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Evaluation of Sea Surface Winds and Waves
Retrieved From the Chinese HY-2B Data

Weizeng Shao

Abstract—The wind and wave derived from the scatterometer
and altimeter on board the Chinese Haiyang-2B (HY-2B) satel-
lite were systemically evaluated in this article. The analysis of
matchups between advanced scatterometer and the winds from
HY-2B scatterometer with wind speeds up to 25 m/s showed a
0.78 m/s root-mean-square error (RMSE) with a 0.97 correlation
(COR), superior to the 1.2 m/s RMSE and 0.93 COR of winds from
the altimeter of HY-2B. Simultaneously, significant wave heights
(SWHs) measured from HY-2B were collocated with measurements
from the Jason-3 altimeter. Analysis of the calibration concluded
that the observations from the HY-2B altimeter performed well at
low-to-moderate sea states, yielding an RMSE of 0.29 m for SWH
with a 0.98 COR for geophysical data records (GDRs) data after
systematic corrections using the MOE determination method. In
particular there were 20 typhoons occurring in China Seas during
2019-2020. The evaluation of high SWH when compared with
those (SWH > 7 m) from Jason-3/WW3 indicated that HY-2B
is accurate, with a 0.87 m/0.68 m RMSE and a 0.85 COR with
SWH. Finally, statistical analysis of wind speed and SWH was
investigated through waves simulated from the WAVEWATCH-
III (WW3)/hybrid coordinate ocean using the current and the
sea surface temperature (SST). The HY-2B wind measurements
performed well at sea surface currents below 1 m/s and SWH
less than 3 m, while a term for SST should be included in the
scatterometer wind speed retrieval. In addition, wave states likely
affect the accuracy of HY-2B wave speed measurements.

Index Terms—Haiyang-2B (HY-2B), sea surface waves, sea
surface winds, typhoon condition.

I. INTRODUCTION

HE chinese marine monitoring satellite Haiyang-2B (HY-
2B) was successfully launched in October 2018, and oper-
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ational sea surface wind and wave measurement data products
were officially released by the National Satellite Ocean Appli-
cation Service (NSOAS). At present several types of remote-
sensing data products are available for global oceanography
research; e.g., winds from the advanced scatterometer (ASCAT)
on board METOP [1] and the WindSat Polarimetric Radiometer
[2], and waves from the Jason-2 altimeter [3] and synthetic
aperture radar (SAR) [4]. These data have been calibrated against
moored buoys at various sea states [5]-[7]. The HY-2A satellite
was launched in 2011 and is capable of monitoring marine
dynamics, i.e., sea surface winds, waves, currents, tides, and sea
surface temperature (SST). Haiyang-1 (HY-1) is the first Chinese
satellite operating at an optical frequency for oceanography
research, and the applicability of HY-1A has been well studied
[8]-[10] during the past ten years. Typically, HY-2B carries three
sensors at microwave frequency; i.e., a scatterometer having
four radar beams at incidence angles of 41.4° and 48.5°, a radar
altimeter [11], and a microwave radiometer, which can provide
both wind and wave data. The sun-synchronous orbital period of
HY-2B is approximately 104 minutes at about 970 kilometers of
flight height; therefore, it can cover 90% of the global ocean in a
day. Efforts have been made to derive reliable sea surface wind
fields from the scatterometer using a well-known model of the
geophysical function (GMF) [12], [13]. This model describes
an empirical relation between a wind vector and radar backscat-
tering signals represented by a radar cross section (RCS) based
on Bragg wave backscattering theory. Because HY-2B operates
at a Ku-band (~13.2 GHz), similar to the C-band GMF [14], a
Ku-band GMF NSCAT-4 [15] was developed for inverting the
sea surface wind data from the scatterometer in vertical-vertical
and horizontal-horizontal polarizations. Unfortunately, two un-
known variables, wind speed and direction, are unable to be
resolved by one function. Under these circumstances the RCSs
are measured at two incidence angles, 41° and 48°. It has been
demonstrated that the accuracy of scatterometer-measured wind
speed is about 2 m/s for QuikSCAT [16] and ASCAT [17].

The three-month mission of SEASAT in 1979 yielded insights
concerning satellite wave observations [18]. The ocean surface
waves are measured by the altimeter of HY-2B. The incidence
angle of the altimeter is within 2°; therefore, the backscattering
signal associated with the mean-square sea surface slope is deter-
mined by specular reflection [19]. The sea state measured from
the altimeter is the total sea surface height (SSH) [20] combined
with the sea surface wave, tide, and sea level. The algorithms
that retrieve the significant wave height (SWH) [21] are a mature
technology based on the retraced backscattering waveform, e.g.,
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the physics-based model Beta5 [22] and empirical model OCOG
[23]. It is revealed that the accuracies of SSH and SWH are
approximately 0.05 m [24] and 0.4 m [25], respectively. For wave
retrieval from the HY-2B altimeter, the four-parameter tracking
method is used to retrace the waveform, and then the Brown
model [26], [27] is employed to retrieve SWH, similar to the
procedure for the Jason altimeter. Moreover, sea surface winds
are also obtained from the HY-2B altimeter using an empirical
model of altimeter wind speed that considers the effect of the
sea state [28].

In this article, the HY-measured wind and wave data were col-
lected during the period from January 2019 to October 2020. The
HY-2B altimeter provides four types of data products at Level-
2 (L2); i.e., operational geophysical data records (OGDR),
interim geophysical data records (IGDR), sensor geophysical
data records (SGDRs), and geophysical data records (GDR).
Two well-calibrated measurements, ASCAT winds and Jason-2
waves, were collected in order to calibrate the operational data
from the HY-2B scatterometer and altimeter, respectively. The
global and regional assimilation and prediction system (GRAPS)
[29] and the WAVEWATCH-III (WW3) [30]-[32] model were
also collocated with HY-2B data. In particular those model-
simulated results are available for investigating the performance
of HY-2B in monitoring typhoons.

The rest of this article is organized as follows. Section II
briefly describes the datasets available for this article, i.e., HY-
2B data, ASCAT winds, Jason-3 waves, and hybrid coordinate
ocean model (HYCOM) current field and SST data [33]. Using
simulations derived from GRAPS and WW3 models is also
confirmed. Section IV presents the calibration results of HY-2B
winds and waves in low-to-moderate sea states over the global
ocean and typhoons in the China Seas. The statistical analyses of
HY-measured wind speed and SWH are discussed in Section I'V.
Finally, Section V concludes this article.

II. DESCRIPTION OF THE DATASET

The HY-2B satellite carries two microwave sensors: a
scatterometer and an altimeter. The wind measurements are
operationally provided by NSOAS up to 25 km spatial resolution
twice per day. As an example, Fig. 1 shows the wind vector
maps for July 16, 2020 in the western Pacific Ocean, in which
there are a few gaps in the swath coverage. Similarly, four
types of wind and wave product measurements derived from
the HY-2B altimeter, i.e., OGDR, IGDR, SGDR, and GDR, can
also be accessed through an authorized account for worldwide
investigators. Specifically, OGDR and IGDR measurements are
the real-time measurements without systematic corrections by
using real-time accuracy orbit ephemeris and medium accuracy
orbit ephemeris (MOE) determination methods. SGDR and
GDR measurements are the data after systematic corrections
by using MOE and precise orbit ephemeris determination. Note
that HY-2B OGDR data were only available for June to October
2020. The HY-measured SWH map of GDR measurements with
overlaid water depth in July 2020 is presented in Fig. 2.

In order to calibrate the HY-2B winds ASCAT winds on board
the new-generation all-weather European active microwave scat-
terometer METOP were employed; these are normally used for
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Fig. 1. Wind vector map derived from the scatterometer of HY-2B on July 16,
2020.
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Fig. 2. SWH map derived from the altimeter of HY-2B geophysical data

records overlaid with the water depth for July 2020.

the calibration of other remote-sensing retrievals (e.g., SAR
[34], [35]). ASCAT wind with an 1800-km-wide swath was
operationally released in February 2007, and its performance
has been investigated, showing that the error is below 1 m/s [36].
In this article, the spatial resolution of ASCAT winds was about
25 km, and the time difference between the ASCAT and HY-2B
values was within two hours. Note that the backscattering returns
from the scatterometer suffer from the saturation problem [37]
at strong winds (>~25 m/s) as well as SAR [38]; thus, we
used for our research the ASCAT winds less than 25 m/s. The
satellite Jason-3 launched by the National Oceanic and Atmo-
spheric Administration in January 2016 is the successor to the
Jason-2 mission. Jason-3 is an international cooperation with the
Centre National d’Etudes Spatiales, European Organisation for
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Fig. 3. Wind vector map derived from the ASCAT during July 15-18, 2020.
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Fig.4.  SWH map derived from the altimeter of Jason-3 overlaid with the water

depth in July 2020.

the Exploitation of Meteorological Satellites, and the National
Aeronautics and Space Administration (NASA). Global SWH
measurements from the Jason-3 mission were matched with
those from the HY-2B altimeter in maintaining the SWH, which
was measured by following the footprints (~10 km) of the
satellite. The time difference between the Jason-3 and HY-2B
values was within 1.5 h, and the distance difference was less than
3 km. As examples, Fig. 3 shows the wind vector map derived
from ASCAT during July 15-18, 2020, and Fig. 4 shows the
SWH map derived from the altimeter of Jason-3 overlaid with
the water depth in July 2020.

The wave fields in the western Pacific ocean were also simu-
lated by the WW3 model; in particular, winds from GRAPS were
treated as the forcing fields, which are officially released by the
China Meteorological Administration of the National Climate
Center. The spatial resolution of GRAPS wind speed is about
3 km at intervals of 1 h. As pointed out in [31] and [39], sea
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Fig.5. (a) HYCOM sea surface current map at 12:00 UTC on 17 June 2020.
(b) HYCOM SST map at 12:00 UTC on 17 June 2020.

surface currents play important roles in the wave simulation at
coastal waters, especially for typhoons. Therefore, the HYCOM
sea surface current at a 0.08° grid at intervals of 3 h were the
open boundary conditions. In addition, the SST was used for
analyzing the statistical errors of the measurements of HY-2B.
The HYCOM current and SST maps at 12:00 UTC on 17 June
2020 are shown in Fig. 5. The specific settings of the WW3
model in this article are as follows.

1) The general bathymetric chart of the oceans water depth
with a spatial resolution of ~1 km in the horizontal
direction.

2) The frequency bins ranged from 0.04118 to 0.7186 at an
interval of Af/f=0.1.

3) The time step was set by default to be 300 s in both the
longitudinal and latitudinal directions.

4) The two-dimensional wave spectrum is resolved into 24
regular azimuthal directions at intervals of 15°.
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Fig. 6. (a) GRAPS wind map at 12:00 UTC on June 16, 2020. (b) ECMWF
wind map at 12:00 UTC on June 16, 2020.

5) The parameters of the energy input and dissipation terms,
referred to as ST2 and STAB2 in [30], were selected.

6) The nonlinear term for the quadratic wave—wave inter-
actions package, named the generalized multiple discrete
interaction approximation, was selected [40].

7) SWH outputs were at a 0.1° grid with a 30-min temporal
resolution.

Since 1979 the European Centre for Medium-Range
Weather Forecasts (ECMWF) has continuously provided var-
ious datasets, including atmospheric and oceanic parameters
assimilated with buoy observations and remote-sensed measure-
ments for scientific research. The spatial resolution of ECWMF
reanalysis data uses 0.5° grids at an interval of 1 h, which
is relatively coarser than GRAPS wind and WW3-simulated
SWH. ECMWEF data were employed to confirm the applicability
of model-simulated winds and waves. Fig. 6(a) and (b) shows
GRAPS and ECMWF wind maps at 12:00 UTC on 16 June 2020.
Similarly, Fig. 7(a) and (b) shows WW3 and ECMWF SWH
maps at 12:00 UTC on 16 June 2020. It is clear from the figures
that the patterns between ECMWF data and WW3-simulated
SWHs are consistent; in particular, the model simulations show
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Fig. 7. (a) WW3-simulated SWH map at 12:00 UTC on June 16, 2020.
(b) ECMWF SWH map at 12:00 UTC on June 16, 2020.

more detail. The comparisons between ECMWF and model
simulations showed a 0.96 m/s root-mean-square error (RMSE)
of wind speed with a 0.92 correlation (COR) [see Fig. 8(a)]
and a 0.47 m RMSE of SWH with a 0.81 COR [see Fig. 8(b)].
By analyzing ECMWF wind over the global ocean, we find
that the ECMWEF tended to underestimate speeds [41]; this was
improved to some extent for WW3-simulated SWHs by using
GRAPS winds. Under these circumstances we believe that the
sea states from the WW3 model in 2019-2020, even during
typhoons, are reliable for this article. The tracks of typhoons
available for this article are presented in Fig. 9.

III. RESULTS
A. Validation at Low-to-Moderate Sea Sates

The SWH and sea surface wind field of HY-2B satellite
have been calibrated using field measurements from Wanshan
altimeter calibration field and National Data Buoy Center buoys.
The measurements from the HY-2B scatterometer during the
two-year mission were collocated with those from ASCAT and
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Fig.9. Tracks of typhoons passing the China Seas in 2019-2020 overlaid with
the water depth.

Jason-3, where the time difference was within 1.5 h and the
spatial coverage difference was within 3 km. We have more
than one hundred thousand matchups with wind speed up to
25 m/s, showing a 0.78 RMSE with a 0.97 COR, as shown
in Fig. 10. Similarly, the winds from the altimeter of HY-2B
were also calibrated against ASCAT winds, although only about
60 points were available due to the coarse spatial resolution of the
HY-2B altimeter (~10 km in the horizontal direction). Fig. 11
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presents the comparisons for four data product types from the
HY-2B altimeter, yielding approximately 1.2 m/s RMSE with a
0.94 COR. Moreover, winds from the HY-2B altimeter generally
tended to overestimate speeds compared to ASCAT winds. The
comparisons of wind speeds between GRAPS and HY-2B are
shown in Fig. 12, indicating similar analysis results.

The SWHs from four types of measurements from the HY-
2B altimeter were compared with measurements from Jason-3
at low-to-moderate sea states (SWH < 7 m) over the global
ocean (see Fig. 13), where SWH ranged from O to 7 m for a
0.5 m bin. Generally, although SWH data were reliable, yielding
an approximate 0.3 m RMSE and 0.98 COR, the GDR data
performed better, with a0.29 m RMSE and 0.98 COR with SWH.
This behavior was also observed by comparison of SWHs with
the simulations from the WW3 model in the western Pacific
ocean (see Fig. 14). However, the error was relatively large
(about 0.5 m RMSE and 0.92 COR) at high sea states (5 m <
SWH < 11 m). Therefore, the accuracy of HY-measured SWH
was studied at higher sea states such as during typhoons.

B. Validation in Typhoons

During the past two years 20 typhoons passing through the
China Seas were captured by HY-2B. Because the scatterometer
suffers saturation problems at strong wind speeds (>25 m/s),
the performance of the HY-2B altimeter at high sea states (7 m
< SWH < 14 m) was investigated for those typhoons. The
matchups from HY-2B were calibrated against the collocated
SWHs from Jason-3 for more than 200 samples, as illustrated
in Fig. 14. There are fewer data values (<100 samples) for
HY-2B OGDR during the period from June to October 2020;
these are not presented here. Generally, HY-measured SWHs
were lower than observations from Jason-3, and the bias (HY-2B
minus Jason-3) was equal to —0.51 m for IGDR and SGDR
measurements. In addition, the RMSE of SWH was about 0.95 m
for IGDR and SGDR products, whereas a 0.87 m RMSE was
achieved for GDR data, and the bias was reduced to —0.32 m.
However, the error became scattered at SWH greater than
10 m due to insufficient samples. The measurements were also
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compared with the simulations from the WW3 model during
typhoons at SWH >7 m. Analysis for more than two thou-
sand matchups from two other types of data indicated that the
GDR measurements performed better, with a 0.68 RMSE [see
Fig. 16(b)], which was less than the 0.73 RMSE for both SGDR
and IGDR [see Fig. 16(a)].

Collectively, we conclude that GDR is useful for wave moni-
toring at high sea states with SWH > 7 m, although the accuracy
of extreme SWH (>12 m) awaits further confirmation due to
insufficient samples available for this article.

IV. DISCUSSIONS

In this section the differences in wind speed derived from
the HY-2B scatterometer and SWH derived from GDR mea-
surements derived from the HY-2B altimeter are compared
in order to provide suggestions for improving the accuracy
of HY-2B operational data. Fig. 17 shows the dependence of
marine environmental parameters, i.e., HYCOM current speed
for a 0.1 m/s bin [see Fig. 17(a)], HYCOM SST for a 2 °C
bin [see Fig. 17(b)], GRAPS wind speed for a 1 m/s bin [see
Fig. 17(c)], and WW3 SWH for a 0.3 m bin [see Fig. 17(d)]
on the differences (ASCAT-measured wind speeds minus HY-
measured wind speeds). The sea surface currents affected the
difference in NRCS (£0.6 m/s) at current speeds greater than
1 m/s, indicating that currents modulate sea surface roughness
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under such conditions. Interestingly, the tendency of SST for
the difference with NRCS was similar to that of wind speed
for the difference in NRCS. We believe that the change of SST
could affect the stability on the marine atmospheric boundary
layer as well as hydrodynamic characteristics [42] and then the
neutral wind speed. Moreover, the difference in NRCS increased
significantly at wind speeds greater than 20 m/s. This kind
of behavior also exists in the SAR wind retrieval [43] in the
presence of ocean thermal fronts. At low sea states (SWH <
3 m), the difference in NRCS was less than 0.3 m, whereas
the difference in NRCS increased at greater SWH conditions.
Collectively, both HY-2B and ASCAT winds performed well at
sea surface currents <1 m/s and SWH < 3 m; in particular, SST
should be included in the wind retrieval for both HY-2B and
ASCAT.

Similarly, Fig. 18 presents the relation between the difference
of SWH (Jason-measured SWHs minus HY-measured SWHs)
and these four parameters: HYCOM current speed; HYCOM
SST; GRAPS; wind speed; and WW3 SWH. The difference
of SWH remained at 0.1 m at HYCOM current speeds less
than 2 m/s, while the difference of SWH became larger with
increasing current speed. The HYCOM SST had less influence
on the difference in SWH. The dependence on GRAPS winds
indicates that the difference remained at 0.2 m with wind speeds
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>10 m; in particular, the difference was less than 0.1 m at wind
speeds <6 m. In addition, the difference in SWH was less than
0.1 m at SWH < 3m; however, the difference increased with
increasing SWH, especially at SWH > 7 m. It is not surprising
that wave state should determine the accuracy of altimeter waves
as well as the results for HY-2B scatterometer winds.

V. CONCLUSION

The individual scatterometer and altimeter missions are de-
signed for sea surface wind and wave monitoring over the global
ocean. The Chinese HY-2B satellite launched in 2018 carries
sensors for simultaneously obtaining wind speed and wave mea-
surements. Moreover, wind data following the satellite footprints
are also derived from the altimeter of HY-2B. Therefore, the
objective of this article was to systemically evaluate operational
winds and waves measured from HY-2B via calibration against
other remote-sensing data, i.e., ASCAT winds and Jason-3
waves. In particular the performance of HY-2B under cyclonic
conditions was investigated in order to confirm the applicability
at high sea states in the China Seas. Note that four types of
Level-2 data products derived from the HY-2B altimeter were
employed, i.e., OGDR, IGDR, SGDR, and GDR. In order to
calibrate the HY-measured SWH at high sea states, a well-known
wave model, WW3, was used to simulate wave fields for 20
typhoons during the period from 2019 to 2020, where GRAPS
winds were the forcing fields, and the comparisons between
ECMWF and WW3-simulated SWHs showed a 0.47 m RMSE
of SWH with a 0.81 COR.

The calibration of wind speeds (up to 25 m/s) from the HY-2B
scatterometer against ASCAT showed a 0.78 m/s RMSE with
a 0.97 COR, which was superior to the 1.2 m/s RMSE and
0.93 COR of winds from the GDR measurement by the HY-2B
altimeter. The statistical errors of wind speed and SWH were
analyzed using WW3-simulated SWH, HYCOM sea surface
currents, and SST. The dependence of differences between AS-
ACT and HY-2B indicated that current and SST affected the
scatterometer-measured winds at sea surface currents >1 m/s
and SWH > 3 m in particular, SST affected the scatterometer
wind measurements by modulating the stability of the marine
atmospheric boundary layer. It is more likely that the current
and SST have less influence on altimeter waves, while the
stage of the wave is the major controlling variable for HY-2B
altimeter-measured waves.

We conclude that wind data from the HY-2B scatterometer
are quite reliable at low-to-moderate wind speeds (<25 m/s).
Moreover, SWH products from the GDR of the HY-2B altimeter
performed best at low-to-high sea states, even during typhoons.
In the near future we would promote a campaign of synchronous
observations using HY-2B, the Chinese-French Oceanography
Satellite, and GF-3 SAR satellites during the typhoon season in
the western Pacific ocean, as this could provide an opportunity
for sea surface dynamics research at high sea states.
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