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Shape Similarity Intersection-Over-Union Loss
Hybrid Model for Detection of Synthetic Aperture

Radar Small Ship Objects in Complex Scenes
Peng Chen , Hui Zhou, Ying Li, Bingxin Liu, and Peng Liu

Abstract—With the continuous development and utilization of
marine environments, the demand for accurate identification of
ship targets at sea is increasing in both military and civilian fields.
Synthetic aperture radar (SAR) is used to detect ship targets at
sea and can provide 24-h detection under any weather conditions.
Deep-learning models enable the effective detection of ship targets
using SAR images; however, the recognition accuracy may be low
or false positives may occur in complex scenarios wherein it is
difficult to detect the ship targets. Current target-detection tasks
include target classification and positioning through bounding-box
regression. Herein, a regression loss function is derived to calculate
the position of the bounding box, and intersection over union (IoU)
is applied to estimate the positioning accuracy. As a result, a gap
exists between the commonly used positioning losses for regressing
the parameters of a bounding box and the optimization of these
metric values. Therefore, the proposed hybrid model combines
classification, localization, and segmentation with a novel multitask
loss function for boundary-box localization based on the improved
IoU. This solves the problem of inconsistency between training and
evaluation and improves the positioning accuracy. Experiments
were conducted using the SAR dataset for ship detection; the
dataset was labeled by SAR experts and included multiscale ship
chips with a resolution of 256 pixels in both range and azimuth.
In summary, the experimental results indicate that the proposed
hybrid model could improve the detection accuracy in complex
scenarios, and its false-positive rate is significantly lower than those
of the other models.

Index Terms—Complex scene, image segmentation, multitarget
ship detection, multitask loss function, synthetic aperture radar
(SAR) image.

I. INTRODUCTION

D ETECTION of ship targets at sea and in ports is used
in various maritime activities, such as illegal fishing,

oil spill monitoring, and marine traffic management [1], [2].
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Ship detection using synthetic aperture radar (SAR) systems
has received considerable attention in recent years because of
the wide-area coverage and 24-h imaging capabilities of the
SAR systems [3]. The resolution of the systems is constant
when they are located far from the observed target. Therefore,
using SAR systems has become crucial to enable ship-target
detection at sea [4], [5]. In general, offshore ship detection
experiences low background noise, making foreground target ex-
traction reasonably easy. However, for inshore ship detection, the
background noise is high, which is accompanied by the effects of
different land types. This is because harbors, where ships dock,
generally occur along the coastlines; hence, there is a constant
concentration of ships at near-shore areas, which presents shore
image contrasts, making it difficult to extract and identify the
target.

Unlike optical imaging, the imaging system of SAR is based
on the coherent principle, and the gray value of adjacent pixels
would generate some random changes when signals are re-
turned. This process would bring speckle noise, which makes
it more difficult to detect meaningful changes. Objects with a
large backscattering coefficient have greater brightness on SAR
images. Differences in brightness constitute a single-channel
grayscale image [6]. In recent decades, feature-based ship-
detection methods have been used to perform accurate ship
detection [7]. These methods deliver high performance in open
sea areas. For example, in 2010, Zhu et al. [8] proposed a method
that combines a histogram of oriented gradients (HOG) with the
features and characteristics of spatial and rotational deformation.
Candidates were extracted based on thresholds, and objects
were detected using the hierarchical classification method. Shi
et al. [9] combined the characteristics of the circular frequency
with HOG features and applied the AdaBoost classifier to ship
detection. Zhang et al. [10] generated new HOG features by
normalizing the polar angle as well as detecting ships and
other objects at sea using the support vector machine classifier.
However, this type of feature cannot effectively adapt to complex
background environments in SAR images.

In comparison, deep-learning models can automatically learn
distinctive features; hence, they are frequently used for ship
detection in SAR imaging [11]. Liu et al. [12] utilized sea–land
segmentation to obtain the proposed location of the ship target
and distinguish it from other objects using a convolutional neural
network (CNN). Kang et al. [13] proposed a region-based CNN
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with contextual information and multilayer features for ship
detection. They improved the detection accuracy by combining
high-resolution graphic and semantic features and eliminated
detection errors based on contextual information. Wang et al.
[14] detected ships within complex backgrounds in SAR images
using a single-shot multibox detector (SSD) model and transfer
learning to improve the detection accuracy. Cui et al. [15]
proposed a dense attention pyramid network-based method that
can detect multiscale ships in different scenes of SAR images
with high accuracy. Li et al. [16] proposed a model that combines
the generative adversarial network and Fast R-CNN. The model
delivered higher detection accuracy but low efficiency. Wei et al.
[17] proposed a SAR ship-detection algorithm based on the
improved Faster R-CNN, which was trained to initially identify
small targets and initialize the parameters of the detection model.
Training and tests were performed on Sentinel-1 SAR images for
ship detection. The experimental results indicate that this method
performed well in detecting small or dim ship targets in SAR
images. Over the past few years, deep-learning networks have
generated image-segmentation models with excellent perfor-
mance and considerably improved the accuracy. These networks
can also effectively deepen the understanding of images based on
improvements in detection and classification models. Nie et al.
[18] proposed a ship-detection and segmentation method based
on the Mask R-CNN model, which can accurately detect and
segment ships at the pixel level.

Several CNN-based ship detectors have been applied to im-
prove the ship-detection performance. However, these detec-
tors may have some drawbacks. According to SAR images,
when buildings, islands, or harbors have double backscatter-
ing reflections, they are likely to have the same backscatter
coefficient value as that of ships [19]. This may lead to false
positives in complex scenarios, resulting in low ship-detection
accuracies, as shown in Fig. 1. CNN-based ship detectors rely
on backbone CNN architectures that are pretrained on image
classification tasks to extract the feature maps of input images
and use the last layer of feature vectors for object localization and
classification. Different feature layers of a CNN have different
spatial resolution and semantic information. For example, the
lower layers utilize lower level semantic features in comparison
to those utilized by the final layers. As a result, the object
position in the lower layer is more accurate, which enhances
the detection of small objects, whereas, in the final layers,
only large objects are detected because smaller objects lose
significant signals during downsampling in the pooling areas.
The feature pyramid network (FPN) integrates multilayer fea-
tures to improve the detection of small objects by replacing the
feature extractor in the detector (such as Faster R-CNN) and
generating feature maps. In this manner, PANet [20], NAS-FPN
[21], and other networks based on FPN solved the problem of
multiscale target detection through the structure of cross-scale
connections.

In addition, the mean average precision (mAP) is calculated
based on the intersection-over-union (IoU) threshold, which is
the most common evaluation metric used for object localization.
However, in object detectors, the optimization under a regres-
sion loss function limits the consistency of optimization and

Fig. 1. Dataset of ship targets in complex scenarios (e.g., harbor, offshore,
island, and other backgrounds).

evaluation. During the training of ship detectors, when calculat-
ing the regions of interest (ROIs) of different ship targets in the
process of localization and segmentation, each pixel was first
established as the center of the feature maps. Anchor boxes
with varying pixel areas and different ratios were assigned,
generating a large number of proposals. Subsequently, the IoUs
of the proposal and the ground truth were calculated. A pro-
posal with an IoU greater than the threshold was retained as
the ROI. These proposals enable objects with various scales
and ratios to be equally represented in training a detector.
The optimization of localization and segmentation is based on
a regression loss function of the ROI bounding box. A gap
exists between the optimization of regression losses and IoU
values [22]–[24]. IoU is a common evaluation metric used for
comparing the similarity between two arbitrary shapes. IoU
encodes the shape properties of the objects under comparison,
such as the widths, heights, and locations of two bounding boxes,
and then calculates a normalized measure that focuses on these
areas.

Hence, this article proposes a hybrid model that simultane-
ously performs localization, classification, and segmentation.
FPN was employed as a bone network for target detection, and
the image-segmentation model with a deconvolution algorithm
was included for target separation. Using this hybrid model, each
pixel of the detected ships was extracted to achieve accurate
segmentation. Meanwhile, a hybrid model on FPN with a new
multitask loss function, an anchor box loss function, and an im-
proved IoU loss was directly applied instead of using the original
bounding-box regression loss function. The experimental results
indicate that the proposed model increased the ship-recognition
accuracy and significantly reduced the false-positive rate in
complex scenarios.
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Fig. 2. Localization and classification modules. The green frame is the convolutional layer, the blue frame is the merging of each layer in addition to the
upsampling result, and the orange frame is the feature map. Finally, the pink arrows indicate the classification and positioning results.

II. MATERIALS AND METHODS

A. Revisiting FPN

The emergence of FPN [25] established the dominant po-
sitions of multiscale and small-scale detectors. FPN realizes
classification and localization to detect objects. In this architec-
ture, either VGG [26] or Resnet [27] can be used as the backbone
network. An image was introduced into the pretrained backbone
network, and the convolution layer then used bottom–up feature
mapping to form layers {C1, C2, C3, C4, and C5}, as shown in
Fig. 2. Next, {C1, C2, C3, C4, and C5} were laterally connected
with the upsampling results through a 1 × 1 convolution kernel
(256 channels) to form new feature maps {M2, M3, M4, and
M5}. Finally, another 3 × 3 convolution was performed on
M2–M5 to eliminate the aliasing effect caused by upsampling.
The feature maps {P2, P3, P4, and P5} were then obtained, and
the max pooling was realized for P5 to obtain the last layer of
P6, which finally forms feature maps {P2, P3, P4, P5, and P6}.

When calculating the ROIs of different ship targets, each
pixel was first established as the center of the feature maps
{P2, P3, P4, P5, and P6}. Proposals were generated using
the anchor boxes with varying pixel areas and length-to-width
ratios. They were then retrained as ROIs using the threshold
of their IoUs with ground-truth information. Most SAR ships
in complex scenarios are small targets, which increase the
difficulty of target extraction. Therefore, the quality of can-
didate areas generated using an IoU can be improved during
target detection, which is conducive to achieving high detection
accuracy.

In addition, different ground truths were assigned to different
feature layers according to the length and width of each ground
truth

k =

⌊
k0 + log2

√
w × h

224

⌋
(1)

where w and h refer to the width and height of the ground truth,
respectively; k is the level an ROI is assigned to the feature
map level Pk; and k0 represents the lowest level mapped feature
when w, h = [224, 224]. In other words, targets of different sizes
were mapped to different feature pyramid levels to ensure that
small targets were mapped to low feature levels that retained a
considerable amount of location information. ROI and ground
truth were selected for regression to achieve localization and
classification.

B. Hybrid of FPN and Segmentation

The instance-segmentation method aims to achieve accurate
detection of ship targets in SAR images and precise segmenta-
tion of targets from backgrounds. In complex scenarios, ships
are presented as relatively small targets. If the ocean is calm,
its scattering mechanism is a single reflection. If not, volume
scattering is observed, which weakens the contrast between the
ocean and the ship. Close proximity to islands, harbors, and
offshore areas can result in inaccurate or missed detection due
to the backscattering of SAR images. First, feature map layers
were constructed through the FPN, where each convolution layer
involved convolution and pooling operations during localization,
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Fig. 3. Image-segmentation module. First, extract the feature maps of the image. Feature maps are embedding spaces with reduced size, which help to integrate
and reduce computational complexity. Second, upsample and concatenate the feature maps, and use four different deconvolutions to extract features in parallel,
which can extract multiscale semantic information on multilayer feature maps. Finally, perform a convolution on the extracted features to obtain a segmentation map.

classification, and recognition (i.e., downsampling). A decrease
in the information acquired from each pixel was observed,
allowing object features to be extracted. This was conducive to
achieving object recognition. However, less pixel information
can also lead to inaccurate localization of bounding boxes for
object detection in complex scenarios, such as backgrounds with
false targets or obscure nearby targets. Object segmentation can
restore the downsampled image to its original size after it has
been located and recognized. The output image is the same
size as the original, with information annotation specifying the
potential classification of each pixel. In contrast to the bounding
box used in object detection, the supplementary segmentation
model can accurately cut around the edges of the ship.

The ROI, selected in the feature maps, such as FPN, restored
the pixel size of the original image through transposed convo-
lution. The category of each pixel was subsequently detected.
This process is illustrated in Fig. 3, and the specific steps are
listed as follows.

Step 1: The convolutional network was shared with the models
for localization and classification, and the feature map layers of
the image were extracted.

Step 2: The feature maps that correspond to ROIs were
calculated.

Step 3: Upsampling was performed on the output features
inconv (m, n) of the ROI through transposed convolution; the
output matrix deconv (m’, n’) was obtained.

Upsampling was performed 2S times from inconv (m, n) to
deconv (m’, n’), where S is the number of mapped feature layers
of the ROI. Consequently

m, = (m− 1)stride + kernelsize− 2padding

n, = (n− 1)stride + kernelsize− 2padding (2)

where kernelsize is the size of the kernel, the zero-padding
parameter padding is set at 1, and the parameter for stride length
is stride = 2S.

Step 4: Deconv (m’, n’) was obtained from different feature
layers using transposed convolution and upsampling. It is dif-
ferent from the original image as it has a size of 224 × 224
pixels. The feature subgraph of ROI mapped to the bottom layer
P6 is an example. Following FPN convolution, a feature map
with a size of 7 × 7 × 256 was formed. Transposed convolution
and upsampling are presented in the blue frame of Fig. 3. Here,
let S = 5. After transposed convolution calculation, 0.5 was
used as a threshold for binarization to generate a mask for the
segmentation of the background and foreground.

On each layer of the hybrid model, the ROI was defined
using the IoU greater than the threshold, as shown in Fig. 4.
The output matrix was m × n, and the number of channels was
256. Subsequently, two steps were performed simultaneously
on the ROI feature vectors. One step involved classification
and localization, and another step used transposed convolution
for object segmentation, performed alongside localization and
classification.

C. IoU_SS Optimization Multitask Loss Function

Ships in complex scenarios in SAR images are predominantly
small targets, which are difficult to extract. The quality of ROI
generated from an IoU during target detection determines the
quality of detection. In this case, we directly used the optimiza-
tion function as a loss, which improved the detection accuracy.

The hybrid model included classification, localization, and
segmentation. Therefore, its multitask loss function L includes
these three tasks

L =
∑
i

Lcls(pi, ui)

+ λ1 · 1

Np

∑
i

Lmask(pi, yi) + λ2 · LIoU_SS (3)

where λ1 and λ2 are the normalization coefficients,
Lcls(pi, ui) = − log piui is the classification loss function, and
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Fig. 4. Architectural diagram for the hybrid model.

the pi = (p0, p1, …, pk) is the probability distribution of each
selected ROI. For the category of target k (whether it is a ship),
if the calculated proposal is assigned with a positive label, then
ui = 1; if it is assigned with a negative label, then ui = 0.

Lmask is the loss function for semantic segmentation and a
binary cross-entropy classification loss function based on pixel
calculations, determining the foreground and background. Each
mask contains Npixel pixels. Lmask is the mean of the binary
cross-entropy loss for all masked pixels in a selected ROI

Lmask =
1

Npixel

Npixel∑
j=1

(yj × log pj + (1− yj)× log pj) (4)

where yj represents the foreground or background, and pj is the
corresponding probability.

LIoU_SS is the novel localization loss function for the con-
fidence score of ROI, which is applied directly instead of the
original bounding-box regression loss. This ensures the consis-
tency of the evaluation and optimization schemes

LIoU_SS =

Np∑
i

pi[1− IoU_SS]2

+ λs

Np∑
i

(1− pi)[1− IoU_SS]2 (5)

where λs is the penalty factor for the detected ship, and pi is the
probability of true positives.

IoU is the intersection-over-union ratio of the predicted
bounding box and the actual boundary box (ground truth). pb and
gt correspond to the predicted bounding box and ground-truth
coordinates, respectively

pb = (xp
min, x

p
max, y

p
min, y

p
max)

gt = (xg
min, x

g
max, y

g
min, y

g
max) . (6)

Then, we obtain

Ap = (xp
max − xp

min)× (ypmax − ypmin)

Ag = (xg
max − xg

min)× (ygmax − ygmin) (7)

AI =

{(
xI
2 − xI

1

)× (
yI2 − yI1

)
, if xI

2 > xI
1, y

I
2 > yI1

0, otherwise

AU = Ap+Ag −AI (8)

where xI
1 = max(xp

min, x
g
min), x

I
2 = min(xp

max, x
g
max) , yI1 =

max(ypmin, y
g
min), y

I
2 = min(ypmax, y

g
max), AI is the intersection

of the predicted bounding box and ground truth, and AU is the
union of the predicted bounding box and ground truth

IoU =
AI

AU
. (9)

This article proposes an IoU called IoU_SS (IoU with shape
similarity) to calculate the shape similarity of the predicted
bounding box and ground truth based on the absolute sum of the
differences (ASD) and the sum of absolute differences (SAD)
[28], and it can be defined as follows:

IoU_SS = IoU−
(
cos(

dASD

dSAD
× π

2
)

)
(10)

dASD (pb, gt) =

∣∣∣∣∣
n∑

k=1

(pbk − gtk)

∣∣∣∣∣ (11)

dSAD (pb, gt) =

n∑
k=1

|pbk − gtk|. (12)

In the IoU_SS loss, dASD

dSAD
is the reflect shape similarity, and

the larger the value, the higher the similarity; otherwise, the
similarity is considered to be low. As shown in Fig. 5, the
value range of cos(dASD

dSAD
× π

2 ) is [0, 1], as shown in Fig. 5.

When dASD

dSAD
= 1, cos(dASD

dSAD
× π

2 ) = 0. This explains that the
predicted bounding box and ground truth are the same or similar.
Otherwise, the value is (0, 1]; in this case, −1 ≤ IoU_SS ≤ 1.

IoU reflects the degree of coincidence between the proposals
and the ground truth; i.e., the greater the degree of coincidence,
the greater the value. Thus, IoU_SS has the same characteristics
while considering the similarity of the shape of the prediction
frame and target object.
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Fig. 5. These examples with the bounding box (black box) and ground truth
(green box) represented by coordinates. For all three cases in the set, their shape
similar distance between two rectangles are very different.

TABLE I
DETAIL INFORMATION OF THE DATASET FOR ORIGINAL SAR IMAGERY

TABLE II
OVERVIEW OF THE DATASET

III. RESULTS AND DISCUSSION

A. Implementation Details

1) Dataset: The dataset, which entails 102 Chinese Gaofen-3
images and 108 Sentinel-1 images, was constructed by Wang
et al. [29] and labeled by SAR experts. It comprises 43 819 ship
chips with a resolution of 256 pixels in both range and azimuth.
These ships have distinct scales and backgrounds. Furthermore,
some of the ships were captured in complex scenes, such as
islands, harbors, and offshore, as shown in Fig. 1.

For Gaofen-3, the image modes included ultrafine strip map
(UFS), fine strip map 1 (FSI), full polarization 1 (QPSI), full po-
larization 2 (QPSII), and fine strip map 2 (FSII). The resolution
of the SAR images in the dataset ranged from 3 to 10 m. For
Sentinel-1, the imaging modes were S3 strip map (SM), S6 SM,
and IW mode. The details of these images, including resolution,
incidence angle, and polarization, are summarized in Table I.

In addition to noninterference sea-area scenes, the dataset
included complex scenes, which are divided into three
categories—offshore, island, and harbor—as shown in Fig. 1.
An overview of the dataset is presented in Table II. The training,

Fig. 6. Detailed information of a labeled ship chip. The green rectangles
indicate the ground truth, and the label <bndbox> in the right image shows
the location information of the ground truth.

Fig. 7. Result of object segmentation. The edge is made up of points, and
connecting these points together is the edge polygon of the target.

TABLE III
STEP-BY-STEP EXPERIMENTAL PROCEDURE ON GAOFEN (GF)-3 AND

SENTINEL-1 SAR SETS

verification, and testing sets constitute 70%, 20%, and 10% of
the dataset, respectively. Furthermore, the Labelme software was
used to label the ship locations. Each ship chip corresponded
to an extensible markup language file similar to that in the
PASCAL VOC detection dataset, indicating the ship location,
ship chip name, and <bndbox> label that defines the ground
truth, as shown in Fig. 6. Each pixel of images in training sets
was marked as a ship object or background pixel-by-pixel and
simultaneously, as shown in Fig. 7.

2) Evaluation Metric: The results of the comparison in terms
of detection precision P, recall R, and miss rate Pm are
defined as

P = NTD/N

R = NTD/NGT

Pm = NFN/NGT (13)
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Fig. 8. Convergence of the loss function for the confidence score. (a) Tradi-
tional proposals regression loss function. (b) IoU_SS loss function. After 105

iterations, (b) converges faster than (a) and the effect is improved.

where NTD is the number of ship targets detected correctly (true
detection, TD), NGT is the actual number of ship targets (ground
truth, GT), NFD is the number of incorrectly detected targets
(false detection, FD), NFN is the number of missed detected
targets (false negative, FN), and N is the total number of all ship
targets detected. The average precision (AP) is defined as

AP =

∫ 1

0

P (R)dR (14)

where P represents the precision, R represents the recall, and P
is a function that takes R as a parameter, which is equal to taking
the area under the curve. Different IoU thresholds can calculate
the different numbers of ROIs and subsequently detect different
NTD.

For the calculation of mAP, each IoU threshold corresponded
to an AP value. mAP denotes the mean of AP values, which helps
assess the detection effect of the model. n denotes the number

Fig. 9. mAP value against different IoU thresholds, for the proposed model
trained using IoU_SS loss function (red) and the traditional regression loss
function (blue).

of scene categories

mAP =

∑n
i=1 APi

n
. (15)

3) Implementation Details: Ubuntu 14.0 was used to con-
duct the experiments, the GPU was NVIDIA Tesla V100, and
the development platform was Keras. During the hybrid model
experiments, ResNet-101 was used as the backbone network.
To verify the effectiveness of the model, IoU was introduced
into the loss function to replace the traditional bounding-box
regression loss function. The training schedule was the same as
that of the FPN. Under a larger batch size setting, the Adam
optimizer was adopted to optimize the gradient descent. The
values of the empirical learning rate, batch size, moment, and
momentum were 0.0001, 64, 0.99, and 0.0001, respectively.

B. Experimental Procedure

In this section, we present the effectiveness of each module,
as given in Table III.

A+Segmentation (Step B) outperformed the baseline FPN-
Resnet (Step A). The mAP in step B increased by 3.91%, and
for scenes of the island, harbor, and offshore, the AP increased
by 1.64%, 2.75%, and 7.37%, respectively. This is because
segmentation was used to predict whether each pixel in the image
belonged to the ship. Compared with results obtained in step
B, the introduction of IoU loss in step C increased the mAP
by 5.85%, and the AP increased significantly for the harbor
and offshore scenarios by 7.37% (80.68–88.05%) and 9.22%
(77.69–86.91%), respectively. In step D, we replaced the IoU
loss with IoU_SS loss and incorporated the shape similarity in
the loss function. As a result, the mAP increased to 92.63%.
In summary, when using the proposed method (Steps A–D), the
mAP increased from 80.66% to 92.63%. The convergence of
different loss functions is shown in Fig. 8, and the number of
iterations is 105. The hybrid model with IoU_SS can effectively
distinguish ships from their complex backgrounds, which proves
that the proposed method performs robustly even in complex
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Fig. 10. Ship-detection results of the proposed hybrid model with IoU_SS for certain typical scenes. (a) Shows a single ship; the rectangular frame is the calculated
positioning frame, the confidence rate is 0.999, and the ship object divided by pixels is marked in green. (b) Shows the result for open sea water. (c)–(f) Depict
complex scenes, where (c) represents offshore and (d)–(f) contain building, dock, and harbor scenes.

scenes. Fig. 9 shows a comparison of the IoU_SS loss function
and the traditional regression loss function. We can observe
that the varying mAP values correspond to the IoU threshold;
i.e., 0.5 ≤ IoU ≤ 0.95. Furthermore, it is evident that under
different thresholds, the IoU_SS loss function yields a higher
mAP than that yielded by the traditional loss function throughout
the training process.

The results presented in Fig. 10 indicate that the hybrid model
can detect multiscale ship objects under various scenarios. As
shown in Fig. 10(a), each ship detected by the hybrid model is
marked pixel-by-pixel and equipped with a detection frame. For
a low-interference scenario [such as the open sea, as shown in
Fig. 10(b)], the model could produce accurate detection results
even with the presence of multiple dense ship targets. Moreover,
when a ship was located in a complex scenario, such as land,
harbor, or island, as shown in Fig. 10(c)–(f), the hybrid model
with the novel loss function could detect the ship. These results
suggest that the model has high accuracy and can be directly
used to detect ship targets through SAR images without requiring
sea–land segmentation.

As the backbone network model, we used FPN, segmenta-
tion (FCN), and the hybrid model proposed in this article as
a comparison and followed their training protocol using the
reported default parameters and the number of iterations on
each benchmark. Fig. 11 shows the precision–recall curves
of FPN, segmentation (FCN), and hybrid model on the SAR
dataset.

Fig. 11 shows that the precision and recall of the hybrid model
are higher than those of FPN and FCN, respectively, whether in
open sea water (a) or in complex scenarios (b).

C. Comparison With IoU_SS Loss and Other Loss Functions

We implemented Faster R-CNN [30], FPN [15], and Mask
R-CNN [31] in Keras and trained these using regression loss
to obtain the baseline results (trained using regression loss).
To train Faster R-CNN, FPN, and Mask R-CNN using IoU
and IoU_SS losses, we replaced their original loss in the final
bounding-box refinement stage with LIoU and LIoU_SS losses,
as shown in (3). Similar to the experiment on the models, we
regularized the new regression loss against the other losses, such
as classification and segmentation losses. The final results on
the SAR ship dataset have been presented in Tables IV–VI.
The mAP of the hybrid model proposed herein is increased by
6.78%, 3.46%, and 2.34% as compared with Faster R-CNN,
FPN, and Mask R-CNN, respectively.

D. Comparison With Existing Detection Models

The proposed hybrid model was compared with SSD [14],
Faster R-CNN [30], FPN [15], and Mask R-CNN [31] using
the Keras platform. The learning rate for SSD was set at an
experimental value of 0.00001. The batch size was chosen as
18 for SSD, the moment was set at 0.99, the momentum was
set at 0.0005, and the number of iterations was 100 000. The
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Fig. 11. PR curves of FPN, segmentation (FCN), and hybrid model on the
different datasets. (a) PR curves on SAR ships. (b) PR curves on SAR ships in
complex scenes.

parameters for Faster R-CNN, FPN, and Mask R-CNN were as
follows: learning rate=0.0001, batch size=64, moment=0.99,
momentum = 0.0001, and number of iterations = 100 000. The
backbone in SSD was VGG19. The Faster R-CNN, FPN, Mask
R-CNN, and hybrid models used ResNet-101 as the backbone.

As given in Table VII, in terms of the mAP, the proposed hy-
brid model with IoU_SS clearly outperformed SSD by 18.00%
(92.63% versus 74.63%) and Faster R-CNN by 13.31% (92.63%
versus 79.32%). Moreover, for complex scenarios, the mAP
of the proposed model significantly increased by 11.97% and
8.06%, compared with FPN and Mask R-CNN, respectively. Of
these scenarios, the most significant improvement was noted for
the harbor scene, with the AP of FPN increasing by 16.51%
(94.44% versus 77.93%) and that of Mask R-CNN increasing
by 13.76% (94.44% versus 80.68%). The interferences in the
harbor scene, such as docks and buildings, resulted in a lower

TABLE IV
COMPARISON BETWEEN THE PERFORMANCES OF FAST R-CNN TRAINED USING

ITS OWN LOSS (REGRESSION LOSS) AS WELL AS LIoU AND LIoU_SS LOSSES

Results are reported on the set of SAR ship images.

TABLE V
COMPARISON BETWEEN THE PERFORMANCES OF FPN TRAINED USING ITS

OWN LOSS (REGRESSION LOSS) AS WELL AS LIoU AND LIoU_SS LOSSES

Results are reported on the set of SAR ship images.

TABLE VI
COMPARISON BETWEEN THE PERFORMANCES OF MASK R-CNN TRAINED

USING ITS OWN LOSS (REGRESSION LOSS) AS WELL AS LIoU AND LIoU_SS
LOSSES

Results are reported on the set of SAR ship images.

TABLE VII
AP (%) OF DETECTION UNDER DIFFERENT SCENARIOS ENTRIES WITH THE

BEST APS FOR EACH SCENE ARE BOLDFACED

accuracy for the traditional method. Furthermore, the proposed
model was more effective in identifying ships under extremely
complex scenes.

As given in Table VIII, the missed detection rate of the
proposed hybrid model was reduced by 2.03%, 4.93%, 4.32%,
and 1.28%, compared with that of SSD, Faster R-CNN, FPN,
and Mask R-CNN, respectively. This shows that under complex
scenarios, the hybrid model could detect ships more effectively
than the other models could. Although Mask R-CNN and the
proposed model exhibited lower missed detection rates than
those of the other models, the missed detection rate of the
proposed hybrid model was lower for scenes involving more
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Fig. 12. Comparison of detection results for different models. The green bounding boxes indicate the actual location of ships in the images, and the remaining
bounding boxes represent the detected ships from four different models.

TABLE VIII
MISSED DETECTION RATE PM (%) UNDER DIFFERENT SCENARIOS

complex backgrounds (such as the harbor and offshore scenes).
Furthermore, the hybrid model outperformed the Mask R-CNN.

Fig. 12 presents the detection results for SSD, Faster R-CNN,
FPN, Mask R-CNN, and the proposed method. The first column,
as shown in Fig. 10(a), depicts the ground truth. Ships appear
as bright spots in SAR images. In complex scenes, objects,
such as buildings and docks, often backscatter and appear as
bright spots, similar to that of the ship target. This causes several
false alarms leading to false positives. This is a huge setback
in the development of ship-target detection. SSD achieved a
high missed detection rate for small ships and berthing ships,
resulting in a low recognition rate. In addition, SSD exhibited
a high false alarm rate when the target was close to or near the
edge of the image. Faster R-CNN exhibited better recognition
effect for ships of different scales. However, in some complex
scenes, owing to significant speckle noise and interference from
numerous objects, objects similar to ships were misidentified
as ships. The detection rate of FPN was slightly higher than

those of the first two methods because the pyramid feature map
was added in the FPN. However, for the harbor and offshore
scenes, the recognition rate of FPN decreased when the ships
were at the edges or when multiple objects were significantly
close to each other. Mask R-CNN exhibited a high recognition
rate for different scenes; however, some targets at the edge
of the image were not detected. These four detection models
delivered lower detection accuracies than that of the proposed
hybrid model. Additionally, they exhibited high rates of missed
or false detections under the complex scenarios involving high
interference from harbors and offshore. Under the harbor sce-
nario, SSD, Faster R-CNN, and FPN achieved a detection pre-
cision of less than 81%, whereas the hybrid model successfully
detected all ships in the image, achieving a detection precision of
94.44%. For the hybrid model, significant speckle noise and high
interference from numerous objects similar to ships were noted
in the offshore scenario, and although a false positive was
produced, a higher detection accuracy than those of the other
detection models was retained. Furthermore, in complex scenes,
where other objects interfered with ship targets, the proposed
hybrid model could effectively distinguish the ship targets
from the complex background, proving that the hybrid model
with SS achieves robust performance even under complex
scenes.

IV. CONCLUSION

Herein, we proposed a model that combines object detection
and segmentation with a novel multitask loss function. The
hybrid model was designed primarily for ship-target detection
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in SAR images under complex scenarios. The results revealed
that the hybrid model could effectively extract ship targets un-
der complex scenarios involving high background interference.
The experimental results indicate that the object-segmentation
algorithm can be integrated into the proposed hybrid model
to extract the boundary information of targets. Furthermore,
the IoU_SS multitask loss function with the shape similar-
ity loss afforded better convergence than the traditional loss
function while ensuring consistency in optimization and eval-
uation. Compared with the other detection models employed
for performance verification of the proposed model, the pro-
posed hybrid model achieved superior detection accuracy and
significantly reduced rates of false positives during ship-target
detection under complex scenarios, such as islands, harbors,
and offshore areas. Although the proposed low false positives,
we intend to combine the characteristics of SAR images with
improved models to further reduce these false negatives in future
research.
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