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Remote Sensing Image Super-Resolution via
Residual Aggregation and Split Attentional

Fusion Network
Long Chen , Hui Liu, Minhang Yang, Yurong Qian, Zhengqing Xiao, and Xiwu Zhong

Abstract—Remote sensing images contain various land surface
scenes and different scales of ground objects, which greatly in-
creases the difficulty of super-resolution tasks. The existing deep
learning-based methods cannot solve this problem well. To achieve
high-quality super-resolution of remote sensing images, a residual
aggregation and split attentional fusion network (RASAF) is pro-
posed in this article. It is mainly divided into the following three
parts. First, a split attentional fusion block is proposed. It uses
a basic split–fusion mechanism to achieve cross-channel feature
group interaction, allowing the method to adapt to various land
surface scene reconstructions. Second, to fully exploit multiscale
image information, a hierarchical loss function is used. Third,
residual learning is used to reduce the difficulty of training in
super-resolution tasks. However, the respective residual branch
features are used quite locally and fail to represent the real value.
A residual aggregation mechanism is used to aggregate the local
residual branch features to generate higher quality local residual
branch features. The comparison of RASAF with some classical
super-resolution methods using two widely used remote sensing
datasets showed that the RASAF achieved better performance.
And it achieves a good balance between performance and model
parameter number. Meanwhile, the RASAF’s ability to support
multilabel remote sensing image classification tasks demonstrates
its usefulness.

Index Terms—Remote sensing image, residual aggregation, split
attentional fusion, super-resolution (SR).

I. INTRODUCTION

R EMOTE sensing images are commonly used in environ-
mental monitoring, military, agriculture, and other fields
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due to their wide shooting range, free shooting time, and rich
information. However, some factors such as weather and sen-
sor noise in the imaging phase eventually affect remote sens-
ing images, resulting in poor image quality and lowering the
application value of remote sensing images. Considering the
high cost and long period in improving hardware, the use of
super-resolution (SR) methods to achieve an improved remote
sensing image resolution has become the focus of research.

Single-image super-resolution (SISR) is the use of a low-
resolution (LR) image to generate a high-resolution (HR) image
using certain methods. However, SISR is a pathological inverse
problem, where multiple corresponding HR images could exist
for a single LR image. Many different algorithms have been cre-
ated to solve this problem over years. The existing SISR methods
can be classified as three types, namely, 1) interpolation-based
methods; 2) reconstruction-based methods; and 3) learning-
based methods. The interpolation-based methods include bi-
linear interpolation, Lanczos resampling [1], and edge-guided
image interpolation [2]. These methods are very quick in recon-
structing images and can almost meet real-time requirements,
but they may lose high-frequency information and generate
blurring images. The reconstruction-based method [3] uses ef-
ficient prior knowledge of LR and HR image pairs to min-
imize the solution space size. These methods generate sharp
texture details, but they suffer from computational complexity
and performance degradation when the magnification increases.
The reconstruction precision is greatly improved when using
learning-based methods. Freeman et al. [4], [5] incorporated
new high-frequency information in LR images by modeling
the relationship between HR and LR images using Markov
networks. Chang et al. [6] proposed an SR method based on
domain embedding. Yang et al. [7] proposed a sparse repre-
sentation prior-based instance learning SR method. Ni et al.[8]
proposed a vector regression-based instance learning method.
Deep learning-based methods [9]–[11] have recently viewed the
SR problem as an image-to-image regression problem, and have
obtained results that are superior to conventional methods by
using vast quantities of training data to create neural networks
that directly learn the mapping relationship from LR to HR.

Some recent deep learning-based algorithms for remote sens-
ing SR images [12]–[15] have shown promising results. The
residual module plays a key role in these methods because the
idea of residuals proposed by He et al. [16] effectively reduces
the training difficulty of the model and allows a greater extension
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of the depth of the network. The residual features progressively
aggregate various aspects of the input image as the network
depth increases, which is useful for reconstructing the spatial
information of the image. However, the current method neglects
the use of each residual branching feature. We use an improved
residual aggregation mechanism to enhance feature extraction
to solve this problem. Previous methods for natural images, on
the other hand, do not perform as well with remote sensing
images. Second, the remote sensing images are much larger in
terms of visual angle. Different land surface scenes, such as
houses, airports, beaches, and farmlands, could be included in
one remote sensing picture. LR and HR images have vastly dif-
ferent texture and structure details, resulting in inconsistencies
in mapping relationships between LR and HR images for various
scenes. For the abovementioned problem, we propose the split
attentional fusion block (SAFB). The channel interaction across
feature groups is achieved by splitting the channel to generate
feature groups of the same size and then using the attentional
feature fusion mechanism to achieve two-by-two fusion of the
feature groups. To complete the adaptive reconstruction of re-
mote sensing images of various scenes, we improved the model’s
feature representation and generalization abilities. Meanwhile,
we constructed a backbone network based on DRN [17] and
generated images at multiple scales in upsampling step by step.
A hierarchical loss is used to cope with the complex spatial
distribution of remote sensing images and to reduce the difficulty
of reconstruction. To sum up, our contribution consists of the
following three aspects.

1) We proposed a new SAFB to replace the conventional
spatial and channel attention layers which can effectively
boost the model’s performance with a few additional pa-
rameters.

2) We introduced the residual aggregation mechanism into
the remote sensing image SR to aggregate the branches
of residuals to generate better quality features and we
defined a hierarchical loss to reduce the complexity of
reconstruction.

3) We conducted the experiments to compare the resid-
ual aggregation and split attentional fusion network
(RASAF) with some state-of-the-art models using the
UCMerced_LandUse and PatternNet datasets in order to
validate the improvement generated by the RASAF.

II. RELATED WORK

A. Deep Learning in Single-Image SR

In recent years, SR methods based on deep convolutional
neural networks (CNNs) have made significant progress.
Dong et al. [18] are the first to introduce deep learning
into SISR. They proposed the SRCNN, a three-layer CNN,
which outperformed conventional approaches. Following
that, FSRCNN [19] was proposed to make further changes
by postsampling the upsampling, resulting in a significant
reduction in computational workload. Meanwhile, the model’s
feature extraction capability was also improved by using smaller
convolutional kernels and more mapping layers. LapSRN [20]
predicted the residuals hierarchically by using stepwise

upsampling. When performing large-scale reconstruction, it
might yet produce intermediate-scale images. DBPN [21]
proposed an iterative upsampling method that used the upper
and lower sampling layers to provide an error feedback
mechanism at each point to boost the SR effect. DRN [17] built
a dual regression network based on UNet’s [22] idea of encoder
and decoder, and it created better reconstruction results.

Residual connections are crucial in the various CNN-based
SR methods, which are mentioned above. ResNet [16] was
proposed to deal with the issue of deeper network structure
and the presence of untrained nodes, as well as to improve the
model’s efficiency. In addition, the residual block is commonly
used in a variety of tasks. VDSR [23] indicated the similarity
in low-frequency information between the input LR image and
the output HR image. Only the high-frequency partial residu-
als between LR and HR should be learned. SRDenseNet [24]
built a network based on dense blocks in DenseNet [25]. All
subsequent layers were fed with the features from each layer of
the dense block. This architecture solved the network’s gradient
disappearance problem and encouraged feature reuse to improve
feature propagation. RDN [26] proposed residual dense block
(RDB), which combined residual block and dense block and
improved them. ESRGAN [27], on the other hand, employed
residual in residual dense block (RRDB), which was a more
advanced version of RDB with a greater number of parame-
ters and higher calculation cost, yet improved the efficiency.
Aggregating local residual features in deep residual networks
using a feature aggregation model, RFANet [28], yielded a better
feature representation, and experimentally outperformed RRDB
and RDB structures.

B. Attention Mechanism

CNN is multidimensional, and by assigning different weights
in spatial dimension and channel dimension, the neural network
can be made to focus on the focal features and ignore the
irrelevant information. The attention mechanism was originally
applied in machine translation. It is now widely used in computer
vision [28], [29]. Hu et al. [30] proposed a squeeze–excitation
block. By modeling the interdependencies between channels, it
adaptively recalibrated the feature response in terms of channels.
Zhang et al. [29] brought this idea to the SR domain to construct
a very deep residual network (RCAN), which achieved better
SR performance. CBAM [31] considered a tandem spatial and
channel attention module to achieve simultaneous focusing on
both spatial and channel dimensions of the network, helping
networks understand “what” to focus on and “where” to focus.
Attention mechanisms are used to enhance the feature represen-
tation capability of neural networks: focus on important features
and discourage unnecessary ones. Using the features of the two
branches of channel attention fusion, Li et al. [32] proposed a
new way of manipulating the attention process. Dai et al. [33]
suggested a multiscale attentional feature fusion module to
replace the conventional addition and contact to achieve feature
fusion. ViT [34] introduced a transformer from the NLP domain
to computer vision. It used a self-attentive framework instead
of the conventional convolutional architecture to construct a
network. The use of attention mechanism is expanding.
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C. Deep Learning in Remote Sensing SR

Remote sensing SISR has attracted a lot of attention in the
last several years. One of the low-level computer vision tasks,
remote sensing SISR, can be applied as a preprocessing phase
for high-level computer vision tasks (such as remote sensing
image classification, changes detection, and semantic segmenta-
tion). For high-level tasks, the reconstructed high-quality output
can effectively improve visual identification and understand-
ing. Some early work directly used the SISR algorithm for
simple images to remote sensing images, and the results were
promising. Ducournau et al. [15] applied SRCNN [18] on ocean
remote sensing data and reaped great benefits in terms of PSNR
compared to traditional methods. Because they have been proven
and have a strong reconstruction capability, several classical
SISR algorithms [23], [29] are used as baseline methods by
some recent remote sensing SISR [35], [36]. However, simple
images, such as skyscrapers with nearly identical individual
windows, have more repeating texture information. Some scenes
such as faces have obvious prior information. Remote sensing
images, on the other hand, are more complicated, with significant
changes in image information for different scenes and larger
scale differences between individual objects. Therefore, the
characteristics of the remote sensing images themselves are
taken into account in the later work. LGCNet [14] uses a “multi-
fork” structure to learn multiscale information from remote sens-
ing data. WTCRR [13] considered image reconstruction from
the frequency domain, using wavelet transform for LR and then
recursive ResNet for SR prediction. SMSR [35] took into ac-
count the highly complex spatial distribution of remote sensing
images, captured multiscale information by aggregating features
of different depths in a single path, and proposed a second-order
learning mechanism that reuses large- and small-discrepancy
features both globally and locally. Some recent work has started
to build base modules based on remote sensing image charac-
teristics. RDBPN [37] based on the proposed residual inverse
projection block for the construction of the network, combining
the advantages of global and local learning and achieved good
results in the SR task with large-scale factors. Zhang et al. [36]
designed a mixed high-order attention network (MHAN), which
introduced high-order attention (HOA) to the SR domain and
achieved a large improvement inaccuracy. Growing work has
begun to explore the characteristics of remote sensing images
and refine the feature representation of the network.

III. METHOD

A. Network Architecture

Fig. 1 depicts the network, which is functionally divided into
four sections: 1) heads, 2) downsampling, 3) upsampling, and
4) reconstruction.

Heads: Using fup(·), the ILR is upsampled to the target image
scale, i.e., bicubic interpolation, and then fed into the network
for shallow feature extraction.Conv(c,k,f) is a convolution layer
with c equaling the number of input channels, k equaling the
convolutional kernel size, and f equaling the number of convolu-
tional kernels. To complete the initial feature extraction finitial (·)

Fig. 1. Architecture of the proposed RASAF.

of the input image to output feature F0, a 3 × 3 convolution was
used

F0 = fup (fintial (ILR)) = fup

(
Conv(c,k,f) (ILR)

)
. (1)

Downsampling: The output features F1 and F2 are downsam-
pled in two stages after the initial feature extraction is completed,
fdown (·) is used to implement each step, which consists of two
3 × 3 convolutions and a ReLU(·) activation function

F1 = fdown1 (F0)

= Con v(32,3,32)
(
ReLU

(
Conv(16,3,32) (F0)

))
(2)

F2 = fdown2 (F1)

= Con v(32,3,32)
(
ReLU

(
Conv(16,3,32) (F1)

))
. (3)

Upsampling: The residual aggregation block (RFAB) is used
to perform deep feature learning, which is then output to the
upsampling block. The number of base blocks RFAB can be
changed to adjust the network’s depth

F3 = fup2 (RFABt (Ft−1))

= fup2 (RFABt (RFABt−1 (. . . (RFAB0 (F2))) (4)

F4 = fup2 (RFABt (Ft−1))

= fup2 (RFABt (RFABt−1 (· · ·RFAB0 (F3 + F2)) . (5)

Finally, fup2(·), which is a subpixel convolution layer [11],
upsamples the performance of Ft. Upsampling is performed
using two stages to output features F3 and F4, respectively.
The input of the first stage is the downsampled feature F2. To
reduce the difficulty of training, while taking into account the
rich structural information contained in the LR images, adding a
residual connection for interaction between HR and LR images
allows the feature extraction part of the method to concentrate
on extracting high-frequency information from the image. As a
result, the second stage’s input features are the sum of features
F2 and F3.

Reconstruction: Differently from traditional networks,
RASAF can generate multiscale images, which helps to utilize
the information in the intermediate scale of images and reduces
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Fig. 2. Architecture of the improved RFAB.

the difficulty of reconstruction

ISR1 = fre (F2) = Con v(64,3,3) (F2) (6)

ISR2 = fre (F3 + F2) = Con v(64,3,3) (F3 + F2) (7)

ISR4 = fre (F4 + F3) = Con v(32,3,3) (F4 + F3) . (8)

The reconstruction is completed using 3 × 3 convolution.
ISR1, ISR2, and ISR4 are the generated SR image, the reduced
twice and four times SR images, respectively.

B. Residual Aggregation Block

Since the advent of ResNet [17], the residual block has been
increasingly used in SISR. A common method for designing
networks is to stack residual blocks. The low-level residual fea-
tures, on the other hand, must travel a long way before reaching
the final part of the network. A large number of convolution and
addition operations in this process make these features no longer
significant so that the residual features are not fully utilized.

To overcome the problem of moving shallow residual features,
ESRGAN [27] and RDN [26] combined dense connectivity
and residual modules, but this method greatly increased the
number of parameters. We used an improved residual feature
aggregation block inspired by RFANet to solve this problem,
adding just a few parameters to achieve results that outperform
RRDB and RDB. Fig. 2 depicts the block’s details, which are
made up of three residual blocks and a 1 × 1 convolution, with
split attentional feature fusion block (SAFFB) standing for our
changed residual block, which is defined in Section III-C. This
block first outputs the first two blocks’ residual branch features
directly to the end of the block, then the third residual block
overwrites the output of the first two residual blocks, then the
features of the three residual branches are stitched together and
downscaled and aggregated using a 1 × 1 convolution. And
finally, the aggregated features are fused using a skip join. In this
way, shallow features can be passed directly to the end without
losses due to intermediate operations.

C. Split Attentional Fusion

Multipath representation has been successful on
GoogleNet [38]. On separate routes, multiscale convolutional
kernels are used, and the final stitching completes the fusion of
features at different scales. ResNeXt [39] combines ResNet and
Inception to transform multiple paths into a single operation
by using group convolution, then using the same topology at
each branch. SKNet [32] applied attention to two branches to
achieve cross-feature graph attention. ResNeSt [40] introduced
this way of attention across feature maps to group convolution
with good results. The abovementioned approach performed

Fig. 3. Architecture of SAFFB, based on the union of our proposed split
attentional feature fusion (SAFF) and residual blocks.

the corresponding convolutional operations in each branch and
required a large width of the network to have good results. In
the field of SR, however, RCAN [29] has shown that for the
same number of parameters, depth has a greater effect on the
network than width. To achieve this kind of attention to feature
maps around the pass, we consider using a simple split–fusion
technique, which can achieve an efficient boost with just a slight
increase in the number of parameters.

Fig. 3(a) depicts the proposed SAFFB. There are three main
components: 1) the base convolution block, 2) the splitting
block, and 3) the attentional feature fusion block. The underlying
convolutional block is the same as what in a traditional residual
network, i.e., a 3 × 3-sized convolutional kernel and ReLU(·)
activation feature.Fin is used as the initial feature input andFbase

is the output feature

Fbase = Conv(c,k,f)
(
ReLU

(
Conv(c,k,f) (Fin)

))
. (9)

Split block: Similar to ResNeSt [40], we first increased the
number of feature channels using a 1 × 1 convolution, then split
the features into 2n feature groups, and then combined every
two feature groups into a base group

Fsp = Split
(
Conv(c,1,2nc) (Fbase )

)
= U1, U2, . . . U2n (10)

where Split(·) is the splitting function, which is used to achieve
the splitting of the feature map in the channel latitude, and the
split U2i has the same size as Fbase .

Attentional feature fusion block: The detailed architecture
is shown in Fig. 3(b). Different from SKNET [32] and
ResNeSt [40], we used attentional feature fusion to achieve
attentional interaction across channels. It is a unified and uni-
versal feature fusion scheme proposed by Dai [34] to replace
the traditional feature fusion methods such as plus as well as
contact. We improved the design and used it as a replacement for
the split attention block. Our attentional feature fusion block, as
compared to split attentional block, is more capable of achieving
cross-channel attentional interaction with two branches and
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Fig. 4. Architectures of ResNeXt, SENet, SKNet, SAFFB, and ResNeSt.

requires less computational effort

∂ = fCA (U2n−1 + U2n)

= fsigmoid (fFC (ReLU (fFC (fgap (U2n−1 + U2n))))) (11)

fAFF (U2n−1, U2n) = U2n−1 × ∂ + U2n × (1− ∂) (12)

Ffilsion =

n∑
i=1

fAFF (U2i−1, U2i) (13)

where FCA(·) represents the channel attention mechanism,
Fgap(·) is the global average pooling, FFC(·) is the fully con-
nected layer, and Fsignoid(·) is the sigmoid activation function.
In (11), we used the channel attention mechanism to obtain
the weight (∂) coefficients of the fused image at each channel
position. In (12), we used this coefficient to assign weights to the
features on the input double branch. As (1-∂) is used, it removes
the need to calculate channel weights for features on both
branches, resulting in a significant reduction in computational
effort.

Fig. 4 compares SAFFB to ResNeXt [39], SENet [30],
SKNet [32], and ResNeSt [40], with the squeeze–excitation
module of SENet being a particular case of AFF with only
one branch module. Both SAFFB and SENet calculate the
weights of different channels as a way to achieve focus on dif-
ferent channels. SAFFB improves SENet’s squeeze–excitation
mechanism by refining it to feature map groups, allowing it
to pay attention to different channels at higher latitudes and
allowing feature map groups to interact. In ResNeXt, group
convolution reduces computational cost, but it also tends to
diminish accuracy. SAFFB absorbs the advantages of grouped
convolution and combines the channel attention mechanism and
feature map groups to retain the advantages of parallel com-
putation and improve feature representation capability. SKNet
uses different size convolutional kernels in the two branches and
achieves adaptive adjustment of the receptive domain to the input
information by fusing the two branches through an attention
mechanism. The difference between this multiscale information
is not obvious because the perceptual fields on the two branches
do not differ much, while there are cases where the remote
sensing images differ greatly in the scale of different ground
objects. To achieve multiscale feature extraction, we combine
residual modules of various depths on a single path. We employ
a hierarchical loss function to achieve multiscale information
utilization at the same time. As a result, SAFFB may concentrate

more on local learning. ResNeSt optimizes the residual module
from the perspective of the feature map group; thus, SKNet can
be seen as a subset of ResNeSt. In terms of feature map groups,
ResNeSt has more convolutional calculations, which raises the
computational cost of the model significantly, whereas SAFFB
is more focused on feature refinement extraction and channel
latitude representation.

D. Loss Function

Most of the previous models use the generated SR and HR
for loss calculation, but RASAF can generate multiple task
images at once, and therefore uses a hierarchical loss function
for network optimization. Comparing the ×4, ×2, and ×1 SR
images and the target images to calculate the losses, respec-
tively, and constraining the generated images at different scales
can effectively speed up the model convergence. Considering
also that the ground objects of remote sensing images have
large-scale differences, feature extraction at different scales can
help to improve the reconstruction effect of small objects. Our
loss function is defined as follows for a given training dataset
containing a number of (denoted by N) LR image patches

�(Θ) =
1

N

N∑
j=1

∥∥∥G
(
IjLR

)
− IjHR1 − IjHR2 − IjHR4

∥∥∥ (14)

where G(·) is RASAF and IjLR(j = 1, 2, 3, . . . , n) is the jth
LR image. IjHR1, IjHR2, and IjHR4 are HR images downsampled
twice and four times, respectively.

IV. EXPERIMENT

This section specifies the details and results of the experi-
ments. We evaluated the performance of the models using the
peak signal-to-noise ratio (PSNR) and structural similarity ratio
(SSIM), which are commonly used in image quality evaluation
[12]–[15]. The time taken for an epoch in the training process
(Time) is used to measure the running speed of the model, and
the number of parameters of the model (Parameters) is used to
measure the size of the model.

A. Settings

Dataset: We used the UCMerced_LandUse and PatternNet
datasets in our experiments, which are common dataset used
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TABLE I
ABLATION STUDIES TO VERIFY THE EFFECTIVENESS OF RESIDUAL AGGREGATION MECHANISM AND SPLIT ATTENTIONAL FUSION

in previous remote sensing SR methods. In addition, given the
limited number of available remote sensing images, the training
dataset is expanded by randomly rotating 90◦, 180◦, 270◦, and
mirroring. The HR images were downsampled with a scale factor
of 4 using a bicubic interpolation algorithm in the MATLAB
setting to produce LR images.

1) UCMerced_LandUse: The dataset was released by the
University of California in 2010, according to the source
GoogleEarth. It includes 21 categories of remote sensing
scenes such as agriculture, aircraft, baseball, diamonds,
and beaches. There are 100 images for each category. All
images are 256 × 256 pixels with a spatial resolution of
0.3 m/pixel. We randomly selected 40% of the images for
training and 5% for testing.

2) PatternNet: The dataset was released by Wuhan Uni-
versity in 2018 and the data source is GoogleMap. It
includes 38 categories of remote sensing scenes such
as overpasses, golf courses, oil wells, parking lots, and
railroads. There are 800 pictures for each category. All
images have 256 × 256 pixels and a spatial resolution
of 0.06 4.7 m/pixel. We randomly selected 100 training
images and five test images from each scene.

Details of the experiment: By randomly extracting 96 × 96
image patches from LR images as input, all inputs and outputs
are RGB images with each small batch size of 16. The parameters
of the model were updated using the Adam optimization method,
where β1 was 0.9 and β2 was 0.999. The initial learning rate is
5× 10−4 and was reduced by half every 100 epochs, for a total of
500 epochs trained. We implemented all the experiments using
PyTorch and tested them on a Tesla V100 device.

B. Ablation Study

Based on the UCMerced_LandUse dataset, we conducted
ablation experiments to verify the efficacy of all blocks in this
section, and we used PSNR and SSIM as evaluation metrics.
The baseline model is the DRN [17], which includes 60 RCAB
blocks in the upsampling part and has the regression blocks
removed. For a fair comparison, we used 20 RFA blocks to
maintain the same amount of residual blocks as DRN-Baseline.
As shown in Table I, we compared the CA, ESA, and SAFF
blocks without using the residual aggregation mechanism, and
SAFF block achieved higher PSNR and SSIM, with PSNR
0.06 dB higher than that of the CA block, demonstrating the
SAFF block’s powerful feature representation capability. Sec-
ond, when the RFA block was used alone, the PSNR increases
by 0.04 dB if compared to the case without the RFA block.
When RFA is combined with CA or ESA, the PSNR were

TABLE III
COMPARISON WITH OTHER SIMILAR METHODS

TABLE II
ABLATION STUDIES TO VERIFY THE EFFECT OF CARDINALITY ON

MODEL PERFORMANCE

improved by 0.01 and 0.06 dB, respectively, when compared to
the original time before the RFA block was added. This shows
that the residual aggregation mechanism can enable the effective
aggregation of local residual features to produce better feature
representations by enhancing the effective utilization of residual
features. Further, when RFA and SAFF were combined, the
best PSNR was obtained, showing that the two together can
effectively improve network performance. By comparing the
time, we can see that the SAFF’s running speed is inefficient.
In comparison to the CA, SAFF must calculate channel weights
twice and adds a 1× 1 convolution operation. However, the time
difference is not significant, at about 5% when compared to the
CA. Finally, we show that when the hierarchical loss function
is used, the model’s performance improves by 0.03 dB, and the
influence of the hierarchical loss function on training time is
essentially negligible; thus, it is required to apply the hierarchical
loss function cost-effectively.

To verify the effect of cardinality on model performance in
the SAFB, an ablation study was set up based on RASAF. The
cardinality is set to 2, 4, 6, 8, and the rest was kept unchanged,
and the final results are shown in Table II. It is discovered that the
model’s performance was increased steadily at first, but that this
improvement had a peak at cardinality 6, and the PSNR began
to decline at cardinality 8. This shows that more cardinality is
not better, because an increase in cardinality also increases the
difficulty of training. In addition, as the number of branches
grows, the amount of time required for training grows as well,
limiting the number of branches available to some extent. Al-
though the best PSNR was obtained with a final cardinality of 6,
we ultimately chose 4 as the final cardinality of the model, based
on the number of parameters, memory consumption, time, and
performance, and the subsequent experiments were performed
on this basis.



9552 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE IV
AVERAGE PSNR AND SSIM FOR VARIOUS CLASSES OF GROUND OBJECTS BY DIFFERENT METHODS USING UCMERCED_LANDUSE DATASET WITH

SCALE FACTOR ×4

In order to compare SAFFB with several other similar meth-
ods: ResNeXt [39], SENet [30], SKNet [32], and ResNeSt [40],
SAFFB was replaced using these excellent residual modules and
experiments were performed based on the UCMerced_LandUse
dataset. In comparison to the other four methods, RASAF
achieves optimality in PSNR and SSIM, as shown in Table III.
The difference between RASAF and SKNet model parameters is
due to the usage of group convolution, which reduces the number
of parameters greatly. RASAF is also more time consuming than
other methods. Overall, RASAF does not have an advantage in
terms of time and number of parameters, but can achieve better
accuracy gains.

C. Comparison With Other State-of-the-Art Methods

We compared RASAF with six state-of-the-art methods to
validate its performance, which included the SRCNN [18], SR-
ResNet [41], RDN [26], EDSR [42], RCAN [29], and DRN [17].
We trained and evaluated all the models under the same condi-
tions using the UCMerced_LandUse dataset and the PatternNet
dataset to validate their output according to the open-source
code, and we used PSNR and SSIM as the evaluation metrics. In
the testing section, we use a new strategy (RASAF+) where we
flip and rotate each test image to obtain eight images and input
them to the network in turn, invert the corresponding generated
images, and then filter these eight images to obtain the final SR
results. This strategy is similar to self-ensemble [42], but we do
not generate new images by manipulating the generated images,
which is more representative of the performance of the network.

Table IV shows the quantitative comparison results of the
different models on the UCMerced_LandUse dataset for the
scale ×4 case. RASAF achieved the best results in every cat-
egory of the scene. In the airplane scenes, it is at least 0.33 dB
better than the other models, and at least 0.35 dB better than
the overpass scenes. This shows that RASAF can adjust itself
to different categories of scenes and establish a good LR–HR
mapping relationship for each type of scenario. On the average
evaluation of the last column, RASAF improves 0.2 dB on PSNR

and 0.05 on SSIM over the other best models, which indicates
that RASAF recovers better structural information.

Fig. 5 shows the results of the qualitative comparison. It can
be seen that for the image airplane_81, the tail of the aircraft
generated by other models is blurred, while RASAF can recover
the details of the image without blurring. As for the image
tenniscourt_71, due to the poor quality of the image itself, there
is a noise effect, except for DRN and RASAF, other models
are unable to recover the lines on the court. Compared with
DRN, RASAF can go further to recover the net on the court
more completely, showing a better reconstruction quality. This
is due to our hierarchical loss function, which can effectively
use multiple-scale image information and better accomplish the
reconstruction of small features.

Table V shows the quantitative comparison results of all
models on the PatternNet dataset scale ×4 case, where RASAF
still achieved the best evaluation results. This includes an im-
provement of at least 0.09 dB in PSNR and 0.013 dB in SSIM.
This indicated that RASAF has good generalization ability and
can achieve reconstruction results that exceed other models for
different data.

The visual effect comparison is shown in Fig. 6. It can be seen
that all the models except SRCNN can recover the zebra lines on
runway_479, and the images generated by RASAF are the clear-
est among all the methods. For the shippingyard_655 image,
RASAF generated a clearer centerline of the road. Compared
with other methods, the shadow areas generated by RASAF
are more compliant with HR, the boundaries are clearer, the
structural information in the image can be well reconstructed,
and the recovery of detail information is more prominent.

D. Comparison With Other Remote Sensing SISR

The abovementioned comparisons are all algorithms oriented
to simple images. In order to better demonstrate the advantages
of RASAF on remote sensing images, we choose three classical
algorithms: LGCNet [14], MHAN [36], and SMSR [35] for
comparison. We experiment on the UCMerced_LandUse dataset
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Fig. 5. Visualization comparison of various algorithms in the case of the UCMerced_LandUse with scale factor ×4.

TABLE V
QUANTITATIVE COMPARISON OF VARIOUS METHODS USING PATTERNNET DATASET WITH SCALE FACTOR ×4

TABLE VI
COMPARISON OF REMOTE SENSING SR ALGORITHMS BY USING THE

UCMERCED_LANDUSE ×4

for the ×4. Table VI shows the results of the quantitative com-
parison, which reveal that RASAF has the best PSNR and SSIM,
with a 0.16-dB improvement above the second best SMSR. The
results of the qualitative comparison are shown in Fig. 7, where
RASAF is the best for the reconstruction of road gaps and can
also be reconstructed more clearly for the smaller gaps, while
SMSR, the second best, does not perform well in the location of
the smaller gaps. For storagetanks_54, RASAF also obtained a
better visual performance. It is demonstrated that RASAF can
solve the remote sensing image SR problem rather efficiently by
comparing the above to the previous leading remote sensing SR
methods.

E. Model Complexity Analysis

Fig. 8 shows the comparison of various methods in terms of
model parameters, time, and performance. RASAF adds more

in time, only less than RCAN, and does not have an advantage
in runtime. In comparison to the three models, RCAN, RDN,
and EDSR, the performance of RASAF was better with fewer
parameters. RASAF has a few more parameters than DRN, but it
achieved a huge improvement in PSNR. RASAF strikes a better
balance between performance and the size of the model.

F. Multilabel Remote Sensing Image Classification
Performance

To validate the impact of SR algorithms on multiclassification
tasks of remote sensing images. We used ResNet-50 [16] as an
evaluation model with the same configuration of training and
testing data as RASAF. The original test image (256 × 256 pix-
els) was downsampled to 64 × 64 pixels using bicubic interpo-
lation, and then various SR methods (RCAN, DRN, etc.) were
used to recover it to the original target size and feed it into the
qualified ResNet-50 for evaluation. As an evaluation metric, we
used the average overall precision (OP), and we also evaluated
the outcomes of the top three labels for a fair comparison.
Table VII shows the final results. RASAF has the highest OP and
is in the Top-3 OP, proving its outstanding feature representation
capacity. We analyzed the classification accuracy of five of these
classes and discovered that the classification network was able
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Fig. 6. Visualization comparison of various algorithms using PatternNet with scale factor × 4.

Fig. 7. Visualization comparison of remote sensing SISR algorithms in the case of the UCMerced_LandUse with scale factor ×4.
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TABLE VII
MULTILABEL REMOTE SENSING IMAGE CLASSIFICATION PERFORMANCE

Fig. 8. Performance, time, and number of parameters. Results are evaluated
on UCMerced_LandUse with scale factor ×4.

to accurately identify huge items such as “airplane” without
much correlation with the SISR. For some smaller objects, such
as “mobile-home,” it starts to be affected by SISR, and the
generated results in individual methods such as RCAN perform
badly. The SISR improvement is higher for smaller objects, such
as “cars,” with a difference of 2.96% between RASAF+ and
Bicubic.

V. CONCLUSION

We proposed a RASAF for SR of remote sensing images with
varying scenes and spatial complexity. The SAFB enhances
cross-channel interaction between feature groups. It achieved
better feature representation capability than spatial or chan-
nel attention blocks as illustrated by the experiments. In the
upsampling stage, the RASAF model can produce multiscale
images and create hierarchical loss functions from them. It
allows the use of multiscale image information without adding
additional parameters. Furthermore, we used an improved RFAB
by adding a few parameters. It aggregates local residual features
to generate high-quality local features. It alleviates feature loss
caused by interference in the backward transfer phase, such as
convolution and summation of low-level residual features. The
proposed method produces a lightweight and high-performance
SISR model. The experiments on the UCMerced_LandUse and
PatternNet datasets showed a better performance of the proposed
blocks and model. The RASAF is a strong candidate for en-
hancing high-level vision tasks as it supports multilabel remote
sensing image classification tasks.
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