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Abstract—The rapid development of remote sensing technology
has brought abundant data support for deep learning based
temperature forecasting research. However, recently proposed
methods usually focus on the temporal relationship among
temperature observation information, whereas ignore the spatial
positions of different regions. Motivated by the observation that
adjacent regions usually present similar temperature trends,
in this article, we consider the temperature forecasting as a
spatiotemporal sequence prediction problem, and propose a new
deep learning model for temperature forecasting, self-attention
joint spatiotemporal network (SA-JSTN), which simultaneously
captures the spatiotemporal interdependency information.
The kernel component of the SA-JSTN is a newly developed
spatiotemporal memory (STM) unit, which describes the temporal
and spatial models via a unified memory cell. STM is constructed
based on the units of the convolutional long short-term memory
(ConvLSTM). Instead of using simple convolutions for spatial
information extraction, in STM, we improve ConvLSTM by a
self-attention module, which has significantly enhanced the global
spatial information representation ability of our proposed network.
Compared with other deep learning based temperature forecasting
methods, SA-JSTN is able to integrate the global spatial correlation
into the temperature series prediction problem, and thus present
better performance especially in short-term prediction. We have
conducted comparison experiments on two typical temperature
datasets to validate the effectiveness of our proposed method.

Index Terms—Long short-term memory (LSTM), self-attention,
spatiotemporal prediction, temperature forecasting.
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1. INTRODUCTION

N RECENT years, the rapid development of remote sensing
I techniques [1]-[3] have brought exciting data and resource
support for temperature forecasting problem. Temperature fore-
casting is to predict the temperature in a local region over a rela-
tively short period of time precisely. Temperature forecasting is
of paramount importance in many practical applications [4], [5],
such as traffic control, weather forecasting, infectious disease
prevention, and environmental monitoring. However, building
an accurate temperature forecasting model still remains chal-
lenging, because the random behavior of temperature changes
is not only dominated by physics regulations but also affected
by spatial and temporal changes in local areas.

Existing temperature forecasting algorithms can be roughly
divided into two categories: physical-based numerical models
and data-driven models. Goldberg et al. proposed a series of
physics-based numerical methods [6]—[11] to simulate the equa-
tions of hydrodynamics and thermodynamics in the process of
atmospheric evolution, which predicted the atmospheric motion
state and weather phenomena in a period of time in the future.
However, numerical models usually spend too much computa-
tional resources and time acquiring data and predicting tempera-
ture, which leads to low efficiency of prediction. In recent years,
with more and more temperature remote sensing data, grid data,
and meteorological station observation data [ 12]-[14] being col-
lected, stored, processed, and disseminated, many researchers
have proposed data-driven models. The data-driven approaches
learn patterns and relationships from historical observations to
further extrapolate future temperatures. The autoregressive mov-
ing average models and their variants have proved effectiveness
in the application of temperature forecasting [15]-[24], but they
can only model linear relationships. However, the temperature
data are nonlinear and have a very irregular trend. To solve
the problems of data dependence and complex mechanisms in
temperature forecasting, algorithms based on deep learning are
proposed.

Deep learning algorithms can better model the nonlinear
relationship of temperature data. Inspired by biological nervous
systems, artificial neural network (ANN) is a powerful tool
for modeling nonlinear relationships between independent and
dependent variables. Therefore, different types of ANN [25]-
[29] are applied in the domain of temperature forecasting,
such as multilayer perceptron, recurrent neural network (RNN),
long short-term memory (LSTM), and convolutional neural
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network (CNN). Zaytar et al. presented temperature forecasting
methods based on LSTM [30]—[41] to better model the intrinsic
relationship of temperature series. However, LSTM usually only
considers the temporal correlation between temperatures, while
ignoring the spatial correlation of different regions. Temperature
forecasting is actually a spatiotemporal sequence prediction
problem. Therefore, algorithms based on spatiotemporal cor-
relation are proposed. The concept of spatiotemporal sequence
prediction algorithms originated from convolutional long short-
term memory (ConvLSTM) [42], which was successfully ap-
plied to precipitation nowcasting. Karevan et al. [43] defined a
spatiotemporal stacked LSTM model for weather forecasting.
Nascimento et al. [44] proposed a spatiotemporal convolutional
sequence to sequence network (STConvS2S), which only ap-
plied convolutional layers to learn spatiotemporal correlation of
temperature data. However, LSTM tends to model the temporal
structure but lacks the ability of capturing visual appearance,
while CNN pays more attention to spatial appearance and has a
poor ability to capture long-term motion. To alleviate the defects
of LSTM and CNN in the prediction task, researchers consider
using CNN and RNN [45] together. Wang et al. [46] constructed
a predictive recurrent neural network (PredRNN), which puts
spatial appearances and temporal variations in a unified memory
pool for the first time. Yang et al. [47] proposed a combined
fully connected LSTM and convolution neural network model
to improve the prediction accuracy of sea surface temperature.

Although the existing deep learning algorithms can achieve
good prediction results, there are still some problems. In fact, the
temperature observations in different regions have certain regu-
larity. However, due to the regional fixity, the local temperature
changes are not affected in the same way by topography, latitude,
and other factors. The convolution operation is usually utilized
to capture the spatial correlation of temperature information
in deep learning temperature forecasting algorithms, which is
local and inefficient. The use of convolution is equivalent to
the default that the temperature in different regions is affected
in the same way by geographical factors, which will lead to
inaccurate prediction results. Therefore, it is very important to
consider the global spatial context in the process of temperature
forecasting. Long-range spatial dependencies are significant for
spatial applications.

In this article, we propose a self-attention joint spatiotemporal
network (SA-JSTN) for temperature forecasting, which has cer-
tain advantages in predicting sudden temperature changes in lo-
cal areas by paying attention to global information. The method
is inspired by PredRNN, which performs well in the practical
application of using radar echo data for precipitation nowcasting.
However, PredRNN exploits convolution operation to capture
spatial dimension correlation in local neighborhoods, ignoring
the influence of geographical factors in different locations on
the observed values. Therefore, we propose an SA-JSTN model,
which can model spatiotemporal dimensions simultaneously and
capture global spatial context information.

The main contributions of this work are as follows.

1) We propose a new deep learning model, SA-JSTN, for

temperature forecasting, which may have advantage in
extracting the spatial dependence between observations
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at different regions. SA-JSTN transmits information in
both horizontal and vertical directions with a stacked RNN
architecture, and simultaneously captures the spatiotem-
poral correlation of temperature data.

2) We develop a new spatiotemporal memory (STM) struc-

ture, which integrates the spatiotemporal information into
a unified unit. Moreover, different from simple convolu-
tions, STM is able to capture the global spatial contextual
information via a self-attention module, which may better
describe the interactions between different regions.

The rest of this article is organized as follows. Section II
discusses works related to both temperature forecasting and spa-
tiotemporal architectures. Section III introduces the SA-JSTN
architecture and STM module. Section IV provides dataset infor-
mation, network settings, experimental results, corresponding
analysis, and discussion. Finally, Section V summarizes this
article.

II. RELATED WORK

Several physics-based numerical models and data-driven
models have been applied to historical temperature data to
predict the weather conditions. Autoregressive integrated mov-
ing average (ARIMA) is a traditional method for time series
prediction [48]. Some scholars have studied new methods to
improve the prediction accuracy of spatiotemporal series based
on deep learning in recent years. The latest development of RNN
models [30]-[41] provided useful insights for predicting future
temperature series based on historical observations. However,
RNN models cannot capture the spatial dependence of the
observation results. Spatiotemporal deep learning models can si-
multaneously capture the context of spatiotemporal dimensions.

ConvLSTM [42] based models are a crucial branch in spa-
tiotemporal sequence prediction. ConvLSTM captured spatial
context information through convolution operations on the
input-to-state and state-to-state transitions in the LSTM net-
work. ConvLSTM established an end-to-end model for precip-
itation nowcasting. Based on ConvLSTM, PredRNN [46] and
improved predictive recurrent neural network [49] improved pre-
dictive performance by introducing additional global memory
cells and their reorganization. Memory in memory (MIM) [50]
added nonstationary modeling to the ConvLSTM unit and fur-
ther exploited the differential signal between adjacent recurrent
states to update memory cells into nonstationary information and
stationary information. STConvS2S [44] only applied the 3-D
convolutional layers to learn the spatiotemporal correlation of
temperature data. STConvS2S learned the spatiotemporal repre-
sentation of the input sequence through the temporal block and
the spatial block, and controlled the sequence prediction length
through the temporal generator block. In contrast, STConvS2S
tends to model spatial representation through convolution op-
erations and has a poor ability to capture long-term motion.
Although the spatiotemporal prediction algorithms based on
ConvLSTM can simultaneously capture spatiotemporal dimen-
sion information, the capture of spatial dimension information
can only model the local context information through the con-
volution operation.
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The self-attention module [51] was first proposed and applied
in natural language processing and has been successfully ex-
tended to computer vision [52], [53]. The self-attention module
has achieved impressive results in capturing the global spatial
context. In this article, we explore a new spatiotemporal pre-
diction learning framework, introduce a self-attention module,
and propose a new spatiotemporal memory unit for simultane-
ous memory of spatiotemporal information in the temperature
forecasting process.

[II. METHODOLOGY

In this section, we first state the definition of the spatiotempo-
ral sequence temperature forecasting problem, and then intro-
duce the proposed SA-JSTN architecture and STM module in
detail.

A. Spatiotemporal Sequence Prediction

The purpose of temperature forecasting based on spatiotem-
poral sequence is to utilize the previously observed spatiotem-
poral sequence temperature images to forecast the temperature
images of the future period time in a local region. From the
perspective of deep learning, temperature forecasting can be
regarded as a spatiotemporal sequence forecasting problem,
which can be modeled as a sequence-to-sequence problem.

To predict the temperature of a local region, suppose the spa-
tial region is represented by an H x W grid, which consists of [/
rows and W columns. Each element in the grid has a temperature
value that changes with time. Thus, the temperature observations
in a local area at any time can be represented by a tensor X' €
RE*H>W 'where R denotes the domain of temperature obser-
vations and C' is the number of channels (where C'is 1, similar
to a grayscale image). Then, the temperature observations of T’
consecutive moments can be expressed as a tensor sequence
[X1, X, -+, Ap]. The spatiotemporal sequence forecasting
problem is to adopt the previous 7' sequences including the
current observation to predict the most likely 7" sequences in
the future under a given time condition. The process is defined
as follows:

|:')?t+17 e '7AZ+T’j| =

argmax  p(Xpyp1,.. ., X | Xryr, ., &) (1)

L BN W

where [X;11,..., X 1] is a sequence of forecast result.

B. SA-JSTN Architecture

In this section, we give detailed descriptions of the SA-JSTN.
Initially, this architecture is inspired by PredRNN. For a spa-
tiotemporal sequence prediction learning system, the spatial
appearances and temporal variations should be memorized in
a unified memory pool. The design of spatiotemporal long
short-term memory (ST-LSTM) realizes the unified modeling
of spatiotemporal information. However, the ST-LSTM takes
ConvLSTM as the basic building block, which is inevitably
limited by the receptive field for spatial appearance modeling.
Therefore, we design an SA-JSTN architecture.
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SA-JSTN is a deep learning sequence-to-sequence architec-
ture designed for short-term temperature forecasting. As shown
in Fig. 1, we apply a stacked RNN architecture that models spa-
tiotemporal sequence prediction tasks. The SA-JSTN structure
ensures information to be transmitted vertically over states and
horizontally across layers at the same time.

The kernel building block of SA-JSTN is the STM module.
The same STM unit is adopted in the temporal dimension, and
the parameters are shared in the vertical direction. Stacking
multiple different STM units in the spatial dimension, and the
parameters are not shared in the horizontal direction. The spatial
dimension stacks multilayer STM can extract highly abstract
features layer-by-layer and, then, make predictions by mapping
them back to the temperature values. The highest spatial state of
the previous time step is used to initialize the starting spatial
dimension state of the next time step. Formally, the spatial
dimension state transition between the two time steps is shown
in the following formula:

M(): ?—1
HY =M}, 2)

where M is the spatiotemporal memory, # is the hidden layer
state, and n is the number of stacked RNN architecture layers.
Note that the initial value MY of spatiotemporal memory is
initialized with all zeros. The calculation equation of STM
architecture with n-layer stack used in this article is as follows
(for2 <1 <n):

[#},¢l, ML) = STM, (X, My, CLy, MD)
[Hi,Cl ML = STM(H, ' Hi_y,Coy, MUY (3)

where input X}, cell outputs C!, M., and hidden state Hi are
tensors in RC* 7 *W Note that the first layer STM is marked as
STM; . To solve the problem that ConvLSTM, the basic building
block in ST-LSTM structure, has limited ability to capture spatial
information, we introduce a self-attention module to model
the spatial dimension. The self-attention module can capture
global spatial context information and produce more accurate
prediction results. The STM module is described in detail below.

C. STM Module

The prediction of future time steps can benefit from the
relevant characteristics of past time steps; therefore, we con-
struct an STM unit with memory capability. The STM module
can model information with the global spatiotemporal receptive
field. The structure of STM is shown in Fig. 2. When processing
spatiotemporal data, the STM module still utilizes ConvLSTM
to capture the relevant information in the temporal dimension.
To capture the long-term dependency of context information in
the spatial dimension, a self-attention module is added on the
basis of ConvLSTM. Finally, the information on temporal and
spatial dimensions is jointly utilized to predict temperature.

1) Temporal Dimension Modeling: First, according to the
state information H. ™t (if I = 1, then #!™! = X}) of the upper
layer and the previous time state information 4! ,, the convolu-
tional gating structure in ConvLSTM is employed to obtain the
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Fig. 1.  Graphical illustration of SA-JSTN structure. For simplicity, the input in the figure only shows three consecutive temperature images {X;_1, Xz, X141},

which are memorized and transmitted through the STM module to obtain the prediction results. The temporal information flow is transmitted from top to bottom
along the blue arrows. The spatial information flow zigzags in the horizontal direction along the green arrows. The number of STM stacking layers is n.
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Fig. 2. Graphical illustration of an STM unit structure. The blue dashed box

and the red dotted line box, respectively, represent the information transmission
process of temporal and spatial dimensions. First, the input is memorized and
transferred through the spatiotemporal dimensional modeling units, and then,
the joint module is exploited to incorporate the spatiotemporal modeling results
to obtain the output state information.

current temperature change information in the temporal domain.
Then, a new temporal unit C! is generated by updating the
previous temporal cell state C!_;, as shown in the blue dotted line
box in Fig. 2. The temporal dimension information transmission
process is shown in the following formula:

gr = tanh(Wy * Hi ™t + Wiy x Hi_ ) +by)

it = (Wi x HUV 4+ Wi 1L 4+ ;)
fr=o(Wap* HE + Whp « HL +by)

4)

where o is the sigmoid activation function, ‘*” and ‘o’ denote the
convolution operator and the Hadamard product, respectively,
and ¢4, i;, and f; are tensors in R > >W

Ci=fioCi +iog

2) Spatial Dimension Modeling: First, according to ’Hi_l
and the cell state Mifl of the spatial domain, ConvLSTM is
exploited to obtain the temperature change information of the
current layer. Then, it is utilized to correct the spatial cell state
./\/li’1 of the previous layer to generate a new spatial unit M.
Finally, the self-attention module is applied to pay attention
to the spatial information M’ obtained by the ConvLSTM
operation, so that the network can focus on the correlation among
all pixels in the same context, as shown in the content of the red
dotted line box in Fig. 2. The information transmission process
of the spatial dimension is shown in the following formula:

gy = tanh(W,, # H{ 4 Wg + M+ 1))

i, = o (Wi« H b+ Wi« MU 4-0))

fl=oWi«H 4+ Wip « M+ 1))
Mi= flo M7 titoy

M = SA(MY}) (5)

where g}, i}, and f; are tensors in R #*W ‘and SA(-) repre-
sents self-attention operation that is illustrated in Fig. 3.

Since the self-attention [51] module was proposed, it has
attracted more and more attention because of its flexibility in
parallel computing and long-term dependency modeling. The
self-attention module has also been widely adopted to a single
context due to its good effectiveness in recent years. Connections
between elements in all positions are established by calculating
the weight of attention. In other words, the query, key, and value
defined later in this section, all come from the same context.
Formally, given an input M, the state of the output layer is
constructed by paying attention to the state of the input layer.
Specifically, the input layer M’ is first converted to query Q,
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self-attention map
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Fig. 3.

feature maps

Working process of the self-attention module. First, input M’é is converted to query Q, key K, and value V by 1x1 convolution operation. Then, the

attention matrix is obtained from Q and K to act on V, and self-attention feature maps of the same dimension as the input are generated through 1x 1 convolution.
Finally, the input and self-attention feature maps are added to obtain the cell state Mi containing global context information.

key K, and value V, which is described as

Q Waq
K|=|Wg|M! (6)
A Wy

where {Wq, Wi, Wy } are trainable 1x1 convolution parame-
ter matrices. The output M is expressed as follows:

M =M+ Wo 0 (7)

where

0 = ATT(Q,K)V (8)

where ATT(-) is an attention model, which can be expressed as
the following formula:
where \/d is the scale factor.

3) Joint Mechanism: In the joint mechanism of the STM
unit, the shared output gate is employed to seamlessly combine
the memory information of the temporal and spatial memories.
The final hidden state of the unit depends on the spatiotempo-
ral memory after the joint. The joint mechanism connects the
memory information from the horizontal and vertical directions
together. Then, it applies a 1 x 1 convolutional layer to reduce the
dimension, so that the hidden state H! has the same dimension
as C! and M!. By incorporating spatial with temporal dimen-
sion information in a unified unit, it makes the spatiotemporal
sequence temperature image prediction more effective. The joint
module finally generates the intermediate prediction of the next

STM unit input or constructs the final prediction frame. The
formula is as follows:

QK

Vi €))

ATT(Q, K) = softmax (

O = U(Wro * Hll;l + Who * %i_l + Wco * Cg
+ Wino * ML 4b,)

H! = 0 o tanh(Wy 1 * [CL, ML]). (10)

In summary, the SA-JSTN model improves the ST-LSTM ba-
sic memory unit in PredRNN and proposes a new spatiotemporal
joint module STM. The pseudocode of SA-JSTN is shown in
Algorithm 1. The spatiotemporal information is simultaneously
extracted and memorized in a unified memory pool by (4), (5),
and (10). The STM module enhances the ability to capture global
context information and breaks the limitation that ConvLSTM
can only capture local context information in spatial modeling.

IV. EXPERIMENT

We conduct experiments on two temperature datasets to verify
the proposed architecture. One is the CFSR public meteorologi-
cal dataset, and the other is the data provided by the Hebei Mete-
orological Bureau of China (HMBC dataset). In the experiment,
the L1 loss is applied as the data loss term, and the L2 norm is
applied as the penalty term. By comprehensively considering the
training, verification, and test losses, we set the hyperparameter
A before the penalty term to 1.0 to balance the data loss term
and the penalty term. The SA-JSTN model is optimized with
L1+L2 loss. An ADAM optimizer is used for training, and the
initial learning rate is set to 10~%. The training process is stopped
after 80000 iterations. The batch size of each iteration is set to
eight. All experiments are performed on the Nvidia GeForce
GTX1080 GPU server with 8 GB of RAM and implemented
in PyTorch. We first introduce datasets and evaluation metrics.
Then, we describe the experimental results and corresponding
analysis.

A. Datasets and Evaluation Metrics

1) CFSR Dataset: 1t is one of the latest global reanalysis
climate datasets and has been widely exploited in climate change
research. Atmospheric reanalysis data are driven by a variety of
data, and it requires strict quality control. In practice, historical
observation data are obtained by applying data assimilation
techniques and numerical prediction models. Recently, a new
generation of historical reanalysis data is suitable for climate pat-
tern research due to its high spatial resolution. The CFSR dataset
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Algorithm 1 SA-JSTN Algorithm

Input:

Data: Training dataset TRAIN, validation dataset VAL, test
dataset TEST;

Parameter: Input sequence length 7', total sequence length
T", the number of stacked layers n, the number of hidden
states H, the size of the convolution kernel K, the initial
learning rate Ir, the maximum number of training
iterations I;

Output:

Prediction result of the spatiotemporal sequence
temperature images in the future;

1: Initialize all trainable weights W for network;

2: foritr=1to [ do

3 fort =1t0T"-1do

4: for! =1tondo
5.
6
7

Generate a new temporal unit C!, based on (4);
Generate a new spatial unit ML, based on (5);
The joint module generates the intermediate
prediction of the next STM unit input or
constructs the final prediction frame, based on

(10);
8: end for
9: Generate forecast sequence;
10: Update weights W of network through L1+L2
loss;
11: end for
12: if itr % 5000 = O then
13: save the training model and use the VAL for
verification;
14: end if
15: end for

16:  Choose the model that performs best in the VAL to
generate the forecast sequence in the TEST.

contains high-resolution global land and ocean data, including
spatial coordinates (latitude and longitude), a spatial resolution
of 0.5° (i.e., the area of each grid cell is 0.5°x0.5°), some
meteorological variables (such as air temperature and humidity),
and sampling frequency at 6-h intervals. In the experiment, to
facilitate comparison with other methods, we adopt a subset
of the CFSR dataset. The air temperature observation is from
January 1979 to December 2015, covering the longitude and
latitude ranges of 80°W-25°W and 8°N-54°S, respectively, as
shown in Fig. 4. To adapt to the GPU memory, we scale down
the grid size to 32 x 32 (H x W) pixels. To verify the prediction
ability of the SA-JSTN model for long sequences, two prediction
strategies were adopted. The first strategy uses a sliding window
with a width of ten frames to slice the consecutive images.
Therefore, each sequence consists of ten consecutive frames, five
of which are input frames (7"), and others are prediction frames
(T"). The second strategy uses a 20-frame sliding window to
slice consecutive images. Therefore, each sequence consists of
20 consecutive frames, five input frames (7), and 15 prediction
frames (7”). The number of sequence samples for the two
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Fig. 4. Left: The topographic map of the CFSR dataset spatial coverage area.
Right: The temperature image of CFSR dataset, and the value of each pixel
represents the temperature.
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Fig.5. Left: The topographic map of the HMBC dataset spatial coverage area,
where the red dots are marked as site locations. Right: The temperature image of
the HMBC dataset obtained by the Kriging interpolation method, and the value
of each pixel represents the temperature.
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strategies are 54047 and 54037, respectively. In the experiment,
the division of sequence samples is based on time. We divide
the sequence samples into nonoverlapping training, validation,
and test set according to the proportion of 60%, 20%, and 20%.

2) HMBC Dataset: Itis the meteorological data provided by
the HMBC, covering 1591 meteorological stations in China.
The data include the index number of the station, 36 meteo-
rological elements (such as temperature and wind speed), and
sampling frequency at 3-h intervals. In the experiment, we select
the temperature data of 87 meteorological stations in Hebei
Province and its surrounding areas to make a spatiotemporal
sequence temperature image prediction dataset. The temperature
observation time is from November 2017 to March 2018 and
from November 2018 to March 2019, covering the longitude and
latitude ranges of 114°E-120°E and 36°N—-41°N, respectively.
For the preprocessing, we first query the spatial coordinates
(latitude and longitude) of the meteorological stations. Accord-
ing to the spatial coordinates, we use the Kriging interpolation
method to interpolate, and process the temperature data of 87
meteorological stations into grid temperature data with a size
of 311 x 251 (H x W) pixels, as shown in Fig. 5. Since then,
the temperature data are randomly clipped into a patch with the
size of 100x 100 (H xW) pixels to fit the GPU memory. For
the HMBC dataset, we use a 16-frame sliding window to slice
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TABLE I
COMPARATIVE RESULTS WITH DIFFERENT METHODS ON TEMPERATURE DATASETS

Dataset Horizon Metric ARIMA ConvLSTM  PredRNN MIM STConvS2S-C  STConvS2S-R  SA-JSTN (ours)
MAE 1.9073 1.1805 1.1736 1.1623 0.9180 0.8564 0.8422
T—5T —5 RMSE 2.1935 1.7304 1.6859 1.6207 1.3326 1.2630 1.2273
FLOPs —_— 14.78G 30.13G 46.69G 35.35G 28.91G 30.24G
CFSR Test time/samples e 0.013s 0.026s 0.053s 0.042s 0.037s 0.033s
MAE 1.9279 1.5071 1.4238 1.4202 1.2743 1.2365 1.1871
T—5T =15 RMSE 2.2755 2.1816 2.0294 2.0233 1.8658 1.8137 1.7446
FLOPs —_— 44.34G 90.39G  144.09G 97.99G 91.55G 90.71G
Test time/samples — 0.021s 0.058s 0.082s 0.061s 0.064s 0.060s
MAE 3.7845 2.8109 2.7688 2.7357 2.6109 2.4997 2.1581
HMBC T—8 T —8 RMSE 4.0720 3.3111 3.2749 3.2631 3.2403 3.0664 2.5857
FLOPs e 230.96G 470.79G  729.64G 528.74G 465.78G 472.45G
Test time/samples —_— 0.135s 0.263s 0.357s 0.291s 0.305s 0.289s
Params —_— 2.89M 5.88M 9.12M 6.12M 6.51M 591M

The boldface values represent the best results of the five evaluation indicators MAE, RMSE, FLOPs, Params, and Test time/samples on different data sets.

the images. Therefore, each sequence consists of 16 consecutive
frames, with eight input frames (7") and eight prediction frames
(T"). The number of sequence samples is 2363, and the same
division strategy as the CFSR dataset is adopted.

3) Evaluation Metrics: To evaluate the SA-JSTN archi-
tecture, we applied five evaluation indicators, namely MAE,
RMSE, FLOPs, Params, and Test time/samples.

The formulas of MAE and RMSE are, respectively, shown as
follows:

1 n
MAE = =S |7, — 2; 11
RMSE = lzn:(x- )2 (12)
n ' 7 3

where n is the number of test samples, and x; and z; are the
real and predicted values, respectively. In (11), MAE can better
reflect the actual situation of the predicted value error. In (12),
RMSE is very sensitive to large or small errors and can well
reflect the precision of measurement. The lower the value of
MAE and RMSE, the better the prediction effect.

FLOPs, Params, and Test time/samples are indicators to eval-
uate the computational efficiency of the model. FLOPs is floating
point of operations, which represents the amount of calculation
and is applied to measure the complexity of the algorithm.
Params represents the total number of parameters that need to
be trained in the model. Test time/samples is the test time of
each test sample. The smaller the value of FLOPs, Params, and
Test time/samples, the higher the computational efficiency of
the model.

B. Comparison With Other Methods

For the comparative experiment, we consider six models.
They are ARIMA [48], ConvLSTM [42], PredRNN [46],
MIM [50], STConvS2S-C [44], and STConvS2S-R [44]. The
ARIMA [48] model is a traditional statistical method for time
series prediction. The ConvLSTM [42] architecture is a classic
model for spatiotemporal sequence prediction. PredRNN [46]
and MIM [50] models are currently more advanced spatiotem-
poral sequence prediction algorithms. STConvS2S-C [44] and
STConvS2S-R [44] frameworks are currently more advanced
models that only use convolutional layers for weather forecast-
ing. The SA-JSTN model is inspired by the PredRNN frame-
work; therefore, PredRNN can be employed as the baseline of the
proposed architecture. The same time pattern and space coverage
are adopted for different models. In experiments, the number of
stacking layers (L) is four, the size of filters (K) is 5x5, and
the number of hidden states (H) is 64 for all models. To avoid
overfitting in the training process, dropout is applied after the
convolutional layer and set to 0.5. The SA-JSTN model applies
the early stopping method on the validation dataset and sets the
number of early stopping iterations to 50000. We have trained
and evaluated each model ten times and, then, calculated MAE
and RMSE on the test set. The experimental results are shown
in Table I. T' means the total input steps. 7" means the total
forecasting steps. The results MAE and RMSE in Table I are the
average results over 7" steps.

From the results, the SA-JSTN model is much better than
other models on MAE and RMSE. The performance of the
SA-JSTN model is better than that of the ARIMA model, which
indicates that adding spatial dimension modeling on the basis
of temporal dimension modeling can effectively capture the
spatiotemporal characteristics of temperature images. The per-
formance of the SA-JSTN model is much better than that of the
ConvLSTM model, which illustrates the importance of modeling
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TABLE II
EVALUATION OF DIFFERENT SETTINGS FOR PREDRNN AND SA-JSTN

. . . PredRNN SA-JSTN
Dataset Horizon Version Settings
MAE RMSE FLOPs Params MAE RMSE FLOPs Params
1 L=2,K=3,H=32 1.2005 1.7014 1.22G 0.23M 0.8745 1.2652 1.23G 0.24M
2 L=3,K=3,H=32 1.1904 1.6875 1.98G 0.38M 0.8633 1.2548 2.01G 0.39M
CFSR T=51T =5
3 L=4,K=3H=64 1.1844 1.6887 10.97G 2.14M 0.8597 1.2308 11.07G 2.16M
4 L=4,K=5H=64 1.1736 1.6859 30.13G 5.88M 0.8422 1.2273 30.24G 5.91M
The boldface values represent the best results of the five evaluation indicators MAE, RMSE, FLOPs, Params, and Test time/samples on different data sets.
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Fig. 6. Frame-wise MAE comparisons of different models. (a) CFSR test set (1" = 5). (b) CFSR test set (T” = 15). (c) HMBC test set (T’ = 8).

the spatiotemporal dimensions in a unified unit and using the
self-attention module to capture the correlation of the spatial
dimension. The SA-JSTN model is better than PredRNN and
MIM, which illustrates that the self-attention module can capture
the global spatial context information of the temperature image
well. The STConvS2S-C and STConvS2S-R models only exploit
the sequence modeling architecture of the 3-D convolution layer
to learn the correlation of spatial and temporal in weather data.
The SA-JSTN model is also superior to the STConvS2S-C and
STConvS2S-R models, which indicates that LSTM has stronger
long-term memory capture ability than CNN. From the results
of Table I, the FLOPs, Params, and Test time/samples of the
ConvLSTM model are the smallest. The MIM framework has the
lowest computational efficiency. The FLOPs, Params, and Test
time/samples of the SA-JSTN architecture are comparable to
that of PredRNN, and slightly lower than those of STConvS2S-C
and STConvS2S-R. The SA-JSTN model has achieved a reduc-
tion in prediction errors on both the CFSR dataset and the HMBC
dataset. The SA-JSTN framework has achieved an improvement
in prediction accuracy without a significant increase in FLOPs,
Params, and Test time/samples.

C. Analysis and Discussion

To study the best hyperparameters suitable for SA-JSTN
model and prove its insensitivity to parameters, we adopt dif-
ferent the number of stacking layers, the size of filters, and
the number of hidden states to compare the baseline model
PredRNN with SA-JSTN. In the first prediction strategy of the

CFSR dataset, we set four versions of the parameters, as shown
in Table II. In the case of using MAE and RMSE as evaluation
metrics, we discover that when the number of stacked layers (L)
is four, the size of filters (K) is 5x 5, and the number of hidden
states (H) is 64, the model obtains the best results. The SA-JSTN
architecture is better than that of the PredRNN model in all four
versions. In the comparative experiment of the previous section,
we also adopted the same hyperparameters as the fourth version.
Another noteworthy point is that increasing the size of filters,
the number of hidden states, and the number of stacked layers
can improve the predicted results to some extent. But overall,
the performances of the four versions are basically stable. It
indicates that the proposed model is not sensitive to parameters.
In the case of using FLOPs and Params as evaluation metrics, we
discover that as the size of the filters, the number of hidden states,
and the number of stacked layers increase, the computational
efficiency of PredRNN and SA-JSTN decreases. It is worth
noting that the size of the filters and the number of hidden states
have a greater impact on the FLOPs and Params of the model.
The frame-by-frame quantitative comparison of different
models is shown in Figs. 6 and 7. A lower value indicates better
prediction performance. The SA-JSTN model is always better
than other models. In the first prediction strategy of the CFSR
dataset, the SA-JSTN model is significantly better than the Con-
vLSTM, PredRNN, and MIM, and its results are equivalent to
STConvS2S-C and STConvS2S-R architectures. In the second
prediction strategy of the CFSR dataset, the SA-JSTN model
is more accurate for short-term prediction, and the prediction
results of the last few frames are equivalent to STConvS2S-C and
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Prediction examples on the CFSR test set (77 = 15). We magnify the local of prediction results for additional detailed comparison at the last frame. (a)

Ground truth. (b) SA-JSTN. (c) ConvLSTM. (d) PredRNN. (e) MIM. (f) STConvS2S-C. (g) STConvS2S-R.

STConvS2S-R architectures. In the HMBC dataset, the MAE
and RMSE indicators of the SA-JSTN model are obviously
lower than those of other network architectures. Due to the
accumulation of errors, the prediction performance gradually
decreases with the increase of the number of predicted frames.
Overall, our model has a better effect for short-term temperature
prediction.

In practice, the temperature change in the sample area of the
HMBC test set with a pixel size of 100x100 (H xW) is not
obvious, and the visual effect is poor. To better compare the
qualitative results of different models, we choose the CFSR test
set with more obvious visual effects for display. Fig. 8 shows
a temperature sample label sequence in the second strategy of
CFSR test set and the prediction results of different models.
To compare the prediction effectiveness of different models
on spatiotemporal data in detail, we enlarged the local area of
the last frame. The result of ConvLSTM network is obviously
inaccurate because it cannot remember the detailed spatial rep-
resentation. PredRNN and MIM models are more accurate than
ConvLSTM, but their ability to predict some details is poor. The

STConvS2S-C and STConvS2S-R frameworks produce more
accurate prediction results. However, the STConvS2S-C and
STConvS2S-R models lack the LSTM layer to model long-term
motion, which leads to the effectiveness of STConvS2S-C and
STConvS2S-R becoming worse as time increases. SA-JSTN
generates clearer prediction results and can memorize detailed
visual appearance and long-term movements.

V. CONCLUSION

In this article, we propose an end-to-end network, called
SA-JSTN, which s applied for spatiotemporal sequence temper-
ature forecasting learning and captures the temperature change
process in both spatial and temporal dimensions. In addition, we
present an STM unit, which adopts a dual-memory gating struc-
ture as the kernel component of SA-JSTN. The STM module
ensures that the memory states capture the abstract spatial char-
acteristics in the horizontal direction as well as running through
all the time states in the vertical direction. Experiments show that
the SA-JSTN model achieves the most advanced performance on
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two atmospheric temperature datasets, and can better analyze the
spatial and temporal correlations in the temperature prediction.
Therefore, when utilizing spatiotemporal data for temperature
prediction, SA-JSTN may be a natural choice for spatiotemporal
sequence modeling tasks (such as weather forecasting). The
SA-JSTN model performs well in the short-term temperature
forecasting process and has achieved competitive results for
long-term prediction. Future work will look for ways to reduce
errors in long-term temperature forecasting and improve calcu-
lation efficiency. In addition, we will explore more spatial and
temporal prediction domain architectures.
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