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Generating Hard Examples for
Pixel-Wise Classification

Hyungtae Lee , Member, IEEE, Heesung Kwon, Senior Member, IEEE, and Wonkook Kim

Abstract—Pixel-wise classification in remote sensing identifies
entities in large-scale satellite-based images at the pixel level. Few
fully annotated large-scale datasets for pixel-wise classification
exist due to the challenges of annotating individual pixels. Train-
ing data scarcity inevitably ensues from the annotation challenge,
leading to overfitting classifiers and degraded classification per-
formance. The lack of annotated pixels also necessarily results
in few hard examples of various entities critical for generating a
robust classification hyperplane. To overcome the problem of the
data scarcity and lack of hard examples in training, we introduce
a two-step hard example generation (HEG) approach that first
generates hard example candidates and then mines actual hard
examples. In the first step, a generator that creates hard example
candidates is learned via the adversarial learning framework by
fooling a discriminator and a pixel-wise classification model at the
same time. In the second step, mining is performed to build a fixed
number of hard examples from a large pool of real and artificially
generated examples. To evaluate the effectiveness of the proposed
HEG approach, we design a nine-layer fully convolutional network
suitable for pixel-wise classification. Experiments show that using
generated hard examples from the proposed HEG approach im-
proves the pixel-wise classification model’s accuracy on red tide
detection and hyperspectral image classification tasks.

Index Terms—Adversarial learning, hyperspectral image (HSI)
classification, online hard example mining (OHEM), pixel-wise
classification, red tide detection.

I. INTRODUCTION

P IXEL-WISE classification is the task of identifying entities
at the pixel level in remotely sensed images, such as Earth-

observing satellite-based images from multi- or hyperspectral
imaging (HSI) sensors. The pixel-wise classification has some
parallels to image segmentation. Still, there are several limita-
tions to directly using the state-of-the-art image segmentation
methods for the pixel-wise classification. Image segmentation
methods treat an image as a composition of multiple instances
of a scene or object and delineate boundaries between different
instances. Current state-of-the-art image segmentation methods
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Fig. 1. HEG approach. While the initial model for pixel-wise classification is
trained using real examples, the final model is initialized from this initial model
and retrained with hard examples that are the output of the HEG approach.
The HEG approach takes two steps: i) generation of hard example candidates
and ii) hard example mining. In the first step, the generator is trained via the
adversarial learning framework to fool the initial pixel-wise classification and
the discriminator that distinguishes real examples from generated examples. For
the red tide detection task, we created hard negatives by applying the generator
only to the negative examples, as we aim to solve the problem of the lack of
hard negative examples. On the other hand, for the HSI classification task, hard
examples are generated for all categories as shown in this figure.

adopt the ability to segment these instances either by using a
joint detection and segmentation model [1] or by finetuning a
detection model [2]. However, these detection abilities are only
useful if the target object or scene provides category-specific
contextual or structural information and if each instance cov-
ers a relatively large area of the image. Unfortunately, these
requirements are not typically met in remotely sensed images;
thus, spectral characteristics embedded in each pixel are used as
viable pixel-wise classification information.

One of the issues with pixel-wise classification for remote
sensing images is the lack of fully annotated large-scale remote
sensing datasets. Since it is exceptionally challenging to anno-
tate each pixel of the remote sensing image, frequently, many
pixels in the image remain unlabeled, leading to performance
degradation. Further performance decrease is caused by sparse
training data, including few hard examples necessary to generate
a robust classification hyperplane.

To address the lack of hard examples, we introduce a hard
example generation approach (HEG) suitable for pixel-wise
classification (see Fig. 1). The proposed HEG approach takes
two steps: 1) generating hard example candidates that were rec-
ognized as false positives for other categories while preserving
the properties of the original category (generation step) and
2) processing hard example mining to discover hard examples
incorrectly detected with high loss (mining step).

In the first step, we use a variant of the generative adversarial
learning (GAN) [3] to train a generator that creates hard example
candidates. To prevent the generated examples from losing the
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Fig. 2. GOCI satellite images and red tide labels. Summer (e.g., an image taken on August) and winter (e.g., an image taken on December) images of the
same area are placed on the left and right of the figure, respectively. In the middle figure, the red tide labels of the summer image are marked as white pixels. In
the summer image, not all red tide regions are labeled, and not all the regions in red represent red tide. All the red regions that appear in winter images are not red
tide regions.

specific property of its corresponding category, we trained a
network to distinguish the real examples from the artificially
generated examples, which serves as discriminator in the GAN
framework. In order for the generated example to be a hard
example for another category while preserving the original
category’s properties, a pixel-wise classification model and the
discriminator become the counterparts that the generator should
deceive.

For the second step, we redesigned the online hard example
mining (OHEM) [4] to select hard examples. Shrivastava et al.
introduced OHEM, which, for every iteration, sampled a small
number of examples with a high loss from the overwhelming
examples and use them in training CNN. We used a simple
variant of OHEM to mine a huge volume of artificially generated
examples in a cascaded way. First, we randomly choose a subset
of examples that can be either real or artificially generated
examples and then apply OHEM to the selected examples to
choose hard examples.

To evaluate the proposed HEG approach, we implemented a
nine-layer fully convolutional network (FCN) inspired by [5].
The FCN architecture has proved to be suitable for pixel-wise
classification [5]–[8]. We validate our approach to red tide
detection using the large-scale remote sensing image dataset
obtained from multispectral geostationary ocean color imager
(GOCI) [9] on a geostationary satellite. We chose this practical
task because it clearly presents the ground-truthing problems
mentioned earlier.1 Due to such challenging ground-truthing
problems inherent in remote sensing, red tide occurrences are
labeled only at a limited number of locations. Moreover, there
are no labels about where no red tide was found that could be
used as negative examples in training. Therefore, we end up
with only a small number of spectral examples from a fraction
of areas, where red tide occur in training. In this work, we use

1Since the biological properties of red tide are not clearly visible in the image,
we used the information on real-world red tide occurrences reported by NIFS
(National Institute of Fisheries Science) (http://www.nifs.go.kr/red/main.red/)
of South Korea. NIFS manually examined red tide occurrence only at a limited
number of locations along the southern seashore of South Korea.

the images taken in December as negative examples, where red
tides do not occur due to the low water temperature.2 Fig. 2
shows the GOCI images used for the positive (red tide) and
negative (nonred tide) training examples, and the red tide region
annotation of the positive image.

From this peculiar GOCI image setting, we found severe is-
sues highlighting the need for the proposed HEG approach. First,
the spectral characteristics of the images taken in December are
very different from those of the images taken in the summer
when red tides mostly occur because the marine environment
in summer and winter is very different. Therefore, the negative
examples from the December images do not generally represent
the nonred tide area from the images collected in the summer.
Second, the imbalance between the numbers of positive exam-
ples and the negative examples is quite significant. The number
of positive examples is in the order of one hundred pixels per
image. In comparison, the number of negative examples is about
31 M pixels per image as all the pixels of the GOCI image (5567
× 5685) taken in winter are used as negative examples. Lack
of nonred tide examples derived from the property discrepancy
between the summer and winter images associated with the first
problem is addressed by the first step of HEG (i.e., generation
of hard example candidates). The second problem of the data
imbalance between the positive and negative examples is effec-
tively alleviated by the second step of HEG (i.e., hard example
mining).

We conducted extensive experiments to determine how the
proposed HEG addresses the problems that arise in training the
pixel-wise classification model on GOCI images. For red tide
detection, a one-class classification problem with significantly
unbalanced distribution, we use HEG to generate hard negative
examples. To show that the proposed HEG can be easily ex-
tended to other tasks with multiple categories, we also applied
it to several pixel-wise HSI classification tasks. Experiments
have confirmed that pixel-wise classification method trained by

2In South Korea, summer is in July and August and winter in December. Red
tide occurs mainly in summer when the water temperature is high.

http://www.nifs.go.kr/red/main.red/
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adopting the proposed HEG significantly enhances performance
for red tide detection and several HSI classification tasks.

II. RELATED WORKS

Training generator via adversarial learning. Szegedy
et al. [10] introduced a method to generate an adversarial image
by adding perturbation to be misclassified by a CNN-based
recognition approach. These perturbed images become adver-
sarial images to the recognition approach. Goodfellow et al. [3]
introduced two models: a generator that captures the data distri-
bution and a discriminator that estimates the probability that an
example came from the training data rather than the generator.
A generator and a discriminator are trained at the same time in a
direction to interfere with each other. This is called an adversarial
learning framework.

Radford et al. [11] devised an image generation approach
based on CNN by adopting this adversarial learning framework.
Wang et al. [12] used the adversarial learning framework to
train a network that creates artificial occlusion and deformation
on images. An object detection model is trained against this
adversary to improve performance. Hughes et al. [13] introduced
a negative generator based on an autoencoder that takes a positive
image as an input. The generator is optimized to make the output
acquire the properties of a real image by adopting an adversarial
learning framework. This generator is used to augment the set
of negative examples, which are not necessarily hard negatives.
Choi et al. [14] used GAN-based data augmentation for reducing
a domain gap from fully annotated synthetic data to unsupervised
data. Xie et al. [15] also uses adversarial learning to augment
training examples for image recognition. In the proposed work,
we also use adversarial learning to train a hard example generator
(HEG). Unlike [13]–[15], our HEG generates hard negative
examples, which are more challenging to be identified as nonred-
tide examples by our red tide detector than other real negative
examples.
Hard example mining. Sung and Poggio [16] first introduced
hard negative mining (also known as bootstrapping) that trains
the initial model with randomly chosen negatives and adapts
the model to hard negatives that consist of false positives of the
initial model. Thereafter, hard example mining has been widely
used in various applications such as pedestrian detection [17],
[18], human pose estimation [19], [20], action recognition [21],
[22], event recognition [23], object detection [24]–[27], etc.
There are alternative ways to find hard examples using heuris-
tic [28] or other hard example selection algorithms [29], [30],
which avoid training multiple times. Kellenberger et al. [31] used
active learning, which requires human intervention to assign
labels to critical examples and address the problem of the small
number of positive samples.

Shrivastava et al. [4] introduced OHEM, which, for every
training iteration, carries out hard example mining that chooses
examples with high training loss. However, it is too exhaustive
to evaluate all examples on each iteration. Hence, when using
an extensive example set like our problem, it is impractical
to examine all examples for each iteration. Therefore, we use

OHEM in a cascaded fashion to randomly select a subset of
examples and then perform efficient mining on it.
CNN used for detecting natural phenomena in marine envi-
ronment. Since CNN has provided promising performance in
image classification [32]–[34], there have been several attempts
to use it in the marine environment. CNNs have been effectively
used for detection of coral reefs [35], [36], classification of
fish [37]–[39], detection of oil from shipwreck [40], [41], etc.
However, applying deep neural network to detect objects-of-
interest in the marine environment has been quite limited due
mainly to difficulties in acquiring large amounts of annotated
data, unlike general object detection applications. In this article,
we devise a CNN training strategy coupled with an advanced
network architecture tailored to red tide detection while mini-
mizing human labeling efforts.

III. RED TIDE DETECTION APPROACH

A. Red Tide Detection

In this section, we describe the proposed CNN-based red tide
detection approach. This approach takes the GOCI image as
input and evaluates whether each pixel in the image belongs
to a red tide area or not. Therefore, red tide detection can be
considered as pixel-wise classification. The architecture of the
proposed approach is built on a model introduced by [5], which
is known to be suitable for pixel-wise classification. We apply a
sliding window method to deal with limited GPU memory when
processing GOCI images. Pixel-Wise Classification. Pixel-wise
classification has been widely used for mulitispectral/HSI clas-
sification that assigns each pixel vector into a corresponding
category by exploiting the spectral characteristics of both the
pixel and the neighboring pixels in a local region. Unlike gen-
eral image segmentation [1], [2], which segments distinctive
scene components in an image by primarily leveraging object
appearance as well as structural characteristics and attributes of
the components (e.g., human anatomy, car with four wheels),
pixel-wise classification is a task of predicting each pixel in a
region with additional features, such as spectral profiles, and
simultaneously little structural attributes available. Therefore,
in the proposed work, red tide detection is treated as a pixel-
wise classification problem primarily because the red tide is a
microscopic alga with no discernible appearances or structures
useful for image segmentation.

For recent CNN-based image segmentation, the state-of-the-
art approaches have a CNN architecture designed as sequen-
tially stacking multiple layers consisting of filters that capture
neighboring information (e.g., 3 × 3, 5 × 5 filters) to lever-
age information over a large area when predicting each pixel.
Furthermore, it adopts multiple downsampling layers such as
pooling/convolution layers with stride ≥ 2, which are known
to encode the structural characteristics adequately. On the other
hand, our approach, described in the next section, also adopts
CNN architecture. It is designed by stacking layers made up of
1 × 1 filters except for the initial layers and does not use any
downsampling layers. The first layer, consisting of multiscale
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Fig. 3. FCN architecture for red tide detection. The training and test architectures have slightly different initial multiscale filter banks tailored to pixel-wise
classification. The weights and dimension of the convolutional layers do not change between training and test. The size of each intermediate feature blob is shown
above the blob.

filters, does not capture structural characteristics but rather im-
poses spatial continuity over neighboring pixels such that they
have the same identity.
Architecture. The architecture of the proposed red tide detec-
tion model is shown in Fig. 3. To cope with the pixel-wise
classification of red tide detection, we use a nine-layer FCN,
which intakes an image of arbitrary size. The network takes
image patches of 25 × 25 as input during training, while an
image patch of a certain dimension determined by the maximum
size of GPU memory is fed into the network in test time.

The network’s initial module is a multiscale filter bank con-
sisting of convolutional filters with four different sizes (1 × 1, 5
× 5, 9× 9, and 13× 13). The architecture of the multiscale filter
bank is slightly different between training and testing. Given an
image patch of 25× 25 in training, each k × k filter is convolved
with a patch of (2k − 1)× (2k − 1) centered on the 25 × 25
patch. The size of the smaller patch, i.e., (2k − 1)× (2k − 1), is
determined so that each convolution always includes the center
of the larger 25 × 25 patch. For example, when applying a 5
× 5 filter to a 9 × 9 patch, the 5 × 5 window always contains
the center pixel of the 25 × 25 patch being evaluated. After the
initial convolution, a max pooling is applied to the outputs of
the convolutional filters so that those pooled feature maps have
a size of 1 × 1 except for the 1 × 1 convolution. In the test,
four filters are applied to the same patch of the same size. These
convolutions use appropriate padding to ensure that the four
pooled feature maps have the same size. Four output feature

maps are concatenated for both training and testing and then
fed to the second convolutional layer. Accordingly, due to the
multiscale filter bank architecture, our network becomes 25 ×
25, and the network’s receptive field uses spatial information
based on this receptive field when evaluating each pixel.

In training, dropout layers, which are commonly used to solve
the overfitting issue to some extent, are added at the end of the 7th
and 8th layers. The rest of the network is the same in training and
testing. Specifically, the binary sigmoid classifier that is useful
for either single-label or multilabel classification is used for the
output layer to identify other natural phenomena (e.g., sea fog,
yellow dust, etc.) from the GOCI images later using the same
architecture.
Sliding window strategy. The proposed method cannot process
a huge GOCI image at once during inference because of GPU
memory limitations, where the size of the image is 5567× 5685.
To overcome this issue, we use a sliding-window-based strategy,
where each window size isH ×W . In our experiment, we setH
andW to 600. Considering our network’s receptive field, we use
only the scores corresponding to the central (H − 24)× (W −
24) region as the final output.

B. Training: Adopting HEG

To meet the need for hard examples in devising an accurate hy-
perplane with a small number of examples that can be adequately
applied to test examples, we introduce HEG approach. It takes
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Fig. 4. Training hard example candidates generator. For each iteration in training, the discriminator and the generator are trained in order. Components not
updated during training is indicated with a dashed box.

two steps: 1) generation of hard example candidates (generation
step) and 2) hard example mining (mining step). This section
provides details for each step and our training strategy to jointly
train the red tide detection model with HEG. Note that the details
given are primarily focused on the red tide detection task but can
easily be extended to other pixel-based classifications.
Generation step. This step develops a generator that creates
artificial examples that the red tide detection model likely clas-
sifies as false positives. The proposed generator creates hard
negative example candidates only for single-category red tide
detection. However, it can still be applied to other multicategory
pixel-based classification tasks for generating hard example can-
didates for multicategory positives and negatives. This extension
will be presented with HSI classification in Section V. The
generator is designed as a 10-layered conv–deconv network
consisting of eight convolutional layers and two deconvolutional
layers inspired by U-Net with high image generation capabil-
ity [42]–[46], as shown in Fig. 4.

We aim to achieve two goals in the training of the generator.
First, the generator must be able to fool the red tide detection
model so that the generated examples are incorrectly classified
as red tides. Second, generated examples should have typical
nonred-tide spectral characteristics. To achieve the goals, we
introduce a discriminator that distinguishes real examples from
artificially generated ones. The generator is trained to deceive
the discriminator as in the typical GAN framework [3]. The
discriminator consists of four convolutional layers and one fully
connected layer, as shown in Fig. 4. Generated examples become
hard example candidates that are designed to maximize the
losses of the red tide detection model and the discriminator,
which conflicts with the two models’ objectives. The training
process of the generator and the discriminator is shown in Fig. 4.

To mathematically formulate the process of generating hard
negative examples, the red tide detection model and its loss are
represented by Frtd and Lrtd, respectively. The red tide detection
model is trained by minimizing its loss expressed as

Lrtd(E,Lrtd) = H(Frtd(E), Lrtd) (1)

where E and Lrtd are training examples and their associated
labels, respectively. For each example e ∈ E, its red tide labels
lrtd ∈ Lrtd can be either 1 (red tide) or 0 (nonred tide). H(p, q)
is the cross-entropy for the distributions p and q.

The discriminator and its loss are denoted as Fd and Ld, re-
spectively, in (2). The discriminator is optimized by minimizing

its loss, which is expressed as

Ld(N) = H(Fd(N),1) +H(Fd(Fg(N)),0) (2)

where N is a set of real negative examples. The discriminator’s
labels can be either 1 (real example) or 0 (artificially generated
example). Fg denotes the generator. The randomly selected 256
negative examples and the generated examples are used for
every iteration when training the discriminator. The generated
examples are the output of the generator taking the randomly
selected real negative examples as input.

The generator’s objective is to generate negative examples
incorrectly classified as red tide by the red tide detection model
and as real negative examples by the discriminator. Accordingly,
the generator loss (Lg) can be expressed as

Lg(N) = H(Frtd(Fg(N)),1) +H(Fd(Fg(N)),1) (3)

where 1 indicates that labels associated with the generated
negative examples are red tide for Frtd or real negatives for
Fd. The generator can be trained by minimizing Lg(N), where
Fg(N) becomes adversarial examples for the red tide detection
model and the discriminator.
Mining step. An additional mining step is necessary because the
generated examples may not necessarily be hard examples. We
use OHEM introduced by Shrivastava et al. [4] to build batches
by collecting hard examples to minimize objective loss through-
out the entire examples collectively. However, in problems like
ours with many examples, it takes quite long time to find hard
examples. In the red tide detection problem, the number of
original negative examples in the GOCI images is huge, and even
larger-scale generated examples are also considered in training.
Therefore, we used OHEM in a cascaded fashion (cOHEM) to
first build a pool of randomly chosen negative examples and then
carry out OHEM with all the positive examples along with the
negative examples in this pool (see Fig. 5).

For every pixel labeled with red tide, a 25 × 25 area around
each pixel is collected and used as a positive example. In negative
random sampler, we randomly select 100 regions of a size 37
× 37 from a negative image, equivalent to 16,900 examples of
size 25 × 25. In our experiments, we found that it is crucial to
randomly select multiple regions instead of one wide region for
negative examples, to improve the accuracy of red tide detection
using cOHEM effectively. The red tide detection losses for all
selected examples are calculated by feeding the examples to the
model. Note that this loss represents the extent to which the



LEE et al.: GENERATING HARD EXAMPLES FOR PIXEL-WISE CLASSIFICATION 9509

Fig. 5. Cascaded OHEM finds hard examples through two-stage sampling
(negative random sampler and hard example sampler) for every iteration. (RTD
Model: the proposed red tide detection model,P : the size of the positive example
set, B: batch size, C: the spectral dimension of the input example.).

current model correctly classifies each example. Hard example
sampler randomly selects the high loss examples with prede-
termined batch size. Then, the proposed model is trained with
these batches consisting of hard examples. Three-stage training
strategy. For training the red tide detection model using the pro-
posed two-step HEG approach, we adopt a three-stage training
strategy. The first stage is to train the initial red tide detection
model using cOHEM. In the second stage, the generator and the
discriminator are trained, as shown in Fig. 4. In this stage, the
discriminator is first trained with generator weights unchanged
and then the generator is trained while keeping the discriminator
and the red tide detection model fixed. In the last stage, the red
tide detection model is updated by using hard examples that
are the output of the proposed HEG approach. Hard examples
are mined from real positives, real negatives, and artificially
generated negatives via cOHEM. In the third stage, generator
weights are fixed.

For the first and third stage, all the 25 × 25 positive regions
and 100 randomly sampled examples of the 37 × 37 negative
regions are used for training. For the second stage, 256 of the 25
× 25 negative regions are used. Note that our FCN can intake
an input image of arbitrary size. The flowchart of the three-stage
training algorithm is shown in Fig. 6. The intermediate output
size of the proposed model in each training stage and test are
shown in Appendix A to understand our proposed model and
training strategy better.

IV. EXPERIMENTS: RED TIDE DETECTION

A. GOCI Satellite Images

GOCI acquires multispectral images from a large area sur-
rounding the Korean peninsula. The GOCI image [9] has eight
channels consisting of six visible and two near infrared (NIR)
frequency bands3 and 500 m spatial resolution. The size of

3While band extension [47]–[49] can be considered because of the small
number of bands in the GOCI image, the nine-layer CNN shows sufficient
performance even without band extension.

Fig. 6. Three-stage training algorithm. In the second stage, discriminator
training (a) and generator training (b) are performed for each iteration. Data
dimension is shown in the data blob in order of height, width, channel, and
batch size. C, P , N , B1, and B2 are the spectral dimensions (e.g., 8 for GOCI
image), the number of positive examples, the number of categories (e.g., 2 for red
tide detection), batch sizes for training RTD model, and batch sizes for training
generator, respectively.

Fig. 7. Red tide examples shown on GOCI images. In the above figure, the
red tide appears as elongated red bands. The images are false color images
by combining the 6th, 4th and 1st band of the GOCI multispectral image
representing the red, green, and blue colors, respectively.

the GOCI image is 5567 × 5685. Some examples of GOCI
images are shown in Fig. 2. Several red tide examples on GOCI
multispectral images are also shown in Fig. 7.

In this article, we use GOCI images taken in July, August,
and December of 2013 to evaluate our red tide detection model.
Images from July and August where red tide occurred are used as
positive images, and images from December are used as negative
images. Based on some conditions such as the atmosphere, we
chose eight images in July and August and four images in
December. Half of them were used for training and the other
half for testing.

To label red tide pixels, we used the red tide information re-
ported by National Institute of Fisheries (NIFS) of South Korea,
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which directly tested seawater from a ship. NIFS examined red
tide occurrence only at a limited number of locations; so it is
impossible to cover the entire red tide areas. Furthermore, the
red tide positions indicated in the reports were not very accurate
due to the error-prone manual process that included mapping
geo-coordinates of red tide locations onto GOCI images. Hence,
we have extended potential red tide regions up to 25 km (50 pixel
distance) in all directions from the red tide location indicated
in the report and then labeled red tide with experts’ help. Ap-
proximately 100 pixels from each training image were sparsely
labeled as a red tide area. We used pixels labeled as red tide as
positive examples and all the pixels of the December images as
negative examples.

B. Evaluation Settings

Evaluation metrics. We used two different metrics to evaluate
the proposed model: the receiver operating characteristic (ROC)
curve and the ROC variation curve. The ROC variation curve
describes changes in the detection rate based on varying numbers
of (true or false) detections per image (NDPI) instead of the false
positive rate. This metric is beneficial when there are numerous
unlabeled examples whose identity is unknown. Note that in a
GOCI image only a fraction of red tide pixels are labeled and the
rest of the image remains unlabeled. For quantitative analysis,
we calculate the AUC (the area under the ROC curve) and
ndpi@dr= 0.25, ndpi@dr= 0.5 and ndpi@dr= 0.75 indicating
the NDPI values when the detection rate reaches 0.25, 0.5, and
0.75, respectively.
Model training. The proposed models are trained from scratch.
When HEG is used, we used a three-stage training strategy
and trained the model with 1250 iterations for each stage. A
base learning rate is 0.01 for the red tide detection model and
generator and 0.0001 for the discriminator. The base learning
rate drops to a factor of 10 for every 500 iterations. When the
three stage training strategy is not used to train the model (i.e.,
artificially generated examples are not used for training), we
trained the model with 2500 iterations. A base learning rate is
0.01 and drops by a factor of 10 for every 1 K iterations.

The proposed models are optimized by using a minibatch
stochastic gradient descent (SGD) approach with a batch size
of 256 examples, the momentum of 0.9, and weight decay of
0.0005. The red tide detection model’s training objective is to
minimize the cross entropy losses between the red tide labels
and the final output scores. Each batch consists of examples
extracted from one positive image with red tide occurrence and
one negative image with no red tide occurrence. The positive-
to-negative ratio in each batch is set to 1:3.

To reduce overfitting in training, data augmentation is carried
out. Since a GOCI image is taken from a top view, training
examples are augmented by mirroring across the horizontal,
vertical, and diagonal axes. This mirroring can be performed
in one direction or in multiple directions. This will increase the
number of examples by eight times.

When training the red tide detection model, all learnable
layers except for the layers of residual modules (3rd,4th,5th, and
6th layers) are initialized according to Gaussian distribution with

zero mean and 0.01 standard deviation. The layers of the residual
modules are initialized according to Gaussian distribution with
a mean of zero and a standard deviation of 0.005. All layers of
the generator except for the last layer are initialized according to
Gaussian distribution with a mean of zero and a standard devi-
ation of 0.02. The last layer is initialized according to Gaussian
distribution with a mean of zero and a standard deviation of 50.

C. Architecture Design

In this section, we use a twofold cross validation that splits
the training set into two subsets, alternating one for training and
another for testing. AUC reported in the tables is the average
over two validations.
Finding the model specification. To find the optimal specifica-
tion of the red tide detection model, we evaluate the model by
changing various types of model parameters, such as the number
of filters and residual modules, and the types of filters used in
the multiscale filter bank. The proposed model specifications are
determined by evaluating detection accuracy (AUC), training
time, and test time on various model parameters. The final
model specification used in the proposed work is shown in
Table I. Table I also indicates if a more extensive network is
used by increasing the depth and breadth of the network, network
overfitting on the GOCI dataset starts to occur. We use one GPU
(NVIDIA Titan XP) that affects training and test times to conduct
our experiments.

We also optimize the generator by changing the number of
filters. As shown in Fig. 4, the generator is designed as a conv–
deconv network consisting of eight convolutional layers and two
deconvolutional layers. In this architecture, the number of filters
in the first layer n is doubled in the third layer and then reduced
by half in the sixth and again in the ninth layer. The last layer
has eight filters so that its output has the same eight channels as
those of the GOCI image’s spectral signal. We evaluate detection
accuracy and training time to find optimal architecture while n
is varied among 16, 32, 64, and 128, as shown in Table II. Based
on the results in Table II, we used the third architecture that
adopts 64, 64, 128, 128, 128, 64, 64, 64, 32, and 8 filters for all
ten layers, respectively. The fourth architecture, which employs
the largest number of filters, may overfit the GOCI dataset.
Finding sampling strategy of mining. We compare various
negative example sampling strategies of cOHEM with respect
to detection accuracy and training time. Negative example sam-
pling can change based on two factors: window size and the
number of windows. In Table III, we compare four different
sampling strategies with various factors. The first three strategies
are chosen to maintain a similar number of negative examples
as used in training. The last strategy (192 windows of 25 × 25)
is training without using cOHEM. Accordingly, its training time
is the shortest.

In Table III, the third strategy gives the best performance in
terms of AUC and training time. This observation indicates that
increasing spatial diversity of sampling is essential in providing
competitive performance. Therefore, even though the third strat-
egy requires a large amount of memory due to the large pixels,
it is adopted in our training approach.



LEE et al.: GENERATING HARD EXAMPLES FOR PIXEL-WISE CLASSIFICATION 9511

TABLE I
OPTIMUM SPECIFICATION OF THE RED TIDE DETECTION MODEL

The model specification is empirically determined based on three measures: detection accuracy (AUC), training time, and test time. Titan XP is used as a GPU that affects
training and test time. Numbers in bold indicate the specifications used in our model. ∼ 13×13 means the multiscale filter bank consisting of 1 × 1, 5 × 5, 9 × 9, and 13 ×
13 convolutional filters.

TABLE II
OPTIMUM SPECIFICATION OF THE GENERATOR

For each architecture, the numbers in parentheses indicate the number of filters in the deconvolutional layers. The discriminator architecture
is designed by adding one fully connected layer to the first four layers of the generator.

TABLE III
ACCURACY OF VARIOUS NEGATIVE RANDOM SAMPLING STRATEGIES

OF COHEM

Numbers in bold indicate our cOHEM sampling strategy.

D. Experimental Results

Baselines. We implement three baselines: SVM and two CNN-
based HSI classification approach [5], [50]. In SVM, a 25 × 25
region centered on the pixel in test is used as a feature repre-
senting the center pixel. To know the advantages of adopting
hard example mining, we applied conventional hard negative
mining [16] to SVM training. Lee and Kwon [5],the CNN-based
approach by which our model has been inspired. Another CNN-
based baseline, diverse region-based CNN (DR-CNN) [50],
inputs a set of diverse regions consisting of six different regions
(i.e., global, right, left, top, bottom, and local regions) to encode
semantic context-aware representation. In this experiment, we
use a 25 × 25 image patch as a global region compatible with
the input dimensions of our approach. 13 × 25 subpatch at top
and bottom of the patch are used as the top and bottom regions.
Similarly, 25 × 13 subpatch at the left and right of the global
patch are the left and right regions, respectively. The 3× 3 region
at the center of the global patch is used as a local region.
Performance comparison. Table IV shows that our model
trained using hard examples via HEG provides the highest
accuracy in all four metrics. The proposed HEG was effective in
improving the performance of our model and two CNN-based
baselines. It is also observed that adopting a hard example
mining approach consistently improves the accuracy of all four

Fig. 8. ROC variation curve. To better view changes in detection rate and
NDPI in detail, the x axis is shown with a logarithmic scale.

methods as it efficiently eases the significant imbalance between
red tide and nonred tide examples.

Fig. 8 shows the ROC variation curves for our model and
baselines. From Fig. 8, we can confirm that our model provides
significantly enhanced detection performance compared to the
baselines over the most range of NDPI. Fig. 9 shows red tide
detection results from our approach.

E. Analyzing Hard Negative Candidates

In Fig. 10, we observe that the generator and discriminator
converge successfully in the second training stage. This shows
that generator optimization overcomes the interference of the
red tide detection model and the discriminator.

Some examples of generated hard negative candidates, the
successfully trained generator’s output, are presented in Fig. 11.
In Fig. 11, it can be observed that activated pixel regions (the
third column of each set) tend to have different colors—i.e.,
different intensity values for some spectral bands—for certain
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TABLE IV
RED TIDE DETECTION ACCURACY

For each metric, numbers in bold indicate the best accuracy. Note that the higher the AUC value, the better the performance, and the smaller the
value of NDPI, the better the performance.

Fig. 9. Red tide detection results. The top images and the bottom images are
input images and the corresponding red tide detection results from our approach,
respectively. The first and second input images have red tide in them and the last
image is a negative image without red tide.

Fig. 10. Training curve. Losses changed during training generator and dis-
criminator in the second training stage are shown.

areas than the ones covered by real nonred tide examples.
Note that the activated regions in Fig. 11 do not show typical
characteristics of red tide regions—narrow elongated bands with
sharp boundaries as shown in Fig. 7. Furthermore, the activated
regions by artificial nonred examples appear to be pink while
the real red tide is generally red.

Fig. 12 shows an evolution of the ratio of training examples
between real negative examples and generated negative exam-
ples within one batch as the third training stage progresses.
Overall, the proportion of generated negative examples within

a batch gradually decreases as the training iteration increases.
In Fig. 12, the generated examples appear to be heavily used
for optimization in the first few iterations. After about 350
iterations, the positive examples are successfully separated from
the generated examples by the optimized network, providing
higher accuracy than the case in which the generated examples
are not used for training.

To analyze the relationship among three different types of
training examples—i.e., positive, real negative, and artificially
generated negative examples—after training the generator at the
second training stage, we use a visualization technique called
t-distributed stochastic neighborhood embedding (t-SNE) [51],
as shown in Fig. 13. For the visualization, 500 examples are
randomly chosen separately from real positive and negative
examples. The artificially generated examples are the output
of the generator, which takes real negative examples as in-
put. This selection of only a small fraction of real negative
examples—i.e., about 500 from 400 M examples—is due to
the significant imbalance between the number of positive and
negative examples. To address this issue, we provide multiple
instances of the tSNE-based visualization using different sets
of randomly selected training examples to illustrate the general
relationship, as shown in Fig. 13. We use the output of the 8th
convolutional layer (after ReLU layer) as the selected examples’
features. As shown on the top rows of Fig. 13, the artificially
generated negative examples are placed between the positive
and real negative examples. This indicates that the generated
negative examples can be considered hard example candidates
when retraining the red tide detection model. When training
the generator without using the discriminator, the artificially
generated negative examples are no longer hard examples as
they are placed far to the right of the positive and real negative
examples, as shown on the bottom rows of Fig. 13.

F. Ablation Study

Training with unlabeled examples. The main problem with
using GOCI images is the labeling of red tide pixels. It is quite
challenging to label every pixel, where a red tide appears on
GOCI due to practical issues. Therefore, there is no guaranty
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Fig. 11. Generated training examples (after second training stage). Each set consists of three images: real negative example (left), generated negative example
(center), and red tide detection model activation by the generated example (right). White pixels in the activation map indicate pixels with a red tide score estimated
by the red tide detection model greater than 0.5. For every set in this figure, there was no activation for a real negative example.

Fig. 12. Negative example ratio evolution (in third training stage). This
evolution shows the change in training negative example ratio at the third stage
of the training strategy.

TABLE V
ACCURACY WITH AND WITHOUT UNLABELED EXAMPLES

Numbers in bold indicate the best accuracy for each evaluation metric.

that pixels not labeled as the red tide in positive images (i.e., red
tide images) are nonred tide pixels.

We carried out ablation experiments to validate our claim that
pixels not labeled as red tide in positive images should not be
used to train the proposed model. When unlabeled pixels are
used, we also used all pixels of negative images for training.
Table V provides accuracy with and without the use of unlabeled
examples for training with regard to the four evaluation metrics.
Table V shows that using unlabeled examples significantly re-
duces the accuracy for all the evaluation metrics. The unlabeled
examples including red tide pixels, adversely affect the proposed
model training, supporting the reason why unlabeled pixels
should not be used for training.
Generating negative examples with the discriminator only.
To demonstrate the effectiveness of fooling red tide detector
for generating hard negative example candidates, we also test

TABLE VI
COMPARISON WITH GAN-BASED NEGATIVE GENERATOR

W/o HEG indicates the case where generated negative examples are not used for training.
W/GAN is the case using generated examples via GAN where the generator is trained
only to fool the discriminator. W/Ours uses hard negative examples generated by our
approach. Numbers in bold indicate the best accuracy for each evaluation metric.

a generator trained by fooling the discriminator only. The gen-
erator training approach becomes GAN [3] in that it consists
of a discriminator and a generator, and these networks learn to
restrain each other. Augmenting the training data by GAN-based
image generation increased accuracy in many approaches [13],
[52]–[54]. However, Table VI shows that the GAN-based data
augmentation approach is significantly less performed than our
approach. Moreover, it was even worse than the case without
using generated examples. These observations indicate that de-
ceiving the red tide detector in training the generator is essential
for improving accuracy.

V. EXPERIMENTS: HSI CLASSIFICATION

Our approach can also be easily generalized to HSI classi-
fication, requiring pixel-wise classification. For the HSI classi-
fication, we have used three benchmark datasets: Indian pines,
Salinas, and PaviaU. For each HSI dataset, 200 pixels randomly
selected from each category are used for training and all the
remaining pixels are used for testing.
Evaluation setting. For HSI classification, we carried out ex-
periments on three hyperspectral datasets: Indian Pines, Salinas,
and PaviaU. The Indian Pines dataset is an image consisting of
145 × 145 pixels with 200 spectral reflectance bands covering
the spectral range from 0.4 to 2.5 µm with a spatial resolution of
20 m. There are 16 material categories in the Indian Pines dataset,
but only eight materials with relatively large samples are used
for evaluation. The Salinas dataset includes 16 classes with 512
× 217 pixels, 204 spectral bands, and a high spatial resolution of
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Fig. 13. t-SNE visualization of three different types of training examples. The top row cases indicate when the discriminator was used for training the
generator, and the bottom row cases show when the discriminator was not used. Data points close to each other in the embedded space are likely to have similar
spectral characteristics.

TABLE VII
SELECTED CLASSES FOR EVALUATION AND THE NUMBERS OF TRAINING AND TEST EXAMPLES

Fig. 14. Training multicategory generator follows the same process as hard
negative candidate generator training shown in Fig. 4. The only difference is to
add the “Label Generation” module, which calculates the adversarial label for
each example, at the end of the HSI classification model.

TABLE VIII
STEP SIZE AND THE NUMBER OF ITERATION FOR DIFFERENT TRAINING SETS

3.7 m. The Salinas and the Indian Pines datasets have the same
frequency characteristics because they are acquired by the same

TABLE IX
HSI CLASSIFICATION ACCURACY (MEAN AND STANDARD DEVIATION)

When calculating the accuracy for our model, training and evaluation protocols follow
those in [5].

AVIRIS sensor. The PaviaU dataset acquired by ROSIS sensor
has 610 × 340 pixels with nine material categories and 103
spectral bands covering 0.43 to 0.86 µm spectral range with a
1.3 m spatial resolution. For the Salinas dataset and the PaviaU
dataset, unlike the Indian Pines dataset, all available material
categories are used.

For each dataset, randomly selected 200 examples from each
category are used for training and the remaining examples are
used for test, as shown in Table VII. We perform this partitioning
20 times and present the mean and standard deviation as overall
classification accuracy.
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TABLE X
SIZE OF THE INTERMEDIATE OUTPUT

The numbers in parentheses indicate the width, height, and channels of the intermediate output, respectively.C,D, andFC denote the convolutional layer, the deconvolutional
layer, and the fully connected layer, respectively.

Hard example candidate generation. When applying the pro-
posed training strategy to HSI classification, we replace single-
category hard negative generator with a multicategory hard
example candidate generator that generates hard examples of
individual material categories instead of hard negatives. The
generator is trained to create examples misclassified by the
HSI classification model. For each example e, its adversarial
training label (lahic) is the category with the largest loss among
all categories except for the class the example belongs to

lahic = arg maxl∈C, l �=lhic
Lhic(e, l) (4)

where lhic is a label associated with the example e and C is
the set of all categories. Generator optimization is carried out
with (3) by replacing Lrtd (denoted as 1 in the Equation) with
La

hic = {lahic}.
Architecture. Unlike the red tide detection model that outputs
one-dimensional (1-D) sigmoid probabilities, the HSI classi-
fication model uses the softmax layer to calculate multiple
categories’ final probabilities. We also use the softmax loss to
train the model while the red tide detection model is optimized
by minimizing the cross-entropy loss.

When training the generator in the second training stage, we
add the module (“Label Generation” in Fig. 14) to the end of
the network. This module finds an adversarial label for each
example using (4). The example becomes a hard example for its
adversarial label when training the model. While the generator
used in red tide detection only intakes negative examples to

generate hard negative examples, the generator for HSI classifi-
cation takes examples of any material category as an input.
Model training. A SGD approach is used to train the model for
HSI classification. For each iteration in training, a batch includes
256 examples. The base learning rate is set to 0.001 and reduced
by a factor of 10 for every step size. For the other optimization
parameters, we set the momentum to 0.9, gamma to 0.1, and
weight decay to 0.0005. Table VIII shows the step size and the
number of iterations for each training stage.
Results. Table IX shows the classification accuracy for the three
datasets. For all the three datasets, our nine-layer CNN outper-
forms the baseline introduced in [5]. Our strategy of generating
HEG further improves performance by at least 0.44%.

Note that the problems we encountered with GOCI images
(i.e. extreme sparsity of red tide samples, significant imbalanced
distribution, difficulties in accurate groundtruthing, etc.) are not
normally observed in other HSIs. Enhanced performance for
HSI classification verifies that the proposed HEG approach is
also applicable to other related problem domains, such as HSI
analysis.

VI. CONCLUSION

In this article, we have developed a novel nine-layer FCN
suitable for pixel-wise classification. Due to the challenges of
annotating Earth-observing remotely sensed images to the pixel
level, there are very few fully annotated satellite-based remote
sensing data. To avoid the performance degradation caused by



9516 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

significantly insufficient and imbalanced training data, we intro-
duce a novel approach based on HEG. The proposed HEG ap-
proach takes two steps, first generating hard example candidates
and mining hard examples from real and generated examples. In
the first step, the generator that creates hard example candidates
is learned via the adversarial learning framework by fooling a
discriminator and a pixel-wise classification model at the same
time. In the second step, OHEM is used in a cascaded fashion to
mine hard examples from a large pool of real and artificially
generated examples. The proposed FCN jointly trained with
HEG approach provides state-of-the-art accuracy for red tide
detection. We also show that the proposed approach can be easily
extended to other tasks, such as HSI classification.

APPENDIX A
INTERMEDIATE OUTPUT SIZE OF THE PROPOSED MODELS

Our FCN architecture is designed to be slightly different
between training and test to make it suitable for pixel-wise
classification. The size of the input is also different for individual
training stages. Furthermore, in the first and third training stages,
the sizes of positive and negative examples are different for the
same stages, making it easy to understand the architecture. Ac-
cordingly, to get an accurate understanding of the architecture,
we provide the size of the intermediate output of the model in
Table X. The red tide detection model weights are transferred
between training and testing and during different training phases.
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