In this article, we
propose the fusion of simultaneously captured low spatial reso-
lution HSIs and low spectral resolution MSIs with the use of a
tensor regression-based method to detect change regions from the
fused images at two different time points. In this method, nonlocal
couple tensor CP decomposition is initially applied to fuse the HSIs
and MSIs. A difference image is then obtained by subtracting the
fused images at two different time points. Thereafter, the tensors
are extracted from the difference image and the tensor regression-
based method is used to classify the difference image and detect the
final change results. Experimental results from three real datasets
suggest that the proposed method substantially outperforms the
existing state-of-the-art change detection methods as well as any
change detection methods using single-source images.

Index Terms—Change detection, hyperspectral images (HSIs),
image fusion, multispectral images (MSIs), tensor regression.

I. INTRODUCTION

CHANGE detection refers to calculating the difference
between images captured in the same area at different
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time points via image processing and mathematical modeling
techniques [1]–[5]. Change detection based on remote sensing
images is a multidisciplinary technology involving geographic
science, statistical science, and computer science and represents
a popular research topic in the field of remote sensing [6]–[16].
Although remote sensing image change detection methods have
been widely studied, several challenges remain, such as remote
sensing images containing noise, blur, and other degradation
problems due to the various structures of ground features, atmo-
spheric radiation, and other factors. Beside this, spectral variabil-
ity also make it difficult for spectral unmixing or object detection
[17]. Thus, relying solely on spectral information is not sufficient
to distinguish different objects [18]–[20]. Spectral-spatial fusion
based methods are wildly used in hyperspectral image (HSI) pro-
cessing field [21]–[23]. For example, Hong et al. [24] proposed
a novel linearized subspace analysis technique with spatial-
spectral manifold alignment for hyperspectral dimensionality
reduction, and overcome the drawbacks in explainability, cost
effectiveness, generalization capability, and representability of
conventional nonlinear subspace learning.

At present, HSIs and multispectral images (MSIs) are often
used for change detection. However, using only HSIs with low
spatial resolution or MSIs with low spectral resolution cannot
obtain satisfactory change detection results. Additionally, the
remote sensing images collected during different periods may
be captured by different sensing devices, and their spatial and
spectral resolutions may be inconsistent [25]. To accurately
detect change areas in remote sensing images, it is very important
to fuse remote sensing images from different periods to achieve
the same spatial and temporal resolutions [26]–[27].

In recent years, fusing HSIs and MSIs to improve resolution
has attracted much attention. The most popular fusion meth-
ods include fusion algorithms based on component replace-
ment [28], detail injection methods [29], spectral unmixing
methods [30], deep learning methods [31]–[33], and tensor
representation-based methods [34]–[36]. The main idea behind
the tensor representation-based fusion method involves treating
high-dimensional remote sensing images as a high-order tensor
and using tensor decomposition technology and a regularization
method to achieve high-dimensional image fusion. Li et al. [37]
proposed a new HSI fusion method based on non-local sparse
tensor decomposition. This method initially gathers similar hy-
perspectral blocks into a cluster, with similar blocks sharing
the same dictionary. Each cluster learns a spectral dictionary
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from a low-resolution HSI as well as a wide-height dictionary
from a high-resolution MSI. Then, each cluster learns the core
tensor via the sparse coding of each block to ultimately complete
a super-resolution hyperspectral reconstruction. Furthermore,
Kanatsoulis et al. [38] proposed a joint dictionary decomposition
framework for remote sensing image fusion using the multidi-
mensional structure of HSIs and MSIs. This method can ensure
the high discrimination of fusion results in practical applications
without requiring additional prior knowledge of the degradation
calculations. Xu et al. [39] proposed an HSI fusion method
based on the sparse representation of nonlocal block tensors
(NCTCP). This method combines tensor product-based sparse
representation, tensor dictionary learning, nonlocal similarity
prior, HSI and MSI image correlation, and other factors to
construct an HSI fusion objective function and achieve a good
fusion effect.

With the continuous development of remote sensing image
change detection research, a wide variety of research results is
constantly emerging. At present, change detection has evolved
from simple mathematical operations [40]–[42] to the fusion of
multiple methods [43]–[45] ranging from pixel-based change
detection [46]–[49] to object-based change detection [50]–[54].
Such fusion-based change detection methods are divided into
two main groups: feature level fusion and decision level fusion.
The feature level fusion-based methods extract the change infor-
mation by means of multitemporal images fusion. The decision
level fusion based methods elaborate the information fusion
at the level of decision [4]. Notably, the accuracy and com-
plexity of change detection methods are constantly increasing.
However, most existing change detection methods convert high-
dimensional images into a matrix, which destroys the intrinsic
structure of remote sensing images [55]. On the other hand, the
theory and technology of tensor representation [56]–[59] have
developed rapidly. Remote sensing images represent a natural
high-order tensor form, and the tensor representation method is
particularly suitable for image processing in remote sensing.

Based on the aforementioned information, it is known that:
HSI and MSI fusion can improve image resolution and the
accuracy of change detection; and a tensor form can avoid
breaking the original structure of high-dimensional data and
helps to improve change detection accuracy. In this article, we
propose a tensor regression- and image fusion-based change
detection method (TRIFCD) using HSIs and MSIs. To achieve
this, NCTCP is initially applied to perform HSI and MSI fusion.
Then, the difference image is obtained by subtracting the fused
images at two different time points. Thereafter, the tensors are
extracted from the difference image and a tensor regression-
based method [51], [60] is used to classify the difference image
to detect the final change results. The experimental results for
three simulated datasets suggest that the proposed method sub-
stantially outperforms existing state-of-the-art change detection
methods as well as any change detection methods using single-
source images. In summary, the proposed method makes the
following contributions.

1) It effectively couples the two tasks of image fu-
sion and change detetion in a unified tensor-based
framework.

2) It fully excavates and effectively uses hyperspectral and
multispectral data to improve the accuracy of change
detection.

3) The tensor representation method can maintain spectral-
spatial information and overcome the effects of image
degradation. Beside this, our method is no need for better
hardware resources such as GPU to train the model.

4) The use of a simple and stable tensor regression classifier
can obtain change detection results more accurately and
efficiently.

II. TENSOR NOTATIONS AND PROBLEM FORMULATION

A. Tensor Notations

According to [39], a tensor A ∈ �n1×n2×···×nt is a multidi-
mensional array. Thus, a matrix A is a 2-D tensor and vector a
is a 1-D tensor. The 3-D data X ∈ �n1×n2×n3 can be defined as
a third-order tensor, and its horizontal, lateral, and frontal slices
are denoted as X (k, :, :), X (:, k, :), and X (:, :, k), respectively.
The (i, j)th mode-1, mode-2, and mode-3 fibers are denoted as
X (:, i, j),X (i, :, j), andX (i, j, :). For the sake of clarity, we use
X(k) to represent the mode-k unfolding of X since unfoldi(X )
= X(i) and X = foldi (X(i)).

The inner product of two third-order tensors X ,Y ∈
�n1×n2×n3 is given as follows:

〈X ,Y〉 =
n3∑
i=1

〈X (i),Y(i)〉 (1)

where the inner product of second-order tensors X and Y is
defined as 〈X,Y 〉 = Trace(XT Y )and the inner product of
first-order tensors x and y is defined as 〈x, y〉 = Trace(xT y).

The Frobenius norm of a third-order tensor X is defined as

‖X‖F =

⎛
⎝∑

i,j,k

|X (i, j, k)|2
⎞
⎠

1/2

. (2)

B. HSI-MSI Fusion

Notably, HSIs have a higher spectral resolution but lower spa-
tial resolution. Conversely, MSIs have a lower spectral resolution
but higher spatial resolution. Thus, we can consider performing
HSI-MSI fusion to obtain high-resolution spectral and spatial
images. Here, we use I ∈ �w×h×B to represent the observed
HSI with a low spatial resolution (LR-HSI), J ∈ �W×H×b to
represent the MSI capturing the same scene with high spatial
resolution (HR-MSI), and Ĩ ∈ �w×h×B to represent the fused
image (HR-HSI). Here, W,H, and b are the three dimensions
of the LR-HSI, while w, h, and B are the three dimensions of
the HR-MSI. The goal of HSI-MSI fusion is to obtain a HR-HSI
Ĩ by fusing I and J . The relationship between I, J , and Ĩ can
be expressed as

I = Ĩ SH+ Eh (3)

J = Ĩ ×3R+ Em (4)

where S and H are the spatial blurring and down-sampling
operators on the tensors, respectively, R ∈ �l×B is the spectral
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Fig. 1. Flow chart of the proposed method.

response of the multispectral sensor, and Eh and Em represent
i.i.d. noise. Ĩ×3R in (4) represents the three-mode product of
tensor Ĩ and a matrix R. The following equation represents the
three-mode product using elements in the tensor and the matrix

Ĩ×3R (i1, i2,m) =
∑
i3

Ĩ (i1, i2,m) R (m, i3) . (5)

C. Change Detection

The task of change detection involves using images of the
same scene from two or more time points to detect changes that
occur at different time points. Here, we consider the change
detection between images captured at two time points. If Ĩ1 and
Ĩ2 are the HSI-MSI fusion images at two different time points,
we can calculate their difference as follows:

Δ J̃ =
∣∣∣Ĩ1 − Ĩ2

∣∣∣ (6)

where ΔJ̃ ∈ �W×H×B is the difference image of Ĩ1 and Ĩ2.
Thereafter, the classification method can be applied to obtain the
change area from the difference image.

III. OUR METHOD

In this methodology, we initially use NCTCP to perform
HSI-MSI fusion. Then, the difference image is obtained by
subtracting the fused image at two different time points.

The tensor is then extracted from the difference image and a
binary classification method based on tensor regression is used
to detect the change area. A flow chart of our methodology is
presented in Fig. 1.

A. HSI-MSI Fusion

Let I1, I2 ∈ �w×h×b represent the observed LR-HSIs at
two different time points, J1,J2 ∈ �W×H×B represent the
HR-MSIs at two different time points, and Ĩ1, Ĩ2 ∈ �W×H×B

represent the fused images. The images at each time point are
fused by using the NCTCP method [39] separately.
Let GpY1 and GpY2 represent the third-order tensors that

combine all of the 2-D image patches of Ĩ1 and Ĩ2 in the pth
cluster, they can be written as

GP Y1 = GP J̃1×3R+ GpE1
m

=
[[
A1

p,B
1
p,C

1
p

]]
×3R+ GpE1

m

=
[[
A1

p, B
1
p ,RC

1
p

]]
+ GpE1

m (7)

GP Y2 = GP J̃2×3R+ GpE2
m

=
[[
A2

p,B
2
p,C

2
p

]]
×3R+ GpE2

m

=
[[
A2

p, B
2
p ,RC

2
p

]]
+ GpE2

m. (8)
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Thus, the NCTCP method extends the non-local patch similar-
ity to the non-local tensor representation and generates HR-MSIs
by solving the two following optimization problems

min

J̃1,A
1
p,B

1
p,C

1
p{∥∥∥J̃1 − J̃1SH
∥∥∥2
F
+ μ

p∑
p = 1

∥∥GpY1 −
[[
A1

p,B
1
p,RC1

p

]]∥∥2
F

}

s.t. J̃1 =

(∑
p

GT
p Gp

)−1 ∑
p

GT
P

[[
A1

p,B
1
p,C

1
p

]]
(9)

min

J̃2,A
2
p,B

2
p,C

2
p

⎧⎨
⎩
∥∥∥J̃2 − J̃2SH

∥∥∥2
F
+ μ

p∑
p=1∥∥GpY2 −

[[
A2

p,B
2
p,RC2

p

]]∥∥2
F

⎫⎬
⎭

s.t. Ĩ2 =

(∑
p

GT
p Gp

)−1 ∑
p

GT
P [[A

2
p,B

2
p,C

2
p]]. (10)

The details for solving (9) and (10) are presented in [26]. We
use Algorithm 1 from [26] to obtain two HR-HSIs, Ĩ1 and Ĩ2,
at two time points.

B. Change Detection Using Tensor Regression

After obtaining Ĩ1, Ĩ2 ∈ �W×H×B, the difference image
ΔJ̃ can be calculated according to (6). To detect the change
region from ΔJ̃ , we use the generalized tensor regression
method (GTR) [60] to divide ΔJ̃ into two categories. By
assuming that A ∈ RW×H×b×J are training tensors and that
T ∈ R2×1×...×1×J is the label tensor, the GTR method obtains
the coefficient weights by solving the following optimization
problems:

min
W(n)

∥∥∥T − A
∏3

n=1
×nW

(n)
∥∥∥2
F
+ λ

∏3

n=1

∥∥∥W(n)
∥∥∥2
F

(11)

s.t. W(n) � 0, n = 2, 3

where W(n) � 0 implies that all elements of W(n) are nonneg-
ative.

In [60], Liu et al. considered imposing a rank-R constraint
in (11) to decrease the regression error by factorizing Wc: =∑R

r=1 Wr,c: = w
(1)
r,c: ◦w(2)

r ◦w(3)
r and then performing model

estimation by solving the following optimization problem:

min
Wr,c:

∑
c,j

(
tcj −A:j ,

∑
r

Wr,c:〉
)2

+
∑
c,r

λr ‖wr,c:‖2F

s.t. Wr,c: = w(1)
r,c:

∏N

n=2
◦w(n)

r , w(n)
r � 0, n = 2, 3 (12)

where {λr > 0|r = 1, 2, · · · ,R} are regularization parame-
ters.

Algorithm 1

1: Input: LR-HSIs: I1, I2 ∈ �w×h×b; HR-MSIs:
J1,J2 ∈ �W×H×B ; positions and labels of training
samples;

2: Obtain Ĩ1 by fusing I1 and J1 using the NCTCP
method presented in Section III.A;

3: Obtain Ĩ2 by fusing I2 and J2 using the NCTCP
method presented in Section III.A;

4: Calculate the difference image ΔJ̃ ;
5: Generate the tensors of training samples A and their

label tensors T ;
6: Detect the change region from ΔJ̃ using the

GTR method presented in Section III.B;
7: Output: The change detection result.

We divide the difference image ΔJ̃ into several small tensors
ΔJ̃i ∈ �Wp×Hp×b, i = 1, 2, . . . , n, where the label of each
tensor can be determined by

y = argmaxc=1,2 δc

(∑
r

ΔJ̃i

3∏
n = 1

×nw
(n)
r

)
(13)

where W
(1)
r = [w

(1)
r,1:,w

(1)
r,2:]

T and W
(n)
r = (W

(n)
r )T

(n ∈ {2, 3}).

C. Algorithm Procedure

The procedure for the proposed algorithm is provided as
follows.

IV. EXPERIMENTS

In this section, we first describe the datasets and metrics used
to evaluate change detection in this comparison experiment.
Then, we introduce the experimental results obtained by our
method and compare them to other competitive methods.

A. Datasets

Three HSIs were used to simulate the datasets. First, we
extracted the four corresponding bands from the HSIs to form
multispectral data. Then, we reduced the lengths and widths of
the HSIs to half of their original size to form hyperspectral data.
The details of these datasets are presented as follows.

The Farmland dataset [61] contains images of a farmland area
in Yancheng City, Jiangsu Province, China. The two groups of
hyperspectral data (see Fig. 2) in this dataset were collected
by the earth observing-1 (EO-1) hyperspectral imager on May
3, 2006 and April 23, 2007, respectively. The spatial size of
this dataset is 450× 140, and the number of spectral bands is
155. Cultivated land changes represent the main changes in this
dataset. The 24th to 26th bands, 37th to 39th bands, 92nd to 94th
bands, and 141st to 143rd bands were selected, and their mean
values were calculated to simulate the MSIs with high spatial
resolution, while the correspondingp LR-HSI was generated via
down-sampling.
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Fig. 2. Farmland dataset.

Fig. 3. River dataset.

1) River Dataset: The River dataset [62] contains images
of a river area in Jiangsu Province, China. The two groups of
hyperspectral data (see Fig. 3) in this dataset were collected by
the EO-1hyperspectral imager on May 3, 2013 and December 31,
2013, respectively. The spatial size of this dataset is 200×100,
and the number of spectral bands is 198. Crop and land changes
in irrigated farmland represent the main changes in this dataset.
The 24th to 26th bands, 37th to 39th bands, 92nd to 94th
bands, and 141st to 143rd bands were selected, and their mean
values were calculated to simulate the MSIs with high spatial
resolution, while the corresponding LR-HSI was generated via
down-sampling.

2) USA Dataset: The USA dataset [63] contains images of an
irrigated farmland area in Hermiston, Umatilla County, Oregon,
USA. The two groups of hyperspectral data (see Fig. 4) in
this dataset were collected by the EO-1 hyperspectral imager.
The spatial size of this dataset is 300×240, and the number of
spectral bands is 154. Material changes in the river and land
changes around the river represent the main changes in this
dataset. The 14th to 16th bands, 37th to 39th bands, 92nd to 94th
bands and 141st to 143rd bands were selected, and their mean
values were calculated to simulate the MSIs with high spatial

Fig. 4. USA dataset.

resolution, while the corresponding LR-HSI was generated via
down-sampling.

B. Quality Measures

A confusion matrix is commonly used to evaluate the effect
of classification. Considering a hyperspectral two-classification
change detection problem with a spatial size of h× w, the
detection result may only appear as one of the following four
situations: the number of changed pixels that are correctly
classified is recorded as TP; the number of unchanged pixels
that are correctly classified is recorded as TN; the number of
changed pixels that are incorrectly classified is recorded as FN;
the number of unchanged pixels that are incorrectly classified is
recorded as FP. Therefore

TP + TN+ FP + FN = hw. (14)

The initial evaluation index used in this experiment is overall
accuracy (OA), which is used to evaluate the proportion of pixels
that are correctly classified

OA =
TP+ TN

hw
. (15)

The second evaluation index is the average accuracy (AA),
which is used to evaluate the proportion of pixels that are
correctly classified in each category

AA =
1

2

(
TN

TN+ FP
+

TP

TP + FN

)
. (16)

The third evaluation index is the kappa coefficient, which
combines the diagonal and off-diagonal terms of the confusion
matrix and is a robust consistency measure

Kappa =
1− p

OA− p
(17)

p =
(TP + FP) (TP + FN) + (TN + FP) (TN + FN)

h2w2
.

(18)

C. Parameter Selection

To simulate the LR-HSIs, the HSIs are downsampled by
selecting one pixel from a patch with a size of 5×5. According to
the parameter analysis presented in [39], the balance parameter
μ, rank, and number of patches used for image fusion are set as
100, 8, and 300, respectively. Three parameters are included in
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Fig. 5. OA values for three datasets with varying λ values.

Fig. 6. OA values for three datasets with different training samples.

the change detection process. The rank used for classification is
set as 1 [60]. The parameter λ is used to maintain a balance be-
tween the fidelity and regularization terms. Fig. 5 demonstrates
the impact of λ on the change detection process. Based on the
results, the optimal value can be chosen from [1 0-1, 10-6].
Notably, the number of training samples is very important for
change detection. Fig. 6 illustrates the OA values for a varying
number of training samples. Based on this figure, it is evident
that our change detection method can obtain stable and effective
change detection accuracy by using only 3% of the samples
selected as training samples.

D. Experimental Results
To verify the effectiveness of the proposed method, we con-

ducted the following comparative methods as an experiment:
support vector machine (SVM) [64], GETNET [62], and Hybrid-
SN [65]. These methods are commonly used to perform change
detection using MSIs, with image fusion being performed sepa-
rately. Thereafter, the OA, AA, and kappa values were calculated

Fig. 7. CRS results for the Farmland dataset. (a) SVM-MSI. (b) GETNET-
MSI. (c) Hybrid-SN-MSI. (d) TRIFCD-MSI. (e) Ground truth-MSI. (f) SVM-
HR-HIS; (g) GETNET- HR-HIS. (h) Hybrid-SN- HR-HIS. (i) TRIFCD- HR-
HIS. (j) Ground truth-HIS.

Fig. 8. CRS results for the River dataset. (a) SVM-MSI. (b) GETNET-MSI.
(c) Hybrid-SN-MSI. (d) TRIFCD-MSI. (e) TRIFCD-MSI. (f) SVM-HR-HIS.
(g) GETNET- HR-HIS. (h) Hybrid-SN- HR-HIS. (i) TRIFCD- HR-HIS.
(j) Ground truth-HIS.
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TABLE I
QUANTITATIVE ANALYSIS OF TRIFCD AND OTHER ADVANCED CHANGE DETECTION METHODS FOR THREE DATASETS

Fig. 9. CRS results for the USA dataset. (a) SVM-MSI. (b) GETNET-MSI.
(c) Hybrid-SN-MSI. (d) TRIFCD-MSI. (e) Ground truth-MSI. (f) SVM-HR-
HIS. (g) GETNET- HR-HIS. (h) Hybrid-SN- HR-HIS. (i) TRIFCD- HR-HIS.
(j) Ground truth-HIS.

according to (15) to (17). Figs. 7–9 demonstrate the change
detection results obtained via different methods of processing
MSIs and fusion images. Table I gives the quantitative analysis
results for the different methods executed on the MSIs and fusion
images. The results indicate that the method proposed in this
article can achieve optimal change detection results for both
MSIs and fusion images, which highlights the advantages of
this method in terms of change detection. Additionally, the image
fusion process also improves the change detection results, which

TABLE II
RUNNING TIMES OF TRIFCD (SECONDS) ON THREE DATASETS

demonstrates that the technical solution proposed in this article
is very effective when both LR-HSIs and HR-HSIs are available.
Table II gives the running time of the proposed method carried
out in Intel Core 2.59GHz processor with 8-GB memory. It can
be seen that the running time of our method is within [130s,
180s]. This quantitative result demonstrates our method is very
efficient and does not require GPU support, although GPU can
further improve the efficiency of our proposed method.

V. CONCLUSION

In this article, we propose a TRIFCD method. First, NCTCP
is applied to perform HSI-MSI fusion. By subtracting the fused
HR-HSIs, the change detection problem is transformed into two
binary classification problems on the difference image. Thus, a
tensor regression-based method is used to classify the difference
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image to detect the final change result. The fusion of LR-HSI and
HR-MSI improves image resolution and thus further improves
the accuracy of change detection. Using tensor representation in
the method can maintain the intrinsic spectral-spatial structure
of an image and overcome the effects of image degradation.
Moreover, the GTR classifier used for change detection in
the difference map is a simple and stable classifier that can
obtain change detection results more stably and efficiently.
The proposed method has been experimentally tested using
three different datasets, with the results demonstrating that this
method provides improved change detection performance on all
datasets when compared to existing state-of-art change detection
methods.
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