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ClouDet: A Dilated Separable CNN-Based Cloud
Detection Framework for Remote Sensing Imagery

Hongwei Guo , Hongyang Bai , and Weiwei Qin

Abstract—Cloud detection is one of the essential procedures
in optical remote sensing image processing because clouds are
widely distributed in remote sensing images and cause a lot of
challenges, such as climate research and object detection. In this
article, a lightweight deep-learning-based framework is proposed
to detect cloud in remote sensing imagery. First, a multiple features
fusion strategy is designed to extract learnable manual features
and convolution features from visible and near-infrared bands.
Then, a lightweight fully convolutional neural network (ClouDet)
with a microarchitecture named dilated separable convolutional
module is used to extract the multiscale contextual information
and gradually recovers segmentation results with the same size as
input image, which is more effective for large-scale cloud detection
with larger receptive field, less parameters, and lower compute
complexity. Third, context pooling is designed to amend the possible
misjudgments. Visual and quantitative comparison experiments
are conducted on several public cloud detection datasets, which
indicates that our proposed method can accurately detect clouds
under different conditions, which is more effective and accurate
than the compared state-of-the-art methods.

Index Terms—Cloud detection, cloud segmentation,
convolutional neural network (CNN), deep learning, remote
sensing.

I. INTRODUCTION

O PTICAL remote sensing imagery has become one of
the most valuable data sources for monitoring changes

in the ecological environment, land types, and human’s impact
on the surface. However, clouds cover more than 50% of the
earth’s surface, of which about 55% of the land and 72% of the
area over the ocean is covered by clouds [1]. On the one hand,
cloud coverage is an important factor for climate research, which
can make valuable predictions about weather and climate change
[2], [3]. On the other hand, for other practical applications, it is
hard to extract useful information from the images covered by
heavy clouds, which may limit the use of remote sensing images
and reduces the utilization of remote sensing data. Moreover, the
bright effects of clouds and the darkening effects of cloud shad-
ows affect a variety of data analysis, causing problems in many
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remote sensing activities. Simultaneously, transferring useless
remote sensing images with too much clouds to ground station
brings an expensive cost of labor, storage, and computational
resources. Crucially, almost all the processing of optical remote
sensing imagery requires pixel-scale cloud detection thus cloud
detection has become one of the most essential procedures in the
analysis and preprocessing of optical remote sensing imagery.

In the past 20 years, a considerable amount of cloud detection
methods have been developed, which could be divided into
two categories: threshold-based methods [4]–[8] and machine-
learning-based methods [9]–[12]. Threshold-based methods in
traditional modeling are widely used for cloud detection be-
cause of their high accuracy and reliable robustness, which
are designed for different sensors to detect clouds in remote
sensing imagery by selecting appropriate thresholds of spectral
reflectance or brightness temperature via specific channels. In
recent years, several threshold-based methods have grown up
around the theme of threshold-based methods. For instance,
the automatic cloud cover assessment algorithm was designed
for the cloud cover assessment of Landsat-7 imagery [4]. Zhu
et al. [5] introduced the function of mask (Fmask) algorithm,
which adopted a decision tree to separate the potential pixels
from noncloud region based on multiple threshold functions. An
improved version of Fmask was introduced in [6], which made a
series of improvements in the Fmask algorithm for Landsat 4–7
and proved that the cirrus band is useful for cloud detection. In
considering of that most previous haze/cloud detection methods
for Landsat imagery cannot adequately suppress land surface
information, Chen et al. [7] proposed an iterative haze optimized
transformation for improving haze detection, which could effec-
tively remove the land surface information. Different from the
method of cloud detection for a single image, Sun et al. [8] used
multitemporal airborne visible/infrared imaging spectrometer
data with 224 bands at visible to SWIR wavelengths for detecting
clouds. However, it is hard to determine the suitable thresholds
to detect cloud accurately for the complex scenes and multiple
types of cloud.

Most machine-leaning-based methods are on the basis of
handcrafted features with classifiers such as support vector
machine (SVM) [9], K-Nearest Neighbors (KNN) [10], and prin-
cipal component analysis. These methods usually need hand-
crafted features such as texture features [11] and morphological
features [12] as the input of above classifiers. For example,
Li et al. [13] adopted an SVM classifier using the brightness
and texture features to detect cloud. Yuan and Hu [14] devel-
oped a cloud detection method based on object classification
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using dense SIFT features extracted by the bag-of-words model.
However, although the combination of handcrafted features and
machine-learning-based classifiers deliver considerable perfor-
mance, the handcrafted features are usually designed for special
scenes and images from special sensors, which make them not
robust.

Recently, deep-learning-based methods have been applied to
many image processing applications and achieved good per-
formance. Researchers have shown an increased interest in
cloud detection using deep-learning. Xie et al. [15] proposed
a deep convolutional neural network (CNN) with two branches
is designed to predict these superpixels as thick cloud, thin
cloud, or noncloud. Chen et al. [16] developed an end-to-
end three-dimensional (3-D)-CNN method for cloud and cloud
shadow detection with four band-combination images as the
input imagery. Francis et al. [17] introduced a fully convolutional
network architecture to detect cloud, known as U-net proposed
by Ronneberger et al. [18], which fuses the shallowest and
deepest layers of the network, thus routing low-level visible
content to its deepest layers. Shao et al. [19] proposed a mul-
tiscale features CNN to learn the multiscale global features of
input images, which consist of visible, near-infrared, short-wave,
cirrus, and thermal infrared bands of Landsat 8 imagery. Mo-
hajerani and Saeedi [20] trained a fully convolutional network
with both local and global features from the entire scene for
end-to-end pixel-level labeling of the satellite images. And to
identify the cloud regions in aerial or satellite images accurately
in the presence of snow and haze, an improvement version
has been developed with filtered Jaccard loss in [21]. Chen et
al. [22] applied an adaptive simple linear iterative clustering
method to obtain high-quality superpixels and detect clouds by
extracting multiscale features from each superpixel. Then, to
improve the utilization of high-resolution satellite data, Chen
et al. [23] presented a CNN architecture for cloud detection,
which can use multisource data (content, texture, and spectral)
as an input of the unified framework. In fact, most methods
simply rely on the convolution kernel to extract the features in
the image. To detect cloud mask using thumbnails, Yang et al.
[24] propose a cloud detection neural network (CDnet) with
a feature pyramid module and a boundary refinement block.
In view of that the cloud–snow coexistence makes it difficult
to detect clouds in remote sensing imagery, Guo et al. [25]
proposed an improved version of CDnet based on adaptive fea-
ture fusing model and high-level semantic information guidance
flows, which achieved accurate detection performance on the
ZY-3 satellite thumbnail dataset. Recently, Jeppesen et al. [26]
have been introduced RS-Net to detect clouds in Landsat 8
images, which is trained with both automatically (Fmask) and
manually generated ground truth images of two public datasets.
The experiments have shown that results obtained by weights
trained with Fmask outperform the Fmask direct results. Current
experimental results have delivered outstanding performance
compared to traditional methods in cloud detection. However,
most of the CNN-based cloud detection methods are merely
developed on the basis of the semantic segmentation methods,
such as FCN [27], SegNet [28], and Deeplab [29], and ignore the
characteristics of cloud. For example, clouds tend to distribute

in large scale and varies in shape, which require larger receptive
field.

Some studies have shown that it can effectively improve the
performance of CNN models by fusing CNN and handcrafted
features. In the medical field, Li et al. [30] proposed a fusion
algorithm that combines handcrafted features into the features
learned at the output layer of a 3-D deep CNN, including
intensity features, geometric features, and texture features. The
experiment result has shown that the fusion algorithm takes full
advantage of the handcrafted features and the highest level CNN
features. Ragab and Attallah [31] proposed a novel CAD system
called FUSI-CAD based on the fusion of multiple different
CNN architectures with three handcrafted features including
statistical features and textural analysis features, which has been
proved to be reliable and accurate. For remote sensing image
analysis, handcrafted features have always played an important
role. Some researchers made attempts to combine deep CNN and
handcrafted features. Sun et al. [32] integrated multilevel seman-
tic features extracted by bag-of-visual-words model and CNN
model to enhance the ability of capturing multiscale land objects.
Zhao et al. [33] proposed a fractional Gabor convolutional
network to extract multiscale, multidirectional, and semantic
change features, which yield robust feature extraction against
semantic changes. The above research article have shown that
the fusion of handcrafted features and CNN features can help
improve the performance of the CNN model.

In view of this, we proposed a novel method to identify cloud
regions and separate them from noncloud regions in optical
remote sensing imagery. Our proposed method is an end-to-end
fully CNN, which detect clouds in pixel-scale. This network
named ClouDet consists of microarchitecture named dilated sep-
arable convolutional module, multiple feature generation layer,
and context pooling layer. First, inspired by the progress made
in the traditional cloud detection methods, we design a mul-
tiple features fusion strategy by choosing several handcrafted
features, such as Gabor, mean value, and Laplacian features, to
generate new bands and then they are fused with original bands
to form the multiple features input of the network. Then, we
take each pixel of combination images as the basic research unit
and construct ClouDet based on a series of dilated separable
convolutional modules. With the equipment of dilated separa-
ble convolutional module, ClouDet has larger receptive field,
less parameters, lower compute complexity, and could identify
clouds accurately. Next, the high-level semantic information in
different scales produced by feature learning would integrate
with corresponding low-level spatial information in the process
of classification. Finally, a context pooling layer is proposed
to amend the possible misjudgments according to the context
information.

The contributions of this article are as follows.
1) Proposing ClouDet, a light-weighted CNN-based cloud

detection framework for remote sensing imagery, which
provides a solution for efficient and accurate cloud detec-
tion tasks on embedded platforms, such as satellites.

2) We proposed a multiple features fusion strategy, which
gives the network richer features that could hardly learn
by convolutional operation.
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TABLE I
INTRODUCTION OF EACH BAND OF LANDSAT 8

3) We proposed a dilated separable convolutional module
to minimize model size and generate features with lager
receptive field.

4) We designed a context pooling strategy to amend the pos-
sible misjudgments according to the context information.

The rest of this article is organized as follows. Section II
introduces the proposed ClouDet framework. The experimental
results and discussion are presented in Section III. Finally,
Section IV concludes this article.

II. PROPOSED METHOD

In this section, the proposed methodology for addressing the
problem of cloud detection is described. First, a brief explanation
of the data provided by Landsat 8 is given. Next, the proposed
cloud detection framework, multiple features fusion strategy,
dilated separable convolutional module, and context pooling
strategy are described, respectively.

A. Landsat 8

The Landsat 8 program is the eighth program of land satellites
in the National Aeronautics and Space Administration (NASA).
The program is jointly operated by NASA and the U.S. Geo-
logical Survey, and its goal is to make long-term observations
of the ground. The Landsat 8 satellite provides rich and reliable
data for people to better understand the earth and use resources.
Landsat 8 carries two main payloads: OLI (operational land
imager) and TIRS (thermal infrared sensor). OLI includes eight
bands with a spatial resolution of 30 m and a panchromatic
band with a spatial resolution of 15 m. OLI includes all the
bands of the ETM + sensor. At the same time, in order to
prevent atmospheric absorption characteristics, OLI readjusted
the fifth and eighth bands. The fifth band excludes the water
vapor absorption characteristics at 0.825 μm, and the eighth
band of the panchromatic band has a narrower range, which
can better distinguish the vegetation information. In addition,
two new bands have also been added: the coast band is mainly
used for coastal zone observations, and the cirrus band includes
strong absorption characteristics of water vapor. Table I presents
the relevant information of each band of Landsat 8. However,
many platforms on satellites are only equipped with visible and
near-infrared bands, such as ZY-3 [34] and GF-2 [35], which
provides limited feature information to detect clouds in remote

Fig. 1. Workflow of ClouDet in detail. Concat and Context pool mean con-
catenation and context pooling layers, respectively.

sensing imagery and make the task more difficult. In order
to cover the cloud detection tasks on most of optical satellite
platforms, only four spectral bands—Band 2 to Band 5 are used
in this article.

B. ClouDet

Previous state-of-the-art deep CNN have achieved significant
performance in a wide range of computer vision tasks, such as
image classification, saliency detection, object recognition, and
semantic segmentation. Most of the CNN-based methods are
developed on the basis of the semantic segmentation methods,
such as FCN, which can conduct intensive prediction without
fully connected layers. This structure can adapt to the image of
any size. However, thin cloud and highlight objects on the ground
tend to have similar characteristics, which make it a challenging
task to separate them from each other merely with convolutional
filters. Inspired by the effectiveness of handcrafted-based meth-
ods and the principle of FCN, we proposed ClouDet to extract
the multiscale global features to identify clouds in optical remote
sensing images.

Fig. 1 illustrates the overall framework of our proposed
ClouDet method. We choose RGB and near-infrared bands to
form the initial input remote sensing image. In view of the
efficiency of handcrafted features, two kinds of edge features
(Gabor and Laplacian) and mean value are chosen as the sup-
plementary features, which are introduced in Section C. We
designed three feature generated layers to generate the feature
maps with filters of 3× 3 pixels. The three kinds of feature maps
are concatenated with the convolutional feature maps to form the
final input image of the segmentation model. And a subnetwork
ncs based on SE block [36] is designed to link the final input
image and the segmentation model, which could determine
the importance of image features in different bands through
gradient backpropagation and provide reference for the choice of
handcrafted features in this framework. The segmentation model
is based on FCN and similar to the UNet, which consists of two
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arms, the encoder and the decoder. The convolutional structure of
these arms is described in Section II-F. The encoder is designed
to extract features from the scene, and expand the receptive
field by changing the size of the feature maps at the same time.
Meanwhile, the decoder takes these features and reprojects them
to create the output mask. Residual connections are used to fuse
low-level spatial information and high-level semantic informa-
tion, which could provide more detailed information of clouds
so as to realize the cloud detection in pixel level more accurately.
The final layer of decoder adopts a SoftMax activation to identify
each pixel as ground or cloud. At last, in view of that clouds are
usually continuous in remote sensing images, a context-based
cloud detection result correction strategy is proposed to amend
the possible misjudgments and then the final output cloud mask
could be created.

C. Multiple Features Fusion Strategy

The origin input image of the framework is the combination
of bands 2–5 of Landsat 8. According to the observations of
optical remote sensing images, clouds and high albedo terrains
(bright urban areas, for example) tend to have similar features,
which makes it a challenging task to identify the classification of
each pixel. With the development of cloud detection technology
in remote sensing, several handcrafted features are designed
to identify cloud with machine-learning-based classifier, such
as SVM and KNN. The main process of the above method
is to identify each image block by the generated handcrafted
features, which is similar to the process of CNN. Inspired by
excellent performance of handcrafted features in cloud detec-
tion, we choose three handcrafted features (Gabor, Laplacian,
and mean value) generated from the origin input image to
create new feature maps, which are then concatenated with other
convolutional feature maps to form the final input image of the
segmentation model. The handcrafted features adopted in this
article are described as follows.

1) Gabor: Gabor wavelet [37] was invented by Dennis Ga-
bor, which uses complex function as the basis of Fourier trans-
form in information theory applications. Gabor wavelet is very
similar to the visual stimulus response of simple cells in the
human visual system. It has good characteristics in extracting
the local space and frequency-domain information of the target.
Gabor wavelet is sensitive to the edge of the image, and can
provide good direction selection and scale selection character-
istics, in addition, it is not sensitive to changes in illumination,
and can provide good adaptability to changes of illumination.
The above characteristics make Gabor wavelet widely used in
visual information understanding. The Gabor wavelet is defined
as follows:
⎧⎪⎨
⎪⎩
g (x, y; λ, θ, ψ, σ, γ) = exp

(
−x′2+γ2y′2

2σ2

)
cos

(
2π x′

λ
+ ψ

)

x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ

(1)
where λ represents the wavelength parameter of the cosine
function in the Gabor kernel function, θ is the direction of
parallel bands in the Gabor filter kernel, and ψ is the phase

parameter of the cosine function in the Gabor kernel function,
which is between −180◦ and 180◦. γ is the spatial aspect ratio,
which determines the ellipticity of the shape of the Gabor kernel
function.σ represents the standard deviation of the Gaussian fac-
tor of the Gabor function. In this article, we develop an approach
by utilizing Gabor filters to modulate the learned convolution
filters. With the help of gradient backpropagation, the parameters
of the Gabor function are learnable. Gabor convolutional layer
has four parameters: output channel, input channel, height of
convolution kernel, and width of convolution kernel, which can
be embedded in CNNs like standard convolution layer.

2) Mean Value: The mean value refers to the arithmetic mean
of the pixel values of all the pixels in an image block, which is
calculated as the following equation:

f̄ =
M∑
i=1

N∑
j=1

f(i, j)

M ·N (2)

where f̄ is the mean value of the image block, M and N are the
width and height of the image block, respectively, and f is the
pixel value of each point.

3) Laplacian: The high-frequency component of the image
corresponds to detailed information such as edge texture, and
the low-frequency component of the image corresponds to the
background. The amount of information in the image is mainly
reflected in the edge texture. We define the edge as the boundary
of the region where the gray scale changes sharply in the image.
The change of the image gray scale can be reflected by the
gradient of the image gray distribution. Laplacian operator is
widely used in edge detection because of its high efficiency. In
digital images, the Laplacian operator is defined as

∇2f (x, y)

= f (x− 1, y − 1) + f (x− 1, y) + f (x− 1, y + 1)

+ f (x, y + 1)− 8f (x, y) + f(x, y − 1)

+ f (x+ 1, y + 1) + f (x+ 1, y) + f (x+ 1, y − 1)
(3)

where∇2f(x, y) is the generated edge texture image andf(x, y)
is the origin image.

The three kinds of handcrafted feature maps are shown in
Fig. 2, which have distinct spectral characteristics and can be
easily separated from the background.

D. Channel Screening

The multiple features fusion strategy designed in Section C
concatenates three kinds of handcrafted features with convolu-
tional features in channelwise. However, the channel relation-
ships modeled by directly concatenates are inherently implicit
and local. We expect the learning of multiple features to be
enhanced by explicitly modeling channel interdependencies, so
that the network is able to increase its sensitivity to informative
features which can be exploited by subsequent transformations.

In order to address the issue of uncorrelated information
between channels, we first consider the connection between
the channels in feature maps. Each of the handcrafted feature
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Fig. 2. Three kinds of handcrafted feature maps. (a) Origin image. (b) Mean
value map. (c) Laplacian feature map. (d) Gabor feature map.

operators and convolutional filters deals with a local receptive
field, which consequently make each unit of the transformation
output unable to exploit contextual information outside of this
region. The current attention mechanism mainly obtains channel
attention through global average pooling, which is realized based
on the global features obtained by global average pooling, such
as the SE block proposed in [38]. Global average pooling pays
more attention to the overall information, while global max
pooling is easily affected by extreme values. So, global average
pooling is commonly used to extract global features. However,
the characteristic of global maximum pooling does not certainly
cause negative effects in cloud detection tasks. When the object
occupies a larger proportion in the feature map, global average
pooling can better capture the features of object. For scenes
with few clouds or thin clouds, global average pooling may pay
more attention to irrelevant features that account for a larger
proportion, while global max pooling may make it easier to
capture object features. To build the connection between the
channels in feature maps, we first intend to quantify the global
spatial information of each channel through global average
pooling and global max pooling. The global average pooling
is defined as

F=

M∑
x=1

N∑
y=1

f(x, y)

M ·N (4)

where F is the mean value of the image block, M and N are the
width and height of the image block, respectively, and f is the
pixel value of each point. The global max pooling is defined as

F= max(f(x, y))x = {1, 2, . . . ,M} , y = {1, 2, . . . , N}
(5)

where F is mean value of the image block, M and N are width
and height of the image block, respectively, and f is the pixel
value of each point.

Then, to fully capture channelwise dependencies, we design a
bottleneck structure based on SE block. Specifically, we follow
global average pooling and global max pooling with a convolu-
tional layer of 1× 1× C

r , convolutional layer of 1× 1× C,
and a ReLU, which could effectively capture the nonlinear
interaction between channels. Then, we concatenate the feature
maps from the two branches. Finally, a sigmoid activation is
adopted to output the rescaling factor of the feature maps. With
the redefinition of the importance of the feature map by the
rescaling factor, the valuable information in the feature map can
be effectively highlighted. A diagram illustrating the structure
of channel screening module is shown in Fig. 3.

E. Dilated Separable Convolution

Clouds are usually continuous and occupy a large proportion
in remote sensing images, which brings an urgent need to de-
velop an accurate and robust method with larger receptive field.
Inspired by large receptive field of the dilated convolution in [39]
and high model compression ratio of the depthwise convolution
in MobileNet V2 [40], we propose an efficient microarchitecture
named dilated separable convolution based on atrous separable
convolution proposed in deeplabV3+ [41], as shown in Fig. 4(d).
Unlike the atrous separation convolution, in order to prevent the
negative effects of continuous hole separation convolution, such
as grid effect and irrelevant long-distance features, we added an-
other branch with standard convolution. The channel dimension
in dilated separable convolutional module is expanded first and
then reduced on the purpose of achieving higher memory effi-
ciency. We define the dilated separable convolutional module as
follows. A dilated separable convolutional module is composed
of an expand convolution layer with only 1× 1 filters, a dilated
separable convolution layer with kernels of different dilated
rate, a standard convolution layer, and a squeeze convolution
layer with only 1× 1 filters. The standard convolution layer,
atrous separable convolution layer, and squeeze convolution
layer have the same number of kernels, which is half the number
of kernels in the expand convolution layer. The dilated separable
convolutional kernels with different dilated rate are shown in
Fig. 4(a)–(c) respectively.

F. Segmentation Model

The network architecture is illustrated in Table II, which is
divided into several stages according to the size of output feature
maps. The input sizes and output sizes are set to 384×384 pixels.
The segmentation model consists of feature generated module,
downsampling module, upsampling module, dilated separable
convolutional module, and a series of bottlenecks from ResNets
[42], which has a single main branch and extensions with convo-
lutional filters that separate from it, and then merge back with an
elementwise addition. The feature generated module is designed
as the initial block of ClouDet, which consists of convolutional
layers, three kinds of hand-crafted feature layers. We place batch
normalization [43] and ReLU [44] between all convolutions. The
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Fig. 3. Workflow of channel screening module. GAP, GMP, Conv, and Concat mean global average pooling, global max pooling, convolution, and concatenation,
respectively.

Fig. 4. Dilated separable convolutional module designed in this article with different dilated rate. (a) Dilated kernel of rate = 1. (b) Dilated kernel of rate = 2.
(c) Dilated kernel of rate = 4. (d) Dilated separable convolutional module. C is the number of the feature maps.

downsampling module is similar to the bottleneck in ResNet
with a 3× 3 convolutional layer with stride 2. And on the
contrary, the upsampling module is with a deconvolutional layer
of stride 2.

The feature generated module contains a single block, which
is introduced above. Stage 1 consists of a downsampling module
and four bottleneck blocks. Stage 2 and stage 3 have almost
the same structure with nine convolutional modules, with the
exception that the first module of stage 2 is set to downsampling
module. Considering that we used dilated convolution in the
model, in order to eliminate the effect of the grid effect, we
set the dilated rate to 1, 2, 5, and 9 in order. Stages 1–3 form
the encoder and stages 4–5 are the decoder. As the last part of

ClouDet, the full convolutional layer hasC feature maps, which
have the same size of input image.

G. Context Pooling

Since clouds and high albedo terrains (bright urban areas, for
example) tend to have similar features, which increases the pos-
sibility of false positive, while clouds are generally distributed
continuously in remote sensing images, rather than standalone
deemed as discrete points, we believe that the category infor-
mation of surrounding pixels has a certain reference value to
the current pixel classification results. To address the problem,
we designed a context pooling strategy to amend the possible
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TABLE II
ARCHITECTURE OF CLOUDET. OUTPUT SIZES ARE GIVEN FOR AN EXAMPLE

INPUT OF 384× 384 PIXELS

DS conv = Dilated separable convolution.

Fig. 5. Diagram of context-based pooling.

misjudgments without building a mathematical model or modify
existing framework. In view of that clouds are continues and
rarely exist alone in a single pixel, we use the classification
results of neighboring pixels to correct the classification results
of the current pixel. As shown in Fig. 5, each pixel is surrounded
by eight pixels and they could form four rectangular regions of
2× 2 pixels under the condition that the pixel is the intersection.
The original result is a binary image, where the pixel value
marked as cloud is 1, otherwise it is 0. The pixels in every 2× 2
rectangular region determine the type of the region as cloud
or ground by weighted voting. Then, the generated results are
adopted to predict the final result by weighted voting again. The
kernel size of context pooling is set to 3 and stride is set to 1.
And the context pooling filter could be defined as

∇2f (x, y) = f (x− 1, y − 1) + 2f (x− 1, y)

+ f (x− 1, y + 1)

+ 2f (x, y + 1) + 4f (x, y) + 2f(x, y − 1)

+ f (x+ 1, y + 1) + 2f (x+ 1, y)

+ f (x+ 1, y − 1) (6)

where∇2f(x, y) is the generated edge texture image andf(x, y)
is the origin image.

III. EXPERIMENTAL RESULTS

In this section, we briefly introduce the datasets used in
this article, and then provide evaluation metrics. At last, the
visual and numerical results over these datasets are reported and
discussed.

A. Datasets

1) 38-Cloud Dataset: 38-Cloud dataset [20] consists of 38
Landsat 8 scenes with 4 bands (blue, green, red, and near-
infrared) mainly selected from North America, which is divided
into training set with 18 scenes and testing set with 20 scenes.
The ground truths of these scenes are annotated manually in
pixel-level. All the 38 scenes are cropped into 384× 384 pixels.
There are 8400 patches in the training set and 9201 patches in
the testing set.

2) 95-Cloud Dataset: 95-Cloud dataset [21] is an improve-
ment and supplement to 38-Cloud Dataset. A total of 57 new
Landsat 8 scenes are selected and added to the training set of
38-Cloud Dataset. In order to simulate all the situations as much
as possible, images in 95-Cloud are selected to cover many
land cover types such as soil, vegetation, urban areas, snow,
ice, water, haze, and different types of cloud patterns. And the
cloud coverage in 95-Cloud Dataset is kept at about 50%. Same
as 38-Cloud Dataset, images in 95-Cloud Dataset are divided
into pieces of 384× 384 pixels. The training set of 95-Cloud
Dataset consists of 34 701 images and the testing set consists of
9201 images.

3) SPARCS Dataset: The SPARCS dataset [45] consists of
80 patches extracted from the Landsat 8 scenes, and the size
of each patch is 1000× 1000. The scenes in the dataset are
manually annotated. Each pixel is classified as one of “cloud,”
“shadow,” “snow/ice,” “water,” “land,” and “flood.” We combine
all classes except “cloud” under the “clear” category to generate
a binary mask for each patch.

B. Evaluation Criteria

We adopted several widely used measures to quantitatively
evaluate the performance of our cloud detection method, includ-
ing precision, recall, Jaccard index [20], specificity, and overall
accuracy

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

Jaccard Index =
TP

TP + FP + FN
(9)

Specificity =
TN

TN+ FP
(10)

Overall Accuracy =
TP+ TN

TP + TN+ FP + FN
(11)
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Fig. 6. Evolution of the loss function, precision, and recall on 38-Cloud Dataset and 95-Cloud Dataset. (a) Evolution of the precision rate. (b) Evolution of the
recall rate. (c) Evolution of the loss function.

where TP , TN, FP, and FN are the numbers of true positive,
true negative, false positive, and false negative pixels in each test
set scene, respectively.

C. Baseline Methods

We compared the proposed algorithm ClouDet, with the
state-of-the-art methods, including FCN [27], deeplabv3+ [41],
Cloud-Net+ [21], BiSeNetV1[46], and Fmask [6]. We tested
ClouDet and other methods mentioned above on the test dataset
for comparison.

D. Implementation Details

We implemented our network on the open source Pytorch [47]
framework and executed on a 64-bit Ubuntu 16.04 computer
with 11 GB memory GeForce GTX1080Ti GPU and Intel Core
i7-7700K CPU. The comparison models were implemented in
their original environments without any additions.

The proposed ClouDet was trained on 38-Cloud Dataset,
95-Cloud Dataset, and SPARCS dataset successively, with an
initial learning rate of 0.0005. The network was trained by Adam
optimization algorithm [48] with a batch of eight images, and
the weight decay and momentum are 0.1 and 0.9, respectively.

In order to validate the effectiveness of the network, we trained
and tested the performance of ClouDet under different network
configurations on training and validation sets. We compared the
performances of ClouDet and models without context pooling
and without dilated separable convolution to demonstrate the
benefits of the addition of the dilated separable convolutional
module and context pooling strategy in the encoder–decoder
module. ClouDet without context pooling denotes the network
without the context pooling layer, where we generate the output
from the last convolutional layer in the decoder module. In the
network of ClouDet without dilated convolution, we replace
the dilatedwise convolution with convolution from each dilated
separable convolutional module shown in Fig. 4. Except for the
changes in the model structure, all the other parameter settings of
ClouDet and the compared models were the same in the training
and testing stages. The experiment al results are shown in Figs. 6
and 7 from which we can see that both the dilated separable
convolutional module and context pooling strategy in ClouDet
can help to improve the cloud detection performance.

E. Experimental Result

To determine the final neural network structure, we regard
stage 2 in Table II as a superimposable component called block.
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Fig. 7. Evolution of the loss function, precision, and recall on SPARCS dataset. (a) Evolution of the precision rate. (b) Evolution of the recall rate. (c) Evolution
of the loss function.

TABLE III
PERFORMANCE COMPARISON OF MODELS WITH DIFFERENT DEPTHS

By superimposing different numbers of blocks, we designed a
series of neural network models with different depths. The per-
formance of the above model is evaluated on 38-Cloud dataset
and 95-Cloud dataset, and the results are given in Table III.
Obviously, it can be seen from Table III that neural networks are
difficult to achieve optimal performance with too shallow or deep
structure. Simultaneously, a deeper network structure would
generate more parameters and a larger amount of calculation,
which limits the efficient cloud detection tasks on the embedded
platform. Therefore, we adopt cloudet-block2 as the final neural
network structure named ClouDet, as given in Table II.

Then, we test the performance of ClouDet on 38-Cloud dataset
and 95-Cloud dataset to demonstrate efficient and accurate
performance for practical applications. All our models, train-
ing, testing, and performance evaluation scripts were using the
Pytorch framework, with cuDNN backend. To compare the
results, we use precision, recall, Jaccard index, specificity, and
overall accuracy metrics.

The results, as given in Table IV, indicate that the effi-
ciency of ClouDet is evident with a comparison of number
of floating-point operations and parameters used by different
models. What stands out in the table is that ClouDet has
extremely few parameters, that the required space is only
3.9 MB, which is 11.7, 18.1, 83.4, and 111.3 times smaller
than BiSeNetV1, FCN-8s, deeplabv3+, and Cloud-Net+,
respectively. The extremely few parameters make it possi-
ble to fit the whole network in an extremely fast on-chip
memory in embedded development board. And the number
of floating-point operations for ClouDet is 1.58G, which is
3.8, 29.6, 23.7, and 10.8 times smaller than BiSeNetV1, FCN-
8, deeplabv3+, and Cloud-Net+, respectively. The extremely
small number of floating-point operations enables ClouDet
to process data faster in embedded development board. Ac-
cording to the inference time test in Table VI, the infer-
ence efficiency of ClouDet is better than most comparison
methods.
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TABLE IV
RESOURCE USAGE OF CLOUDET. GFLOPS ARE ESTIMATED FOR AN INPUT OF 3× 384× 384

TABLE V
NUMERICAL PERFORMANCE OVER 38-CLOUD AND 95-CLOUD DATASET (IN %)

Table V provides the numerical results of the proposed
ClouDet trained on 38-Cloud and 95-Cloud training set and
evaluated on the testing set. We also compare ClouDet with
other state-of-the-art methods on this dataset. The numerical
results present that the proposed ClouDet captures more valuable
features out of the input images and, therefore, the generated
cloud masks from ClouDet are more similar to the manually
extracted ground truths in different scenes. As Table V indi-
cates, the precision of ClouDet is better than that of FCN-8s,
deeplabV3+, BiSeNetV1, and Fmask by 0.93%, 4.46%, 7.25%,
and 8.43%, respectively. And the recall rate of ClouDet is better
than that of FCN-8s and Cloud-Net+ by 5.47% and 2.37%,
respectively, which is slightly behind Fmask, BiSeNetV1, and
deeplabV3+. The Jaccard index represents the degree of overlap
between the generated cloud mask and the ground truth. The
Jaccard index of ClouDet is 5.9%, 5.02%, 3.82%, 5.33%, and
2.03% higher than FCN-8s, Fmask, deeplabV3+, BiSeNetV1,
and Cloud-Net+, respectively, which demonstrates that the gen-
erated cloud masks of ClouDet are more similar to the ground
truth. Additionally, the overall accuracy obtained by ClouDet
is higher than all comparison methods. Overall, these results
indicate that the combination of the proposed ClouDet with
feature generated strategy and context pooling strategy delivers
superior performance than other methods.

The visualization results on 38-Cloud-Dataset and 95-Cloud-
Dataset are shown in Fig. 8, respectively. Each pixel is classified
as one of “true positive,” “true negative,” “false positive,” and
“false negative,” which are represented by white, black, yellow,
and red, respectively. The images used for the test have different
proportions of cloud cover, and contain multiple types of land
cover, such as land, ice, and snow. On the basis of dilated
separable convolutional module and context pooling strategy,
ClouDet effectively suppress the grid effect and single pixel
misrecognition, but also lose some detailed information at the
same time. In general, compared with other models, the proposed
ClouDet can effectively detect clouds in different scenes.

In order to verify the influence of different handcrafted fea-
tures adopted in the feature generated module on the accuracy
of the model, we conducted a comparative analysis on the

Jaccard index, precision, and recall of the model under different
conditions, as given in Table VI. It can be seen from the data in
Table VI that the Gabor feature and Laplacian features contribute
the most to the Jaccard index and recall rate. The combination
of Gabor features and Laplacian features improves the model’s
predictive ability at the boundary of clouds and land. And the
addition of the mean value feature enables our model to judge
pixel categories more accurate. In general, the three features
have significantly improved the performance of the model in
cloud detection tasks.

In addition, in order to further test the adaptability of the
algorithm and verify whether the method is suitable for cloud
detection in different climate environments, we evaluated the
performance of ClouDet on the SPARCS dataset and compared
it with other deep-learning-based benchmark methods. Table VII
provides the numerical results on SPARCS dataset. As Table VII
indicates, compared to other benchmark methods, ClouDet
could achieve significantly better performance. The pixel-level
visual results are shown in Fig. 9. Each pixel is classified as one
of “true positive,” “true negative,” “false positive,” and “false
negative,” which are represented by white, black, yellow, and
red, respectively. From the pixel-level visual results in Fig. 9,
it is apparent that ClouDet could achieve superior performance
and lower false alarm rate under different terrain and climate
environments. In addition, ClouDet could effectively detect
small objects, and separate clouds and shadow regions.

IV. CONCLUSION

In this article, a lightweight deep-learning-based framework
named ClouDet is proposed for efficient cloud detection in
remote sensing imagery. Our main goal is to effectively make
use of the scarce computing and storage resources on the
embedded platform and accurately identify the cloud in remote
sensing imagery. The proposed ClouDet benefits from the
proposed dilated separable convolution module, which has
extremely few parameters, low computational complexity, and
small model size. Another more significant findings to emerge
from this article is that ClouDet could achieve lager receptive
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Fig. 8. Some visual examples of the results over 38-Cloud and 95-Cloud datasets.

TABLE VI
COMPARATIVE ANALYSIS OF DIFFERENT HANDCRAFTED FEATURES OF THE MODEL OVER 38-CLOUD AND 95-CLOUD DATASETS (IN %)

TABLE VII
NUMERICAL PERFORMANCE OVER SPARCS DATASET (IN %)
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Fig. 9. Some visual examples of the results over SPARCS datasets.

field, significant higher precision, and Jaccard index on the basis
of dilated convolution, multiple features generated strategy,
and context pooling strategy. These results demonstrate that the
proposed ClouDet could be well suited for accurate and efficient
cloud detection on embedded platforms. Our further research
might focus on determine the effectiveness of other handcrafted
features and examine more closely the possibility of combining
handcrafted features with CNNs for cloud detection.
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