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Sparse Unmixing for Hyperspectral Imagery via
Comprehensive-Learning-Based Particle
Swarm Optimization

Yapeng Miao

Abstract—Sparse unmixing methods have been extensively
studied as a popular topic in hyperspectral image analysis for
several years. Fundamental model-based unmixing problems can
be better reformulated by exploiting sparse constraints in different
forms. Gradient-based optimization approaches commonly serve
for traditional sparse unmixing, but their limitations such as one-
way search, often induce unsatisfactory local optimum, especially
when the problems are nonconvex. Therefore, acceptable unmixing
performance cannot always be guaranteed, and the sparsity of
hyperspectral imagery may be incorrectly expressed. In this article,
an unsupervised sparse unmixing method using comprehensive-
learning-based particle swarm optimization (PSQO) is proposed.
Due to the basic PSO’s premature convergence in dealing with
high-dimensional problems, double swarms whose fitness functions
are accordingly divided into a series of low-dimensional subprob-
lems are constructed to search for optimal endmembers and abun-
dances alternately, leading to the implementation of unmixing in
refined solution spaces. Under this framework, two comprehensive
learning strategies are introduced to promote and refine particles’
mutual learning deeply at the element-level, through which the
abundance sparsity in every local pixel and every endmember’s
global abundance sparsity can be better exploited and expressed.
Experiments with both simulated datasets and real hyperspectral
images are employed to validate the performance of the proposed
method combined with different sparse constraints. In compari-
son with other state-of-the-art algorithms, the proposed method
enables the achievement of better unmixing results.

Index Terms—Comprehensive learning, double swarms,
hyperspectral imagery, particle swarm optimization, solution
space partition, sparse regularization, spectral unmixing.

1. INTRODUCTION

YPERSPECTRAL remote sensing based on imaging
H spectroscopy technology has contributed significantly to
earth observation in the past few decades [1]-[3]. Since hy-
perspectral sensors can continuously sample the spectral in-
formation of the earth’s surface in hundreds of narrow bands,
each pixel of a hyperspectral image (HSI) can be characterized
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by a unique spectral curve [4]. The substantial increase in
spectral information enables the HSIs to be of great value in
applications including geological survey, mineral and energy
detection, environment and disaster monitoring, food safety, and
military [5]-[7]. However, during the data collection process, the
limited spatial resolution of the imaging spectrometer and the
complex surface conditions usually result in the instantaneous
field of view containing more than one material. Therefore, a
large number of mixed pixels exist in the HSIs and affect the
accuracy of remote sensing applications severely at the pixel
scale [8]. Spectral unmixing technology solves this problem by
extracting characteristic spectra of each kind of typical material
and their corresponding fractional proportions from the HSIs,
which are called endmembers and abundances, respectively
[9]-[11]. The optimization problem of unmixing can be convex
or nonconvex based on concrete tasks and applications. In the
past decade, nonconvex unmixing frameworks have shown their
effectiveness for automatically extracting favorable features,
especially when the effects of various degradation mechanisms
(e.g., nonlinear mixing effects and environmental conditions)
should be considered [12].

Current spectral unmixing methods are mainly proposed
based on the popular linear mixing model (LMM) or nonlinear
mixing models (NLMMs) [4], [13], [14]. Taking light’s multiple
scatterings among ground covers into account, the NLMMs can
explain the nonlinear mixing effects compared with the LMM
only based on the single scattering assumption. Recently, non-
linear unmixing methods have attached more and more attention
in dealing with complex scenarios. For instance, bilinear mixing
models such as generalized bilinear model (GBM) [15] and
polynomial postnonlinear model [16] explain the major non-
linearity with second-order scatterings, which greatly simplifies
traditional physical models. Moreover, Wang et al. [17] used a
plug-and-play prior technique based on the GBM to exploit the
spatial correlation of abundance maps and nonlinear interaction
maps, and obtained more accurate abundances. Resorting to
the GBM, Gao et al. [18] implemented nonlinear unmixing
with nonnegative tensor factorization, which retained the HSIs’
spatial information and revealed the low-rank structures of abun-
dance maps.

In contrast to the abovementioned complex nonlinear unmix-
ing methods, linear unmixing methods usually have a simpler
and acceptable explanation for the light propagation processes,
which is meaningful in many situations. This article still focuses

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0002-8257-0247
https://orcid.org/0000-0002-9762-0788
mailto:k13617412792@163.com
mailto:k13617412792@163.com
mailto:yangb19@dhu.edu.cn

9728

on linear unmixing. Under the assumption of the LMM, each
pixel is approximately expressed as the linearly weighted sum
of endmembers according to their respective abundances [19].
As a critical step in unmixing, many endmember extraction
algorithms have been proposed so far. They take advantage of
the convex geometric properties of the LMM that the pixel points
are located in a simplex with endmembers being vertices in the
feature space. Endmember extraction can be transformed into
the search of the simplex’s vertices. Some methods repeatedly
projected the pixel points and randomly selected the endpoints
of projection vectors as the vertices in the feature space [20].
Moreover, a part of the methods tried to extract a subset of pixels
corresponding to the largest simplex volume as the endmembers
[21] or utilized orthogonal projection repeatedly to determine
the vertices that expand the simplex, such as the popular vertex
component analysis (VCA) [22]. Different variants based on
these methods have also been recently researched [23]-[25].
With the use of the extracted endmembers, supervised abun-
dance inversion algorithms such as the fully constrained least
squares (FCLS) proposed by Heinz and Chang [26] can usually
estimate satisfactory abundances.

It is worth noting that a pixel in a real hyperspectral image,
often contains not all of the endmembers, and a kind of ground
cover exists in a part of pixels. Thus, the HSIs have prominent
sparse structures. Owing to this feature, a variety of sparse reg-
ularization terms including £, 61762,1,&/2, and {1 —/5 norms,
have been introduced in the construction of unmixing problems.
A series of sparse unmixing algorithms are proposed, which can
produce unmixing results closer to the ground truth. Iordache
et al. [27] solved the unmixing problem through sparse regres-
sion where sparse constraints such as ¢; norm were enforced
on the abundances and the spectral library for unmixing using
variable separation augmented Lagrangian (SUnSAL). They
further proposed an improved SUnSAL-TV [28] algorithm. A
total variation (TV) regularizer was used to exploit spatial infor-
mation and added to the previous optimization problem to make
the attained abundances smoother. Furthermore, a collaborative
sparse regression framework was proposed using the ¢ ; norm
to accommodate the sparsity of each pixel [29]. Wang et al.
[30] provided a detailed discussion about the effectiveness of
{5, regularization term in sparse unmixing. Sun et al. [31]
built a novel sparsity ¢1—/¢> norm and combined it with the
TV regularization term for hyperspectral unmixing. Moreover,
among these mathematical forms of sparsity, the £y norm can be
used for unmixing through a given row hard threshold func-
tion [32]. Li et al. [33] adopted a reweighted /;,, norm to
achieve sparse abundances. Some recently proposed methods
exploited the HSIs” low-rank property in sparse unmixing to
further improve the accuracy of abundance estimation [34],
[35].

On the other hand, a reliable consensus is that insufficiently
accurate endmembers could deteriorate the estimated abun-
dances. Unfortunately, supervised sparse unmixing is depen-
dent on the accuracy of the attained endmembers. Therefore,
unsupervised unmixing becomes meaningful, which integrates
endmember extraction with abundance inversion in a common
framework. As an unsupervised feature extraction approach
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whose optimization problem is nonconvex, nonnegative matrix
factorization (NMF) has been often used for spectral unmixing.
The introduction of proper constraints into the NMF framework
has drawn considerable attention in the field of unmixing to
alleviate the effect of local minima. Besides regularizers con-
structed based on the HSI’s spatial information [36] and the
LMM’s geometric properties [37], sparse constraints enforced
on abundances have also been widely studied in the constrained
NMF unmixing framework.

For example, the ¢/, norm was introduced into the NMF
to promote the obtained abundances’ sparsity [38]. In the case
of a manifold regularizer being considered simultaneously, the
sparse NMF unmixing algorithm could produce sparse and
smooth abundances [39]. Considering the properties of HSIs,
adaptive relationship preserving sparse NMF was developed
to unite similarity learning and unmixing in an alternate opti-
mization process to learn the best similarity matrix [40]. The
global spatial similarity between the pixels of HSIs and the
local spectral similarity between superpixels have also been
exploited to improve the sparse NMF [41]. However, the original
NMF’s objective function is commonly sensitive to noises and
outliers. In order to overcome this problem, self-paced NMF
replaced the Euclidean distance loss function of the standard
NMF with weighted least-squares losses and used a self-paced
learning strategy to learn the weights adaptively [42]. Since the
traditional single-layer NMF may produce incorrect unmixing
results, Feng et al. [43] extended the single-layer NMF to
deep NMF, which promoted the smooth segmentation of abun-
dances. Besides, sparse constraints could be further enforced
on each layer of the deep NMF [44]. The idea of subspace
clustering has also been drawn into the NMF framework for
unmixing [45], [46].

In the literature, the optimization of a majority of supervised
and unsupervised sparse unmixing methods rely heavily on
gradient information-driven approaches [47], [48], such as the
multiplicative update rule and gradient descent algorithm. The
gradients of the objective function should be derived in advance,
and there is a high requirement for initial points and step
size settings. For nonconvex constrained optimization problems,
these algorithms are prone to fall into local optima, resulting
in the inaccurate representation of the HSIs’ sparsity. Artificial
intelligence is considered a promising way to overcome such
shortcomings of the traditional methods and has drawn much
interest in the community. Recently, deep learning methods
such as graph convolutional networks [49] have shown their
power in improving hyperspectral classification performance.
For unmixing, methods including cascaded autoencoders [50]
and endmember-guided unmixing networks [51] have been pro-
posed to yield more reasonable unmixing results. On the other
hand, different from the neural networks’ complex mutually con-
nected structures, swarm computing intelligence addresses the
issue of numerical optimization through the explicit cooperation
and simple movement of multiple individuals. For instance, as
a global optimization technique advocated by simulating the
foraging behavior of birds, particle swarm optimization (PSO)
[52] has the advantages of easy implementation and preferable
convergence. Compared with the gradient-based optimization
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methods, better solutions are more likely to be achieved by PSO,
especially for the complex nonconvex constrained optimization
problems.

Recently, PSO has opened a new perspective in the spectral
unmixing field [53]-[55]. Zhang et al. [56] came up with a
PSO-expectation maximization (PSO-EM) unmixing method
based on the normal compositional model. Tong et al. [57]
improved multiobjective discrete PSO by using a restart mech-
anism to enhance the diversity of the population and estimate
more accurate endmembers. Du et al. [58] combined a quantum
PSO algorithm with the collaborative update of the particles’
best positions to extract endmembers. Xu et al. [59] designed
a PSO-based unmixing strategy for highly mixed hyperspectral
data. Although PSO has shown its good performance in some
unmixing algorithms, it could be premature when the dimen-
sionality of the problem is too high, generating undesirable
unmixing results [60]. In consideration of this problem, Yang
et al. [61] converted the original unmixing problem into a series
of low-dimensional simple subproblems and processed them in
parallel under the framework of PSO where divide-and-conquer
dimensionality division facilitates the accurate implementation
of unmixing.

In a word, although spectral unmixing has been studied a lot,
it is still challenging and meaningful to improve the existing
unsupervised sparse unmixing architecture in two aspects. First,
in terms of improving the optimization robustness, instead of
using the traditional gradient-based methods, we can reconstruct
the PSO’s structure accordingly to better solve the nonconvex
sparse unmixing problem. Second, in terms of the correct ex-
pression for the abundances’ inherent sparsity, it is promising
to exploit the information exchange among the PSO’s particles
to better balance sparse regularization terms during unmixing.
In this sense, abundances with both higher accuracy and correct
sparsity can be obtained.

Therefore, in this article, we proposed an unsupervised sparse
unmixing method using comprehensive-learning-based particle
swarm optimization. To address the high-dimensional sparse
unmixing problem and promote the diversity of PSO’s swarms,
we have adopted the idea of dimension division in [61]. First, an
endmember swarm and an abundance swarm are constructed.
Their optimization subproblems are correspondingly split ac-
cording to bands or pixels. Consequently, the swarms’ fitness
functions can be vectorized, and the original feasible solution
space is divided into low-dimensional slices where particles’
positions can be finely determined. In brief, for example, the
determination of the whole abundance matrix depends on the
parallel search of the best abundance vectors of every pixel.
Second, these two swarms are updated alternately by using
the global best positions of each other, aiming at optimizing
endmembers and abundances.

Moreover, in order to deeply refine the position search in every
pixel’s abundance vector, we have introduced a comprehensive
learning strategy to promote the learning of the favorable abun-
dances of every specific endmember. This improvement not only
significantly enhances the diversity of the abundance swarm
but also increases the probability of finding the optimal solu-
tion. In addition, another novel global comprehensive learning
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mechanism focusing on the sparsity of abundances has been built
through which both the abundance sparsity of each local pixel
and the global abundance sparsity of each endmember can be
better expressed in unmixing results.

The main contributions of this article can be summarized as

follows.

1) A versatile PSO sparse unmixing framework that is suit-
able for different well-known sparse constraints is pro-
posed. An existing double swarm PSO method based on
dimension division is extended and reconstructed to cope
with the task of unsupervised sparse unmixing.

2) Two comprehensive learning strategies are used to im-
prove the PSO sparse unmixing framework. An advanced
comprehensive learning strategy is modified to refine the
searched particles’ positions of an abundance swarm. In
addition, another new comprehensive learning strategy is
devised to improve the sparsity of the abundances.

The rest of this article is organized as follows. Section II gives

a brief introduction to the linear mixture model, sparse unmixing
framework, and PSO. Section III presents the description of
the proposed algorithm. In Section IV, the effectiveness of the
proposed algorithm is verified in experiments with simulated
data and real hyperspectral images. Finally, Section V concludes
this article.

II. RELATED WORKS
A. Linear Mixture Model

The LMM assumes that each pixel can be approximately
written as the linear combination of endmembers according to
their respective abundances. Let an HSI matrix be X €R"*",
E eR™*" be the endmember matrix, and A €R"*" denote the
abundance matrix, where m represents the number of spectral
bands and n is the number of pixels. The LMM can be described
as follows:

X=EA+N ey

where N €R"™*" denotes the noise error. To be physically mean-
ingful, the abundance must meet the nonnegative and sum-to-one
constraints (ASC) in the following equation:

A>017A =17 (2)

where 17 and 17 represent two column vectors of all 1s.

B. Sparse Unmixing Framework

If sparse constraints are enforced on the abundances, a typical
sparse regression model for unmixing is expressed as

win f(E, A) = 11X — BA|Z + 4 v(A)
st. A>0,1TA =17
where ¢(A) corresponds to the abundances’ sparse
constraint. It turns  to  [[A[;="11, > [Aql

T n T
[All12=23 0020 2 5oy VA and  [[Allea=) 5, (A,
(A ;. represents the jth row of A) when the /1 norm, /;
norm, and ¢ ; norm are used to make A sparse, respectively.
These three sparse regularization terms are considered in this

3
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article, and they have been popularly used in a variety of sparse
unmixing methods, including SUnSAL [27], collaborative
SUnSAL (CLSUnSAL) [29], and él/Q—NMF[38]. A is asmall
nonnegative regularization parameter that controls the influence
of the sparse constraints on the estimated abundances.

C. Particle Swarm Optimization

Particle swarm optimization algorithm originating from the
study of birds’ predatory behavior belongs to the swarm intel-
ligence, which utilizes the collaboration of particles to search
for optimal solutions to the problems. PSO’s particles transmit
position information through cooperation in every iteration until
an optimal solution is found. Different from the traditional
gradient-based methods, the particles’ positions are initialized
randomly and not unique, and the update of particles’ velocities
also has some degree of randomness. This makes it more likely
to jump out of bad local optima and increase the probability of
attaining the global optimal solution.

The basic PSO initializes a swarm with g particles. In the
tth iteration, every particle has its current position Pt €R" and
velocity Vt €R". The best position in history P? ppbest ER”
and the global best position Pgbcst €R" in the swarm need to
be updated, t = 1, ..., q. Every particle’s position is actually a
potential solution for the optimization problem. For example,
given an objective function S(x), x €R" of a minimization
optimization problem, it is regarded as the fitness function of
PSO. The particles are compared with each other according to
S (x) so that the favorable position information can be exchanged
and learned. In this sense, P? upbest and Pgbest in the swarm
can be calculated by (4). Resorting to P! pupbest and Pgbeqt ,a
particle’s velocity and its current position are updated using (5)
and (6), respectively. This iterative process repeatedly runs until
the convergence conditions are satisfied and Py}, is the optimal
solution for the optimization problem

P;pbcst = PZ p%)est ngt p:}LJest) <? S(PL)
Pupbebt = P S(P;Lpbest) > S(P[L)
P;‘bebt arg min {S( 1pbe:>t) S(ngbest)7 S(Pébebt)}
4)
VZ+1 =w- Vz +er- 7‘% . (Pfj,pbest - PZ)
+ 0275 (Phpos = P) ©)
t+1 t t+1
P, =P, +V,5. (6)

In (5), w is an inertia weight used to control the swarm’s
exploration and development. c¢; and c; are mainly used to
balance the influence of cognitive and social learning on V?,
while 1 and 75 are random numbers uniformly distributed in
the range of (0,1).

III. PROPOSED METHOD

A. Dimension Division for Two Swarms in PSO

The optimization of the fundamental unsupervised sparse
unmixing problem in (3) is resorting to PSO in this article.
Two swarms containing ¢ particles are generated to update the
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endmember matrix E and the abundance matrix A alternately.
Explicitly, the particles’ positions represent the potential E or
A that are updated when the global best position P, is
determined as the iterations progress.

As mentioned in Section II, PSO has strong global search-
ing abilities, but it is sensitive to the problem’s dimension in
practice. Commonly, as the search space’s dimension increases,
the chances of the global optimal solution being found by PSO
will decrease [62]. It becomes hard to control the particles’
flying directions in the high-dimensional space, causing the
whole swarm to lose its valuable diversity and converge early.
However, it is noted that the problem in (3) is separable, which
can be easily split into dozens of subproblems across the rows or
columns of the hyperspectral data X. Therefore, the strategy of
dimension division devised in [61] can be directly extended here
for the PSO-based sparse unmixing. In this sense, the objective
functions of the swarms turn into two fitness vectors based on
the band-wise or pixelwise division. Benefiting from the idea of
divide and conquer, the swarms’ global best particles’ positions
corresponding to more accurate endmembers and abundances
can be found.

1) Endmember Swarm: The optimization subproblem for
updating the endmembers can be written as follows:

min f(E, A) = X — EA[;

7
st.E>0 @

where the abundance matrix A is aknown variable. This problem
is divided based on the band vector slices and transformed
into the endmember swarm’s fitness vector ¢ E(EH), in (8),
where E, €R™*" is the uth endmember particle’s position,
#=1,...,q and X;; denotes the value of the jth pixel’s ith
spectral band

n

op(Bu)=(21, 22, 2m) " 2= Z (Xij - (EHA)U)Q'

j=1

(®)

According to the vectorized fitness function of the endmember

swarm, each particle’s best position in history and the swarm’s
global best position are determined as follows:

Efl,pbest( )
{ E) p%)est (Z .)v ¢E (Ezp{)est)l — QSE (Et )1
Et ( .)7 ¢E(E2ptcst) > (ZSE (Et ) (9)
Bl (i:7)
gbest
= arg mln(d)E(Eﬁpbest)i’ ) d)E( qpbest) )

where E (i,:) denotes the ith row of the pth endmember
particle’s position, ¢ = 1,2,...,m.

2) Abundance Swarm: The objective function for the abun-
dance optimization problem is based on (3). The endmember
matrix E is a known variable here. Similarly, we divide it based
on the pixel vector slices and transform it into the corresponding
abundance fitness vector ¢41(A,,) in (10). A, €R™" is the
position of pth abundance particle

¢A1(Au) =

(b1,b2,...,bn), b
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i 2
=3 (X~ (BAY,) +2w5(A). (0)
i=1
In (10), ¢;(A,,) is the jth additive subterm of sparse con-
straints with respect to the jth pixel. In the cases of /; /2 norm

and /5 ; norm, it has the following expression:

T J(AL), ., £norm
kgl ( l»l«)kj 1/2

%(Au) = T
> (Au)ij’ {5 1norm
k=1

Y

For /1 norm, since abundances are normalized to satisfy the
ASC here, the dimension division is not required for ||A,||; in
fact. Instead, an elementwise soft thresholding method [4] with
aparameter « is applied. The determination of the particle’s best
position in history and the swarm’s global best position of the
abundance swarm can be achieved in

Aftpbeit( ])
{Aipiest( 7) ¢A1(Aipuloest)y = a1(AL);
Al J) Par(A)hes)i > Pa1(AL); . (12)
Agbest( .7)
= arg min(da1(Afppes)js - - - P41 (Adpesy)s)

In (12), Al (:,7) is the jth column of the uth abundance
particle’s position, j = 1,2,...,n.

B. Comprehensive Learning Strategies

In order to further improve the diversity of the abundance
swarm and exploit the reasonable expression of abundances’
sparsity exhaustively, we devise two comprehensive learning
strategies under the framework of dimension division-driven
PSO in this section.

1) Comprehensive Learning for Position Search Refinement:
Dimension division indeed helps to reduce the impact of high-
dimension by limiting the search scope of the abundance swarm
to multiple pixelwise slices. It can be referred that a more accu-
rate position can be possibly achieved if the deep elementwise
dimension division can be further executed. To this end, the
first comprehensive learning strategy is built referring to [63] to
refine the position search for the previously divided pixel slices.

First, the pth particle of the abundance swarm is assigned
a learning probability Pc,, defined in (13). Considering the 7th
row At of AL given arandom number rand; , drawnin (0,1),
if Pe,, < rand; ,,, the update of Al " relies on (5) and (6)

9 0,

el —e _ 5(p—1)

- ..., q (13
2(efa — ebr)’ H qg—1 > q- (13)

P Cu = s =1,

Second, if Pc, > rand; ,, the best row position informa-
tion in history of particles except for the pth particle will
be employed to improve the corresponding rows of P! Lipbest
in (5). By this means, better row information (i.e., each end-
member’s abundance row vector) of other particles has chances
to be learned and shared across the abundance swarm. To be
specific, for each row of AZ, two randomly selected particles

except for AZ itself are compared by a tournament selection
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method, according to the original scalar fitness values in (3)
of their best positions in history. Next, for the winner particle,
if the ith row of its best position in history P?, ‘winpbest 18 110t
equal to Af ipbest? used to replace Al ipbest
directly. Otherwise, Ag:,p.pbest is replaced by a random row
P} e winpbest (tand # ) of the winner particle’s best position
in history, which happens rarely but may work as a perturbation
to help to increase the population diversity if premature conver-
gence occurs. The velocity and the position of every particle in
the abundance swarm are updated using comprehensive learning
improved (5) and (6).

2) Comprehensive Learning for Abundances’ Sparsity: The
abovementioned dimension division for the abundance swarm
depends on comparing the components of the fitness vectors (10)
to determine each pixel vector slice in the abundance matrix.
In this sense, the pixelwise local sparsity can be well learned,
but the endmemberwise global sparsity may be not revealed
correctly by the abundance swarm’s particles. To address this
issue, we devise another comprehensive learning strategy for
improving the abundances’ sparsity.

After the position of each abundance particle is updated using
the first comprehensive learning strategy, Aébest is obtained, and
anew fitness function row vector ¢ 42(A ;) in (14) is formulated
to generate an endmemberwise global best position A’

) =

t
Pi: ,winpbest is

gbest_row

baz(A, (81,132,...,Br),13k

~ ~ 2 ~
=[x EuAu|, e duan). as)

In (14), E;;, €R"* D contains all but the kth column of E,
and A, €RUD*" consists of all but the kth row of A!,. In
most iterations, it is reliable that a small first term of Bk indicates
that AJ, is very likely to offer a good AZ“’ ,.+h2 is a parameter
controlling the abundances’ row sparsity. 1 (A ,,) can be written
in (15) according to different sparse constraints

Z ‘(Au)k.7‘> /inorm
]:1

@k(AM) — J;l ko f1/2m0TM (15)
\/27 {9 1norm

Next, A ebest_row CaN be determined according to (14) and (15)
using endmemberwise dimension division. In the iterations, it
just works as an auxiliary for Atgbest to learn comprehensively
the global sparsity of each endmember’s abundances. Specif-

ically, the sparse intensity py (A;best), k=1, ..., r, of each
row of AL, . is first calculated as follows:
(Agbcst)
1= (D Ay, / (S (Al "

1-1/n

Base on (16), a row of Agbest with lower sparse intensity is
more likely to be selected by a roulette method [65]. Then, the
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Fig. 1. Alternating update of dimension division based double swarm using
comprehensive learning (CL) strategies C'L1 and C'Lo.

selected row of Aébest learns from the corresponding row of
Agbest,row by replacing a part of its elements randomly with
those of the latter. In this sense, the population diversity and the
global sparsity of Al . can be improved. Al . . is up-
dated independently in each iteration according to the following
operations:
Aftpbcst_row (k7 :)
= { Az_p%)est,row(k7 :)¢A2(A;}}est7row)k S ¢A2 (Az)k
Aft(k’ :)¢A2(Aupbest_row)k > d)AQ(AfL)k
Agbestfrow(kv :)
= arg min(¢A2 (Aipbestfrow)k’ R ¢A2 (Agpbestfrow)k’)
a7

C. Alternating Update of Double Swarms for Unmixing

With the combination of dimension division and two com-
prehensive learning strategies, the endmembers and abundances
are updated alternately in two collaborative swarms. As the
iterations progress, the endmember swarm updates its particles
and determine the global best position Etg]Dest according to (5),
(6), (8), and (9), and then Eébest serves as a known variable for
the calculation of the particles’ fitness values of the abundance
swarm. In turn, the particles of the abundance swarm are up-
dated using (5), (6), (10), (12) and two comprehensive learning
strategies. Agbest is then generated and employed by the end-
member swarm. The abovementioned two subprocedures are ex-
ecuted alternately until the convergence conditions are satisfied.
Fig. 1 illustrates the whole unmixing process of the proposed
method.

In the initial step, the particles’ positions of two swarms
are randomly initialized. Their velocities are set as zeros at
the beginning. Endmembers extracted by VCA and abundances
estimated by FCLS are added into two swarms as elite particles
to promote convergence. As shown in Fig. 1, the determination
of initial Ezpbest and Egbest depends on the cross computation
of all the particles’ positions of two swarms according to (8) and
(9). Then, Egbest is regarded as the given endmember matrix to
produce Azpbest’ Agbest’ Agpbestfrow s and Agbestfrow llSiIlg
(10), (12), (14), and (17), respectively. Moreover, some related
PSO parameters should be set accordingly. 1) A damping and
absorption boundary condition in [61] and [62] is imposed on
the particles’ positions to make the achieved endmembers and
abundances nonnegative. By this means, if the particle position
violates the boundary constraints in (3), it will be softly adjusted
and go back to the specified range. Finally, the position of
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Algorithm 1: Sparse Unmixing via Comprehensive learning
based Particle Swarm Optimization (SUCPSO).

Input: Hyperspectral image X €R"*".

Output: Endmember matrix E €R”*" and abundance
matrix A €R"™".

Step1: Setting ¢ = 0 and generating an endmember
swarm and an abundance swarm, initialize the positions
of the two swarms and set the particle velocities as
zeros, and determine BY, i, Ay AN o

Step2: While ¢ < ¢,,,,« and stopping criteria are not
satisfied, dot <t + 1

2a) Using Aégést to calculate ¢z and obtain Ej,_, . and
E!} . according to (8) and (9).

2b) Using E;best to calculate ¢ 41 according to (10) and

a2 Z}t/ (14), and obtain Aipbest A Aipbest_mw
and

gbest_row DY (12) and (17).

2¢) Adjusting Al ., using two different comprehensive
learning strategies in turn.

2d) Updating E!, and A, according to (5) and (6), and
controlling the ranges of particles’ positions and
velocities. Normalizing the abundance particles’
positions to satisfy the ASC.

end

Step3: Outputting Egpest and Agpest-

t
gbest?

each particle in the abundance swarm is processed by a soft
threshold operation and is normalized to satisfy the ASC. 2) The
inertia weight w in the velocity update process of the endmember
swarm, and the learning factors c1, co are set as follows:
—— (Wmax — Wmin)w € [0.4,0.95]

tmax

W=Wmax
C1 :2.5—t7,02 =15+ ‘

tmax

(18)

3) In the abundance swarm, the inertia weight w in the velocity

update process is consistent with (18), and ¢; = co = 1.49445.
The settings of every particle’s learning probability Pc,, in the
abundance swarm are illustrated in (13) referred to [63].

In this article, sparse unmixing via comprehensive learning-
based particle swarm optimization (SUCPSO) can be briefly
summarized in Algorithm 1. Under the SUCPSO unmixing
framework, three unmixing algorithms considering different
sparse constraints, including SUCPSO_L 1soft, SUCPSO_L2,1,
and SUCPSO_L1/2 can be obtained. Due to the ASC should
be satisfied, SUCPSO_LI1soft uses a soft threshold and the
regularizers’ division in (15) to make the abundances sparse.
SUCPSO_L1/2 and SUCPSO_L2,1 adopt the regularizers’ di-
vision in (11) and (15) to calculate their fitness vectors.

IV. EXPERIMENTAL RESULTS

In this section, we exploit simulated datasets and real hy-
perspectral images to verify the effectiveness of the pro-
posed method dealing with different sparse constraints, i.e.,
SUCPSO_L1soft, SUCPSO_L2,1, and SUCPSO_L1/2. Com-
parison is conducted with several state-of-the-art sparse un-
mixing algorithms. Specifically, these algorithms include the
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Fig.2. Endmember spectra. (a) Maple_Leaves DW92-1. (b) Olivine GDS70.a
Fo89 165 pum. (c) Calcite CO2004. (d) Quartz GDS74 Sand Ottawa.
(e) Grass_dry.9+.1green AMX32. (f) Muscovite GDS107. (g) Alunite GDS82
Na82. (h) Uralite HS345.3B. (i) Pyrite HS35.3.

popular FCLS [26], two supervised sparse unmixing algorithms
SUnSAL [27], CLSUnSAL [29], and two unsupervised sparse
unmixing algorithms ¢, ,,—NMF [38] and GLNMF [39]. In
the following experiments, the regularization parameters of
SUnSAL and CLSUnSAL are set as 10~* according to their
references. Equation (19) is used to generate the sparse regular-
ization parameters A for ¢1 ,,—NMF and GLNMF. In GLNMF,
the graph regularization parameter is equal to 0.1

a3 VR Il /X
Vm — Vn—1

In (19), X,. represents the ¢th row of the hyperspectral data
matrix X. The cross-validation approach is used to determine our
algorithms’ optimal parameters for the experiments with simu-
lated data. In the experiments, VCA provided endmembers for
supervised unmixing algorithms to estimate abundances. In the
cases of unsupervised algorithms, endmembers and abundances
were initialized by VCA and FCLS. The maximum number
of iterations was set as 200. The algorithms were executed on
MATLAB R2018b of a computer with a 3.80-GHz Intel Core
i7-10700K CPU and 64 GBs of memory.

19)

A. Simulated Data

After the parameter settings of the proposed method are first
discussed, the robustness of the compared algorithms to noises,
the number of endmembers, the mixing degrees, the number of
pixels, and spectral variability are evaluated accordingly in the
following experiments with several simulated datasets. Finally,
the computational complexity of SUCPSO is analyzed, and the
compared algorithms’ running time is provided. In the gener-
ation of simulated data, endmembers were selected from the
USGS spectral library in which each material spectrum consists
of 224 bands. Their spectral curves can be clearly observed in
Fig. 2. Abundances were randomly generated with the Gaussian
random field method [66], and the largest abundance was 0.8
except for the second and the seventh experiments. Moreover,
additive Gaussian white noises with different intensities were
added to the simulated data.

In terms of quantitative evaluation, the mean spectral angle
distance (MSAD) in (20) is employed to measure the similarity
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RMSE

Fig. 3. Selection of parameters. (a) Threshold value « and the percentage of
randomly replaced elements /3. (b) Regularization parameters A andXs.

between true endmembers and estimated endmembers, and the
root-mean-square error (RMSE) in (21) is adopted to measure
the differences between true abundances and estimated abun-
dances. Particularly, the sparseness of the estimated abundances
is calculated by (22) referring to [64] and further quantitatively
analyzed as the numbers of endmembers and pixels change.
An absolute value of sparsity error (AVSE) in (23) is used to
compare the estimated abundances’ sparseness of the algorithms
with the sparseness of true abundances

1 — e;le;
MSAD = - cos! (Lf)
r 2 lles]] {1&:]]

i=1

RMSE = \/:n S (Ay—Ay)
L= (T, 0 A/ (i o0y (Ay)?)

(20)

21

p(A) = 1—1/(rn)
(22)
AVSE = \ p(A) — p(A)’ . (23)
In (20)-(23), E = [e1,e2,...,e,] and A = [a;,aq,...,a,]

denote the true endmember matrix and abundance ma-
trix, respectively, while the estimated endmember matrix
and abundance matrix are B = [61,8,...,8,] and A =
[a1,4s,...,4,], respectively. Each compared algorithm had ten
independent runs. Their unmixing results’ averages and standard
deviations are provided.

1) Parameter Settings: In order to determine the proposed
method’s four parameters including two regularization param-
eters A and Mo, a threshold value «, and the percentage of
randomly replaced elements /3 in the second comprehensive
learning strategy, we generated a simulated dataset containing
50 x 50 pixels using five endmembers for cross validation. The
maximum value of abundances is set as 0.8, and signal to noise
ratios (SNR = 101og,,(E[xTx]/E[eT¢])) is 40 dB. « and j3
are first evaluated by using fixed A and Ao, then the best A and
Ao are determined. RMSE was used as an indicator to compare
the parameters. According to the results depicted in Fig. 3, «
and g were set as 0.01 and 0.004, respectively, and . = 0.005,
A2=0.8 in the simulated data experiments.

2) Noise Robustness Analysis: In order to analyze the pro-
posed algorithm’s robustness to noises, we generated datasets
with different SNRs including 20 dB, 30 dB, 40 dB, 50 dB, and
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TABLE I
MSADS OF ENDMEMBERS EXTRACTED BY THE ALGORITHMS FOR SIMULATED
DATA WITH DIFFERENT NOISE INTENSITIES
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TABLE III
MSADS OF ENDMEMBERS EXTRACTED BY THE ALGORITHMS FOR SIMULATED
DATA WITH DIFFERENT NUMBERS OF ENDMEMBERS

SUCPSO_ SUCPSO_  SUCPSO_ Number of SUCPSO_ SUCPSO_ SUCPSO
SNR(dB) VCA ?,,-NMF GLNMF VCA 0,,-NMF  GLNMF - - -
Llsoft L2,1 L1/2 endmembers Llsoft L2,1 L1/2

20 5.041+1.109 3.983+0.532 3.981+0.532 4.036+0.914 4.225+1.002 3.798+1.070 3 7.659+0.149 4.497+1.103 4.451+1.101 3.393+0.965 3.520+0.926 3.387+0.889

30 4.7140.555  3.681+0.433 3.702+0.440 3.535+0.797 3.793+0.669 3.406+0.802 5 4.004+£0.909 3.425+0.551 3.407+0.568 3.466+0.794 3.710+0.611 3.183+0.841

40 4.004+£0.909  3.4254+0.551 3.407+0.568 3.466+0.794 3.710+0.611 3.183+0.841 7 4.502+0.560 4.109+0.634 4.112+0.638 4.085+0.897 4.268+0.784 4.303+0.679

50 4.003+0.903 3.288+0.838 3.282+0.840 3.079+0.839 3.426+0.596 2.944+1.005 9 4.527£0.120 4.540+0.110 4.546+0.110 4.482+0.411 4.467+0.316 4.566+0.113

INF 3.903+0.734  3.246+0.969 3.264+1.017 3.083+0.805 3.327+0.654 2.923+0.677

TABLE IV
TABLE II RMSES OF ABUNDANCES ESTIMATED BY THE ALGORITHMS FOR SIMULATED

RMSES OF ABUNDANCES ESTIMATED BY THE ALGORITHMS FOR SIMULATED
DATA WITH DIFFERENT NOISE INTENSITIES

SUCPSO_ SUCPSO_ SUCPSO_

SNR(dB) FCLS  SUnSAL CLSUnSAL /,,-NMF GLNMF
Lisoft L2,1 L1/2
20 0.438+0.044 0.457+0.045 0.461:0.047 0.470:0.044 0.470+0.044 0.153+0.066 0.162+0.066 0.1490.070
30 037320.135 0.349+0.142 0.349+0.142 0.3790.139 0.379+0.138 0.110+0.058 0.132:0.072 0.10620.061

40 0.34420.138 0.342+0.141  0.342=0.141  0.339£0.137 0.338+0.137 0.100=£0.047 0.106+0.048 0.098+0.048
50 0.320+0.167 0.318+0.176  0.318+0.176 0.331+0.175 0.330+0.175 0.101+0.072 0.085+0.042 0.088+0.043
INF  0.305+0.157 0.308+0.155 0.307+0.156 0.315+0.157 0.314+0.156 0.075£0.015 0.0800.015 0.078+0.024

INF dB (i.e., no noises). The simulated data have 50 x 50 pixels
constituted by five endmembers.

The MSADs of endmembers extracted by every algorithm
are given in Table I. The best results are marked in bold.
From this table, one can find that the MSADs corresponding
to our methods are much smaller than the other algorithms’
in most situations. Notably, two algorithms with /;,5 norm
provide better endmembers. It seems that £; /o norm may im-
prove endmember extraction compared with other sparse con-
straints. SUCPSO_L1/2 provides the best MSADs as the SNR
changes, proving the superiority of sparse unmixing under
our improved PSO framework. In the case of the noise-free
dataset, all the compared algorithms can obtain more accurate
endmembers. SUCPSO_L1soft and SUCPSO_L2,1 also show
their higher accuracies. On the other hand, from the RMSEs
listed in Table II, it can be observed that our method with
different sparse constraints can achieve considerably smaller
values among these algorithms. Particularly, the abundances
estimated by SUCPSO_L2,1 approach true abundances with
minor errors. A reasonable explanation can be derived that the
introduction of dimension division and comprehensive learning
in PSO greatly facilitate unsupervised sparse unmixing to find
better abundances. From these experiments, we can infer that the
proposed method is robust to noises and can produce accurate
unmixing results.

3) Sensitivity Analysis to the Number of Endmembers: In
this experiment, we analyze the sensitivity of different al-
gorithms to the number of endmembers. The size of the
dataset is 50 x 50-pixel, SNR equals 40 dB, and the num-
ber of endmembers was set as 3, 5, 7, and 9, respectively.
Tables IIT and TV display the MSADs and RMSEs of the unmix-
ing results, respectively. It can be seen that although the unmix-
ing results of our algorithms are slightly affected by the number
of endmembers, the estimated abundances are always closer
to the references. In the cases of the number of endmembers
being 3 or 5 when the data’s sparsity may be not prominent, the

DATA WITH DIFFERENT NUMBERS OF ENDMEMBERS

SUCPSO_ SUCPSO_ SUCPSO
Llsoft L2,1 _L12

Number of
umberof L 1S  SUnSAL CLSURSAL ,,-NMF  GLNMF

endmembers

3 0.309+0.220 0.342+0.231 0.342+0.231 0.31120.222 0.311:0.221 0.041+0.014 0.04320.013 0.042+0.015
5 0.344+0.138 0.342+0.141 0.342+0.141 0.339+0.137 0.338+0.137 0.100+0.047 0.106=0.048 0.098+0.048
7 0.339+0.086 0.343+0.088 0.343+0.088 0.345+0.088 0.345+0.088 0.110+0.035 0.110=0.037 0.125+0.044
9 0.357+0.045 0.357+0.045 0.357+0.045 0.364+0.043 0.364=0.043 0.105=0.023 0.112+0.037 0.100+0.014

TABLE V
MSADS OF ENDMEMBERS EXTRACTED BY THE ALGORITHMS FOR SIMULATED
DATA WITH DIFFERENT MIXING DEGREES

Maximum SUCPSO_ SUCPSO_ SUCPSO_
VCA £,,-NMF  GLNMF

abundance Llsoft L2,1 L1/2
0.7 6.084+0.516 5.544+1.094 5.540+1.100 4.381+1.005 4.246+1.026 4.072+0.767
0.8 4.004+£0.909 3.425+0.551 3.407+0.568 3.466+0.794 3.710+0.611 3.183+0.841
0.9 1.977+0.297 2.315+0.443 2.311+0.439 1.313+0.507 1.403+0.326 1.154+0.655
1.0 0.146+0.023  1.156+0.370 1.148+0.367 0.245+0.194 0.241+0.264 0.102+0.036

TABLE VI

RMSES OF ABUNDANCES ESTIMATED BY THE ALGORITHMS FOR SIMULATED
DATA WITH DIFFERENT MIXING DEGREES

Maximum SUCPSO_ SUCPSO_ SUCPSO_
GLNMF )

Llsoft L2,1 L1/2
0.7 0.358+0.072 0.375+0.068 0.375+0.068 0.363+0.085 0.364+0.084 0.148+0.037 0.169+0.049 0.155+0.049
0.8 0.34440.138 0.342+0.141 0.342+0.141 0.339+0.137 0.338+0.137 0.100+0.047 0.106+0.048 0.098+0.048
0.9 0.306+0.219 0.308+0.221 0.308+0.221 0.322+0.221 0.322+0.221 0.042+0.005 0.047+0.009 0.040:0.005

FCLS  SUnSAL CLSUnSAL /,,-NMF

abundance

1.0 0.289+0.148 0.286+0.149 0.286=0.149 0.301=0.151 0.301=0.151 0.013+0.003 0.013+0.004 0.012+0.003

best MSADs can be attained by SUCPSO_L1/2. SUCPSO_L2,1
performs better when the number of endmembers is 9. It is
indicated that different sparse constraints may suffer from the
number of endmembers. In terms of abundances’ accuracy, the
proposed method can obtain the best results due to the use of
comprehensive learning strategies, which can effectively deal
with complex data with more endmembers.

4) Robustness Analysis to the Mixing Degrees: The sensitivity
of each algorithm to different mixing degrees of data is discussed
in this experiment. The simulated dataset is composed of five
endmembers, and contains 50 x 50 pixels. SNR is 40 dB, and
the maximum value of abundances is setas 0.7, 0.8, 0.9, and 1.0,
respectively. The description of unmixing accuracies is provided
in Tables V and VL.

Table V shows the MSADs of all the algorithms under dif-
ferent mixing degrees. It is clear that the endmembers’ accu-
racies of the algorithms decrease as the data become highly
mixed. However, endmembers extracted by SUCPSO_L1/2 are
more accurate than the other algorithms’ in most situations.
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TABLE VII
MSADS OF ENDMEMBERS EXTRACTED BY THE ALGORITHMS FOR SIMULATED
DATA WITH DIFFERENT NUMBERS OF PIXELS

Number of SUCPSO_ SUCPSO_ SUCPSO_
. VCA (,,-NMF  GLNMF N
pixels Llsoft L2,1 L1/2
900 4.173+£0.489 4.074£1.002 4.074+0.947 3.284+0.928 3.972+1.657 3.069+1.064
2500 4.004+0.909 3.425+0.551 3.407+0.568 3.466+0.794 3.710+0.611 3.183+0.841
3600 3.960+0.623 3.418+0.596 3.414+0.630 2.301+0.455 2.59440.446 2.133+0.493
4900 4.369+0.467 3.580+0.152 3.601+0.148 2.842+0.537 2.919+0.523 2.714+0.414
TABLE VIII

RMSES OF ABUNDANCES ESTIMATED BY THE ALGORITHMS FOR SIMULATED
DATA WITH DIFFERENT NUMBERS OF PIXELS

Number SUCPSO_

Llsoft

SUCPSO_
12,1

SUCPSO_
L2
0.088+0.005
0.098:0.048
0.072+0.019
0.095+0.019

FCLS SUnSAL ~ CLSUnSAL /,,,-NMF  GLNMF

of pixels
900
2500
3600
4900

0.296+0.102 0.298+0.099
0.344+0.138 0.342+0.141
0.3260.125 0.328+0.121
0.335+0.113 0.339+0.131

0.298+0.099
0.342+0.141
0.328+0.121
0.339+0.131

0.297+0.107
0.339+0.137
0.333+0.127
0.348+0.122

0.297+0.106
0.338+0.137
0.332+0.127
0.348+0.122

0.080+0.016
0.100+0.047
0.070+0.017
0.098+0.015

0.100+0.019
0.106+0.048
0.076x0.017
0.1020.013

In Table VI, the overall RMSEs of SUCPSO_L1/2’s abundances
are also the smallest. Similar to the first experiment, the differ-
ences among sparse regularization terms in unmixing are present
in this experiment. Remarkably, under the same sparse unmixing
frameworks, the proposed method enables more accurate abun-
dances to be achieved through the optimization implemented
by the comprehensive-learning-based double swarm PSO. The
proposed method’s robustness to the mixing degree of data is
verified in this experiment.

5) Sensitivity Analysis to the Number of Pixels: The goal
of this experiment is to study the influence of the data’s size
on the algorithms. Five endmembers were used to construct
several datasets consisting of 30 x 30 , 50 x 50, 60 x 60, and
70 x 70 pixels, respectively. SNR is 40 dB. Tables VII and
VIII provide the unmixing results of every algorithm. It can
be observed that our method always outperforms other sparse
unmixing algorithms in endmember extraction and abundance
inversion. Moreover, the proposed method considering different
sparse constraints is not significantly affected by the number of
pixels. SUCPSO_L1/2 gives the best unmixing results among
all the algorithms. MSADs and RMSEs of SUCPSO_L 1soft and
SUCPSO_L2,1 are also smaller than those of gradient methods
optimized sparse unmixing algorithms. It can be concluded that
PSO has superior optimization ability, and reasonable sparse
constraints and learning strategies make it more suitable for
unmixing. In a word, the proposed method is not sensitive to
the changes of the number of pixels and has outstanding unmix-
ing performance compared with other typical sparse unmixing
algorithms.

6) Quantitative Evaluation of Abundances’ Sparseness:
RMSE is a straightforward metric to illustrate the accuracy of the
estimated abundances. However, in terms of sparse unmixing,
there is also a requirement that the spareness of abundances
should be evaluated. To this end, AVSE in (23) is employed to
conduct a deep comparison of the sparse unmixing algorithms.
It is noted that the abundances with the highest degree of
sparsity may be not the best solution. The difference between
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Fig. 5. Comparison of AVSEs for datasets with different number of pixels.

the sparseness of the estimated abundances and true abundances
indicated by AVSE can better evaluate the abundances.

Since the sparsity of the abundances can be related to the
number of endmembers and pixels, the AVSEs corresponding
to each algorithm are analyzed as the number of endmembers
and the number of pixels changes. In Figs. 4 and 5, the AVSEs
of the algorithms are compared. From these two figures, one can
easily conclude that the abundances generated by the proposed
method are very likely to have the similar sparseness of true
abundances. All the algorithms have similarly large AVSEs in
the case of three endmembers. This is because the sparseness
seems to be not apparent when endmembers are few. When
endmembers become more, AVSEs of SUCPSO_L1soft and
SUCPSO_L2,1 are smaller than the other algorithms’, indicating
that their abundances are more consistent with true abundances.
Moreover, when the number of pixels changes, the AVSE values
of our method are still smaller than the gradient methods opti-
mized sparse unmixing algorithms. It can be inferred that two
comprehensive learning strategies can express the abundances’
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Fig. 6. Comparison of the algorithms’ abundance estimation accuracy for
simulated data with spectral varaibility.

inherent sparsity correctly. This advantage enables the proposed
algorithm to have acceptable superiority and stability in the
implementation of sparse unmixing.

7) Sensitivity Analysis to Spectral Variability: It is known that
the existence of noises, nonlinear mixing effects, and endmem-
bers’ spectral variabilities in hyperspectral images may affect
the unmixing process simultaneously. Therefore, we further
generated simulated data with endmember perturbation to give
a possible study on how the spectral variabilities influence
unsupervised sparse unmixing and the proposed method. The
simulated data were constructed referring to [67]. Specifically,
five selected endmembers constitute a reference endmember set.
Each reference endmember multiplied a parameter randomly
drawn from the interval [0.75, 1.25] for each pixel, and the
scaled endmembers were further deteriorated by a 25 dB white
Gaussian noise. Abundances were generated like the above
experiments and the largest abundance is set as 1. Then, the
simulated data were obtained following the LMM, and SNR is
set as 40 dB.

Due to the existence of spectral variability, we have only
compared the RMSEs of the algorithms’ estimated abundances
in Fig. 6. In contrast to the results listed in Table VI, it can
be observed that the overall unmixing accuracies of all the
algorithms decrease a lot even if pure pixels exist in this case.
Remarkably, the proposed method SUCPSO can still provide the
most accurate abundances. However, it also seems to suffer from
the data complexity induced by spectral variability, indicating
that the research of spectral variability in sparse unmixing can
be meaningful in practice.

8) Computation Complexity and Execution Time: Since three
proposed unmixing algorithms with different sparse constraints
are based on Algorithm 1, they have very similar computational
complexity. We can directly analyze the computational cost of
Algorithm 1. During the process of unmixing, the floating-point
calculation in each iteration mainly comes from the update
of particles’ positions and the computation and comparison of
particles’ fitness values. Given a hyperspectral image containing
m bands, n pixels, and r endmembers, each swarm contains ¢
particles, in terms of worst-case complexities, the computational
complexity of two swarms’ above three basic procedures is
O(gmnr + ¢*(m + n)). In addition, the time complexity of two
comprehensive learning strategies for the abundance swarm is
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Fig. 7.  Comparison of the algorithms’ execution time. Results of simulated
data with (a) different numbers of endmembers, and (b) different numbers of
pixels.

Fig. 8. Real hyperspectral images for experiments. (a) Moffett Field.
(b) Cuprite. (c) Urban.

TABLE IX
COMPARISON OF SADS OF ENDMEMBERS EXTRACTED BY THE ALGORITHMS
FOR MOFFETT FIELD DATA

SUCPSO_ SUCPSO_ SUCPSO

Endmember VCA /,,-NMF GLNMF
L1soft L2,1 L1/2
Vegetation 4.731 9.352  9.351 4.563 4.575 10.619
Water 25.934 15.000 14.993 16.428 15.567 14.879
Soil 2.520 3.562 3.554 0.966 0.972 1.594
Average  11.062  9.305 9.299 7.319 7.038 9.031

O(gmnr + ¢*r). As a result, the total computational complex-
ity of SUCPSO turns to be O(gmnr + ¢*(m +n +7)). The
computational complexities of the other compared algorithms
can be found in their corresponding references.

Moreover, the execution time is provided in Fig. 7 when
the simulated data contain different numbers of endmembers
and pixels. We can observe that the proposed method should
spend much more time getting the unmixing results than the
other compared algorithms. It implies that the improvement
of SUCPSO’s efficiency is an essential step to achieve higher
computational performance.

B. Real Hyperspectral Images

Resorting to the ideal simulated data, the abovementioned
experiments have provided convincing quantitative evaluation
for the sparse unmixing algorithms. In this section, experiments
based on three real hyperspectral images are further carried out
to complement the validation of the proposed method in practice.
Fig. 8 shows these three images, which are popularly used for
the evaluation of unmixing algorithms in the literature [68]—
[70]. Therefore, partial ground truth and some related unmixing
results can be referred to.
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Fig. 9. Spectral curves of endmembers extracted by the compared algorithms for the Moffett Field data. (a) Vegetation. (b) Soil. (c) Water.
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Fig. 10.  Abundance maps of three major ground covers in the Moffett Field data.

TABLE X
RES OF THE UNMIXING RESULTS OF THE ALGORITHMS FOR REAL HYPERSPECTRAL IMAGES

Dataset FCLS SUnSAL  CLSUnSAL  {,,-NMF GLNMF  SUCPSO_LlIsoft SUCPSO_L2,1 SUCPSO_L1/2
Moffett Field 0.013 0.012 0.012 0.028 0.028 0.010 0.019 0.018
Cuprite 0.008 0.005 0.005 0.007 0.007 0.005 0.004 0.005
Urban 0.065 0.065 0.064 0.048 0.048 0.028 0.023 0.033
TABLE XI

RUN TIME (IN SECONDS) OF THE ALGORITHMS FOR REAL HYPERSPECTRAL IMAGES

Dataset FCLS SUnSAL CLSUnSAL  /,,-NMF GLNMF  SUCPSO Llsoft SUCPSO L2,1 SUCPSO L1/2
Moffett Field 0.140 0.050 0.023 0.747 3.146 34.903 35.072 35.248
Cuprite 8.179 0.706 0.393 16.769 739.730 1775.747 1772.003 1791.423
Urban 5.528 0.758 0.913 26.640 3878.112 1704.247 1702.237 1706.846
TABLE XII Since true abundances are not available here, RMSE of

COMPARISON OF SADS (IN DEGREES) OF ENDMEMBERS EXTRACTED BY THE

ALGORITHMS FOR CUPRITE DATA abundances cannot be obtained. Abundance maps generated

by each algorithm are compared qualitatively. In addition, two

Endmember VCA £, NMF GLNMF 5155055_ SUE;?O_ suglrgo_ performance metrl.cs are adopted for quantlFatlve eyaluatlon.
Aunie 5505 16437 16536 13945 13315 12455 Spectral angu'lar. dlstance (SAD) [1] .deﬁned in (24) is used 'to
Sphene 5373 3223 3254 2963  3.183  2.749 measure the similarity between an estimated endmember and its

Kaolinite 8.706  6.594  6.580 6992  6.956  6.975 corresponding reference endmember. Reconstruction error (RE)

Montmorillonite  3.516 3.037 3.034 3.117 2.872 2.960 in (25) of unmixing results is also considered

Kaolinite#2 8.274 6.019  6.001 6419 6.365 6.363
Buddingtonite ~ 5.802 5816  5.823  5.821 5.988 5.951

Pyrope 3.002  3.633  3.605 3.890 3.612  4.064
Nontronite ~ 7.176 ~ 6.021  6.005 5904  6.055  6.009 ele
Muscovite 6450 6222 6217  6.614 6612 6276 SAD = cos ! (—A> (24)
Halloysite 12497  10.088 10.119 9.675  9.645  9.642 el fI&]]

Chalcedony 4.941 2997 2985 3302 3.236 3.313

Desert Vamish 8620 6463 6480 5620 5742 5.966 " o 2
dverage __ 7.738 6379 6387 6172 6.132 6227 RE = %21:1 ijl (Xij = Xi5) - (25)
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Fig. 11. Abundance maps of twelve endmembers in the observed reigon of Cuprite data.

1) Moffett Field Data: The firstimage was obtained in 1997 by
the Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
over Moffett Field at the South end of San Francisco, Cali-
fornia. Its spatial resolution is 20 m, and each pixel contains
224 bands with a wavelength range from 0.4 to 2.5 um. As
shown in Fig. 8(a), the dataset for the experiments is a selected
50 x 50-pixel subregion of the original image. After removing
the water vapor absorption bands and bands corrupted heavily

by noises, we finally retained 185 bands (5-104, 116-149, 171—
221) for unmixing. The subregion mainly contains vegetation,
water, and soil. In the experiments, reference endmembers used
for accuracy evaluation were manually selected from the data.
The threshold value and A are respectively 0.1 and 0.55 in
SUCPSO_L2,1 and SUCPSO_L1/2. In SUCPSO_L soft, the
threshold value is set as 0.001. Other parameters remain the
same as the simulated data experiments.
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Spectral curves of endmembers extracted by the compared algorithms

for Urban data. (a) Vegetation. (b) Roof. (c) Asphalt. (d) Dirt.

Table IX compares the accuracy of six algorithms’ estimated
endmembers of vegetation, water, and soil. In this table, our
method considering different sparse constraints performs better
than VCA and the other two unsupervised sparse unmixing
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algorithms. SUCPSO_L 1soft gives the best results in the ex-
traction of vegetation and soil. The water endmember identified
by SUCPSO_L1/2 has a minor SAD. In Fig. 9, the spectral
curves of every algorithm’s endmembers and reference end-
members are visually compared. It can be observed that our
method’s endmember curves are much similar to the reference
endmember curves, proving that accurate endmembers can be
determined during the unsupervised sparse unmixing process of
the proposed method.

In terms of the REs listed in Table X, SUCPSO_L1soft
provides the smallest value, which illustrates the effectiveness
of PSO unmixing framework indirectly. Table XI shows the
execution time of eight algorithms for unmixing three real hy-
perspectral images. The proposed method with different sparse
constraints costs more time than the other sparse unmixing
algorithms. It implies that the improvement of computational
efficiency may be a necessary task for swarm intelligence algo-
rithms like PSO. Fig. 10 displays the estimated abundance maps.
Vegetation and soil are clearly recognized by almost all the al-
gorithms. However, large errors seem to occur in the abundance
maps of SUnSAL and CLSUnSAL. Abundance maps of the
proposed method with three sparse regularizers are considered to
be in line with the published results. Moreover, the sparseness of
ground covers’ abundances can be revealed by SUCPSO_L1/2.

2) Cuprite Data: The second image was collected by the
AVIRIS over a copper-iron mine named Cuprite in Nevada on
June 19, 1997. Its spectral resolution is about 10 nm, and its
spatial resolution is 20 m. In the wavelength range from 0.4
to 2.5 pum, 224 bands were continuously sampled. Fig. 8(b)
displays a selected subimage containing 200 x 200 pixels of the
whole dataset. In this area, various minerals such as alunite and
kaolinite widely exist. In this experiment, spectral bands that are
severely affected by noises were removed before unmixing, and
188 bands (3—103, 114-147, 168-220) were used for unmixing.
According to the previous unmixing results in the literature, the
number of endmembers was set as 12 by ignoring some rare
materials. The standard mineral spectra in the USGS spectral
library are used as reference endmembers for evaluating the ex-
tracted endmembers. The threshold value and A of the proposed
method are 0.001 and 0.01. Other parameters remain the same
as the simulated data experiments.

Similar to the first experiment in this section, Table XII
shows the SADs of each algorithm, which measures the sim-
ilarity between the estimated endmembers and the reference
endmembers. It is clear that SUCPSO_L1soft, SUCPSO_L2,1,
and SUCPSO_L1/2 have obtained the best results of two kinds
of materials, respectively. Although GLNMF has accurately
estimated four endmembers, its average SAD is slightly worse
than our method. Since many minerals presented in this area are
considered to be highly mixed, VCA cannot provide accurate
endmembers as the other algorithms in most situations though
buddingtonite and pyrope have been accurately extracted.

In Fig. 11, abundance maps of twelve materials are displayed
in detail. Abundance maps corresponding to pyrope and desert
varnish obtained by SUnSAL and CLSUnSAL seem to be
wrongly estimated. In comparison, the unmixing results of the
proposed method can clearly reflect the actual distribution of
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Fig. 14.  Abundance maps of four endmembers in the Urban data.

12 materials. Fig. 12 compares the spectral curves of various
materials extracted by six algorithms with standard spectra. The
REs of each algorithm are listed in Table X. Table XI shows the
time costs. One can see that the endmembers extracted by the
proposed method are very close to their corresponding standard
spectra. Moreover, in terms of RE, our approach also performs
better than the other algorithms in all situations where different
sparse constraints are considered.

3) Urban Data: The third image was collected by the Hyper-
spectral Digital Imagery Collection Experiment over an urban
area at Copperas Cove, Texas, USA. Its spectral resolution is
about 10 nm, and its spatial resolution is 2 m. In the wavelength
range from 0.4 to 2.4 pum, 210 bands were continuously sampled.
Fig. 8(c) displays the image containing 307 x 307 pixels of the
whole dataset. Several types of natural round covers and artificial
buildings can be clearly observed in the area. This hyperspectral
image has been widely used for hyperspectral unmixing in the lit-
erature [36]—[38]. According to these existing works, the number
of endmembers was set as four in this experiment. Specifically,
vegetation, roof, asphalt, and dirt have been identified by the
algorithms. It is known that the spatial distribution of these
materials has strong sparsity, which makes this image suitable
for the evaluation of sparse unmixing methods. Spectral bands
that are severely affected by water absorption and atmospheric
effects were removed before unmixing, and 162 bands (5-75,
77-86, 88—100, 112-135, 154-197) were used for unmixing.
The threshold value o and A of the proposed method are 0.1 and
0.4. Other parameters remain the same as the simulated data
experiments.

According to the endmember extraction accuracies displayed
in Table XIII, we can see that SUCPSO_L.1/2 has obtained the
best endmembers including roof, asphalt, and dirt. The SAD
of vegetation endmember extracted by SUCPSO_L1soft is the
smallest. {5 1-NMF and GLNMF have also recognized the dirt
accurately. The RE and the time cost of each algorithm are

TABLE XIII
COMPARISON OF SADS OF ENDMEMBERS EXTRACTED BY THE ALGORITHMS
FOR URBAN DATA

SUCPSO_ SUCPSO_ SUCPSO_

Endmember VCA  /,,,-NMF GLNMF Lisoft 2.1 12
Vegetation 9.294 12.198 12.140 7.593 8.435 9.764
Roof 44700 38.118 38.178 29.238  28.706  20.042
Asphalt 46.157 33.465 33.448 34337 38346 28.563
Dirt 17.358 5311 5292 5.143 6.426 4.112
Average 29.377 22273 22.265 19.078 20.478  15.620

listed in Table X and Table XI, respectively. Spectral curves of
the extracted endmembers are compared in Fig. 13 and Fig. 14
displays their corresponding abundance maps. Particularly, the
roof abundance map of SUCPSO_L1/2 is closer to the ground
truth than the other compared algorithms. From these unmixing
results, it can be concluded that the proposed method can obtain
accurate endmembers similar to the references and reflect the
actual distribution of materials. The above experiments validate
that our proposed method has great potential in sparse unmixing,
and can serve as a general approach for the incorporation of
different sparse constraints into unmixing.

V. CONCLUSION

In this article, we present an unsupervised sparse unmixing
method using comprehensive-learning-based particle swarm op-
timization. Two swarms are first constructed to update endmem-
bers and abundances alternately through sharing mutual best
position information. Targeting for mitigating the premature
convergence of basic PSO and facilitating more precise solu-
tion search, the swarms’ fitness functions are formulated into
fitness vectors based on dimension division. Moreover, under
this improved PSO optimization framework, two comprehensive
learning strategies are devised to further refine the possible
element-level position search and improve local and global
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abundances’ sparsity. As a versatile sparse unmixing framework,
the proposed method can be easily extended to accommodate
different sparse constraints of abundances. Experimental results
of both simulated data and real hyperspectral images indicate
that the proposed method can generate abundances with high
accuracy and reasonably expressed sparsity and outperform
representative sparse unmixing methods.

However, the inherent mechanism of swarm intelligence
techniques often induces the PSO-based method to be time-
consuming. The effective balance of constraints’ impact on
unmixing is also a very challenging task. Therefore, it is of great
significance to take a step to overcome these drawbacks in our
future work.
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