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In-Orbit Calibration and Validation of HY-2B
Altimeter Using an Improved Transponder

Caiyun Wang *“, Mingsen Lin

Abstract—HY-2B (Haiyang) is the follow-on mission to HY-2A,
the Chinese first sea satellite for oceanography, launched in October
2018. The main payloads onboard are similar to HY-2A. For the al-
timeter, an in-orbit calibration mode was designed to achieve higher
calibration precision. An improved transponder was built and de-
ployed for the calibration campaign. The purpose of this article is to
describe the in-orbit calibration and validation of HY-2B altimeter
based on an improved transponder. A signal-rebuilt transponder
was developed and employed in HY-2A altimeter calibration. It
played an important role in the quantitative analysis of HY-2A
altimeter data products. For HY-2B altimeter, a newly designed
calibration mode was added, and an improved transponder was
built. It has some advantages over the previous one in the rebuilt
signal forms and modulation ways. Two calibration campaigns
were carried out, in April 2019 and October 2020 at different
sites. In the two campaigns, the precision of the altimeter range
calibration is obtained less than 1 cm. For further validation and
assessment of the result, a comparison between HY-2B and Jason-3
was performed in terms of sea surface height on the tens of cross
track points in the open ocean. The comparison result shows high
degree of accuracy and stability of HY-2B altimeter instrument. In
China’s next five-year plan (2021-2025), many more transponders
and related calibration facilities would be installed in the ocean
calibration fields, serving a variety of different satellite altimetry
missions.

Index Terms—HY-2B altimeter, improved transponder, in-orbit
calibration, integration, validation.

I. INTRODUCTION

Y-2B IS the second China’s satellite for oceanic dynamic,

launched in October 2018. The main payloads on HY-2B,
similar to HY-2A, include a dual-frequency radar altimeter, a
three-band nadir-looking radiometer for atmospheric correction,
and a Ku-band radar scatterometer [1].

HY-2A has been working for over seven years. Some evalua-
tions show the precision of sea surface height (SSH) is more than
4 c¢cm [2]-[4]. In HY-2B, a rubidium atomic clock is first used as
the frequency reference to synchronize the ultrastable oscillator
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(USO), therefore, the design accuracy of SSH for HY-2B is
improved to 2 cm [1].

To provide truly global sea level within a geodetic system,
also to obtain the altimeter instrument delay after launch, an
in-orbit calibration is essential. A signal-rebuilt transponder was
employed in HY-2A altimeter calibration [5], [6]. The range
calibration precision of better than 2 cm was obtained, and the
HY-2A USO clock drift was also estimated accurately from the
calibration data [7]-[9].

In order to have a thorough test and comprehensive verifica-
tion prior to its launch, a fully functional return signal simulator
(RSS) was developed in our lab [10], [11]. It can provide flexible
echo forms, precise time delay, and better signal-to-noise ratio,
being an ideal simulator for the altimeter function test before its
launch. Based on the RSS, an improved transponder was devel-
oped early in 2019, and employed in two calibration campaigns,
April 2019 and October 2020, at different sites [12], [13].

Utilizing the CRS1 calibration facilities in West Crete,
Greece, HY-2A altimeter SSH was assessed and compared with
Jason series, SARAL/AIltiKa, CryoSat-2, Sentinel-3, etc. [20],
[21]. The main facilities at CRS1 are offshore GPS buoys and
coastal tide gauges, which provide a direct or an extrapolated
SSH in situ. The sea surface facilities are conventional methods
used in calibration campaigns for many types of altimeters,
which operate in a low-resolution mode, synthetic aperture
radar mode, or interferometric synthetic aperture radar mode
[14]-[25]. Inrecent years, inland lakes are also used for altimeter
bias calibration, such as the Lake Issyk Kul in Kyrgyzstan for
Jason-3 and Sentinel-3A [26].

Contrary to the sea surface facilities, the microwave transpon-
der enables direct range measurements on land and eliminates
many error sources induced by the sea surface dynamics. The
existing ground-based transponders are bent-pipe ones, used in
Jason-2, ERS-1/2, ENVISAT, Sentinel-3, Cryosat-2 for altime-
ter range bias calibration [27]-[31], [34]-[38] and backscat-
ter coefficient sigma naught calibration [32], [33]. Bent-pipe
transponder receives the altimeter signals, amplifies them, and
transmits them back to the altimeter. They are simple, economi-
cal, and stable, installed at a fixed location on the satellite ground
tracks, providing a constant signal delay [34], [35].

A signal-rebuilt transponder was developed and employed
in HY-2A altimeter calibration, which is different from the
bend-pipe ones. The bend-pipe transponder is simple and stable,
but it provides constant time delay introduced by the elec-
tronic devices in the transponder [30]. Therefore, the bend-pipe
transponder could be used only on a fixed position, waiting
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for the satellite passing over. On the contrary, the signal-rebuilt
transponder can capture, track altimeter pulses, and transmit the
rebuilt signals to the altimeter [S]. It is rather flexible, utilized
in different positions on a mobile platform. The arrival time
of the altimeter pulses at the transponder could be estimated
accurately by the dechirping technique [6]. Jitters on the rising
edges of the rebuilt signals are rather small by using an atomic
clock in the transponder, and the inaccuracies introduced from
them could be decreased greatly by averaging multiple rebuilt
pulses. The rebuilt signals are not identical to the received
ones. The difference between them could be eliminated from
the captured pulses, in which the frequency difference between
the altimeter pulses and the transponder local oscillator (L.O.)
could be estimated accurately and compensated in the rebuilt
signals.

For HY-2B, an improved transponder was designed and uti-
lized in two calibration campaigns. The altimeter instrument
delay is obtained, and the range calibration precision is better
than 1 cm [12].

II. IMPROVEMENT AND CHARACTERIZATION OF HY-2B
ALTIMETER TRANSPONDER

A. Improvements Over the Previous Transponder

A newly designed calibration mode was added to HY-2B
altimeter, in which the raw in-phase and quadrature (I/Q) data
of all the odd number pulses in one burst was downloaded.
Compared with HY-2A, only one pulse obtained every four
bursts, the available data are greatly increased.

Based on the signal-rebuilt transponder for HY-2A and the
RSS[10], [11], some improvements were done in the newly built
transponder, including digital intermediate frequency (IF), direct
digital synthesis (DDS), time-division frequency modulation,
self-calibration, etc.

B. Characters and Performance of the Improved Transponder

The transponder captures and tracks altimeter pulses, records
them, and transmits the rebuilt signals to the altimeter [5]. It
provides flexible time delay and many forms of rebuilt signals.
Furthermore, as a result of the capture and tracking feature, the
altimeter clock drift could be derived from the calibration data
[6]. The working principle is shown in Fig. 1.

HY-2B transponder consists of three main subunits: antenna,
radio frequency (RF) unit, and digital control unit.

The altimeter RF pulses are received by the transponder,
dechirped, and the narrow-band IF signals are obtained, which
are then sampled and demodulated to digital I/Q signals. The
advantage of the digital method is to achieve high phase or-
thogonality and amplitude consistency. After modulation and
digital-analog conversion, the rebuilt signals are output to the
RF transmitter.

The real transponder is shown in Fig. 2. It is carried in a truck.
During experiments, the antenna is set up on a tripod, and the
other electronic devices are fixed in the truck. Some auxiliary
instruments are necessary. A set of static Global Navigation
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Fig. 2. Transponder for HY-2B altimeter in calibration.

TABLE 1
HY-2B TRANSPONDER SPECIFICATIONS

Specification Value

Center Frequency 13.58 GHz/5.25 GHz
Received Signal Bandwidth 320/80/20 MHz

Rebuilt Signal Bandwidth 320 MHz

Transmit Power >1W

Rebuilt Signal Form Direct Digital Synthesis
Reference Clock Rubidium Atomic Clock
Antenna Parabolic Reflector
Polarization Circular

Platform Vehicle Carried

Better than 1 cm

Altimetry Calibration Precision

Satellite System (GNSS) is needed to obtain the transponder ac-
curate geographic location and the atmospheric delay at zenith.
A laser rangefinder is used to relate the GPS antenna to the
transponder antenna phase center. A portable power is charged
each time before experiments to supply for all the electronic
devices. A portable computer (PC) is needed for parameter input,
data download, and monitoring during the satellite passing over.

The main specifications of HY-2B transponder are tabulated
in Table I.
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Fig. 3. Antenna test in a chamber.
TABLE 11
ANTENNA ELECTRICAL PERFORMANCES

Specification Value
Frequency Range 2-15 GHz
Gain >40 dB
First Side-lobe Level <-16 dB
Polarization Dual circular
Standing-wave Ratio (SWR) 1.25
Transmit-receive Isolation >85 dB
Cross Polarization Isolation >30 dB
Pointing Precision 0.01°

C. Subunits of the Transponder

A broadband circular-polarization low sidelobe parabolic re-
flector antenna is employed, installed on a tripod during experi-
ments. Its electrical performances are tested in a chamber, shown
in Fig. 3. The results are listed in Table II.

The RF unit is an important part of the device, performing RF
signal receiving, transmitting, down-conversion, and frequency
synthesis. It includes an RF front end, an RF receive/transmit
module, and a frequency synthesizer.

Two dependent channels, Ku and C bands, are in the front end,
illustrated in Fig. 4. The received and transmitted signals are
separated by a circulator. A coupler is utilized to test a portion
of transmitted signals, performing the inner calibration of the
transponder system. The inner calibration is performed each
time before and after the satellite passing over, to monitor the
variations of time delay and system gain of the transponder.

The RF receive module is to dechirp the RF signals and down-
convert them to IF. The two dechirp L.O.s are at 12.48 GHz £+
160 MHz and 4.15 GHz + 160 MHz. A switch is used to share
the IF channel, as illustrated in Fig. 5. The narrow-band 1.1
GHz IF signals are down-converted to 140 MHz, and output to
the digital control unit.

The RF transmit module is to up-convert the rebuilt signals to
RF pulses. The rebuilt signals are generated in the digital control
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Fig. 6. Block diagram of RF transmit module.

unit, center frequency at 140 MHz. They are then up-converted
to 1.1 GHz. The two transmit chirp L.O.s are 12.48 GHz 4+ 160
MHz and 4.15 GHz £+ 160 MHz, as illustrated in Fig. 6. The
RF pulses are then output to the RF front end, through the two
circulators to the antenna.

A rubidium atomic clock is used in the synthesizer as the ref-
erence frequency source, to obtain high precision and stability.
It generates all the required clock signals. The phase-lock loop
technology and frequency doubling and mixing technologies are
used in the synthesizer.

The digital control unit is the kernel of the transponder, pro-
viding the system sequential logic control and signal processing.

In HY-2B transponder, the analog quadrature modulators are
replaced by digital modulators based on field-programmable
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gate array (FPGA), obtaining a better phase quadrature and
amplitude balance of the baseband I/Q signals.

The IF 140 MHz signals are demodulated and recorded in
FPGA. Then the rebuilt signals are generated and modulated
in frequency or time to ensure the transmitted RF signals enter
the altimeter receiving windows accurately. A DDS circuit is
developed in the digital control unit to generate the required chirp
L.O.s. Compared with the analog method, the DDS provides
a variety of rebuilt signal forms, flexible time delay, better
frequency linearity, and low spurious. The DDS generated chirps
are shown in Fig. 7, by a modulation domain analyzer. They are
negative frequency rates. The center frequency and bandwidth
are 125 and 40 MHz. Its pulsewidth is 102.4 us. The DDS chirps
are multiplied to 250 MHz 4 40 MHz, then are mixed with 2870
MHz and multiplied by four, and the 12.48 GHz + 160 MHz
L.O. are obtained. These chirps are then mixed with 12 030 MHz
and 3700 MHz, and the 4.15 GHz 4+ 160 MHz L.O. chirps are
obtained, which is illustrated in Fig. 8.

HY-2B altimeter receiving window is +60 m. For the
transponder transmitted signals to enter the windows, accurate
orbit prediction is essential. However, the short-term orbit pre-
diction could have an error of dozens of meters to more than one
hundred. To enable the transponder transmitted signals, enter the
altimeter window accurately. A time-division frequency modu-
lation technique is used, equivalent to extending the altimeter
receiving window. The rebuilt signals are divided into four
time-equal segments, each modulated at different frequencies.
These are 0, 1.01,-0.17, and —1.34 MHz, as displayed in Fig. 9.
Using this technique, the experiment success ratio is greatly
improved.
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Fig. 11.  Transponder rebuilt and transmitted signals spectrum.

As expected, the altimeter received echo signals are time-
divided. There are two segments in the receiving window, seg-
ments one and three, shown in Fig. 10. As the satellite passes,
the other segments can enter the receiving window. Using this
technique, the amount of echo data is greatly increased. There-
fore, the calibration precision, which heavily depends on the
available echo data, is improved dramatically.

D. Integration Test and Self-Calibration

The transponder integration and test were done in our lab,
using an RSS [10]. The two instruments are connected by two
low loss RF cables. The RSS transmits RF pulses at the same
time sequence as HY-2B altimeter, which are captured, tracked,
and recorded by the transponder. Then, the transponder rebuilds
pulses and transmits them back to the RSS. The transponder
rebuilt signals are displayed in a spectrum analyzer, as in Fig. 11.
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Fig. 12.  Self-calibration of the transponder.
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Fig. 13.  Echo spectrum in self-calibration (x-axis is the number of fast Fourier
transform (FFT) points, 4096 points implemented, y-axis represents the relative
power of signals).

The transmitted Ku and C bands signals are 13.58
GHz+160 MHz and 5.25 GHz=£160 MHz, with negative fre-
quency rate. Its pulsewidth is 102.4 ps. The maximum power is
more than 30 dBm. The transmitted power is controlled by the
software installed on a portable PC. During in-orbit experiments,
the output power is attenuated 10-20 dB to ensure the altimeter
receiver safety.

An entire system self-calibration is essential to acquire the
transponder instrument delay. It was performed by using a reflec-
tor disk installed on a delicate two-dimensional support, placed
at a far distance from the transponder. The experiment was
performed before the in-orbit calibration campaign, as shown
in Fig. 12.

The received echoes are shown in Fig. 13, marked with a red
circle. The spectrum index indicates the round distance from
the transponder to the disk. The geometric distance between
the transponder antenna and the disk is measured by a laser
rangefinder. Subtract the geometric distance from the round,
and the transponder instrument delay is obtained. Its instrument
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Fig. 14.  Geometric relationship between altimeter and transponder.

delay is 18.81 m. The range reference point is at the end of the
feed horn. During the self-calibration, an inner loop delay was
recorded and was referred to as the in-orbit calibration reference.
The delay of the transponder (D_TRP) measured in the Lab
was used afterward in the field calibration as the transponder
instrument hardware delay. If there are some modifications to
the transponder hardware, another self-calibration is necessary
to obtain the new D_TRP.

III. IN-ORBIT CALIBRATION OF HY-2B ALTIMETER USING THE
IMPROVED TRANSPONDER

A. Principle and Methods of Calibration

The aim of the in-orbit calibration is to obtain the altimeter
system delay, including instrument delay and clock drift bias.
The instrument delay depends on the altimeter hardware state
after the satellite was launched, which is supposed to be relevant
to the instrument aging. The clock drift bias is due to the
USO drift. Both these could be acquired accurately from the
calibration data. The altimeter system delay could be expressed
as

dsys = dars +duso
= (drangc - dwct - ddry - diono - dtidc - dTRP) - dorbit (l)

where dgyis the altimeter system delay, d.yis the instrument
delay, dyso is the clock drift bias, d;ange is the measured range to
the transponder, including ionosphere delay, atmosphere delay,
etc., and dy;pi4is the geometric distance from the satellite gravity
center to the transponder phase center, as illustrated in Fig. 14.

In formula (1), drgrp is the transponder delay, including
the instrument hardware delay 18.81 m and the preset signal
delay. The former’s variations could be corrected by the inner
calibration loop. The latter is a preset value calculated each time
before the satellite passing over, according to the precise orbit
prediction.

The calibration precision could be evaluated by the standard
deviation (std) of the d,;, which is considered a constant in a
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Fig. 15.  Calibration sites of HY-2B altimeter in 2019.

short period. Two experiment campaigns were carried out, from
April to September 2019 and October 2020. The std of d,jis
obtained to be less than 1 cm in both of the two calibration
campaigns. It shows that the HY-2B altimeter instrument is
rather stable and the calibration results are reliable.

B. Selection of Calibration Sites

The orbit period of HY-2B is 14 days. To perform more
calibration experiments in a shorter time, the transponder is
designed mobile, carried on a truck.

The calibration sites were selected carefully to fulfill the
following requirements.

1) Itshould be under, or in the proximity of the ground tracks

of HY-2B, within 1 km.

2) The echo from the transponder must be stronger and

distinguishable from the surrounding returns.

3) Location with high vegetation and buildings should be

avoided.

4) Tt should be easily accessible and have little personnel

activities.

A reconnaissance survey took place in April 2019 and
September 2020. In total ten sites were selected. All the sites
are within 300 m away from the ground tracks, being in open
field, with low electromagnetic background. The locations are
shown in Figs. 15 and 16, in south-east and south-central China.

The calibration sites are accurately positioned by a GNSS,
listed in Table III.

Except in Beijing, one experiment was performed in the
other sites. HY-2B orbit period is approximately 14 days. The
reasonable selection of the calibration sites is to perform as many
experiments as possible. In each 20 days of calibration cam-
paign, April 2019 and October 2020, nine and four experiments
were done separately. It is much efficient than the fix-mode
calibration, once in 14 days.
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TABLE III
PRECISE CALIBRATION POSITIONS IN SOUTH-EAST AND SOUTH-CENTRAL
CHINA (WGS-84 COORDINATE FRAME)

Site Longitude (°) Latitude (°) Height (m)
Beijing 116.249194 39.815381 47.8698
Penglai 120.679023 37.776870 102.7370
Weifang 119.058578 36.739688 24.6891
Nanjing 118.813125 31.935415 11.2843
Putian 118.850447 25314754 117.4341
Hengshui 115.000638 38.031333 31.5648
Kaifeng 114.196482 34.761298 60.1076
Suqian 118.189972 33.958163 21.9787
Heifei 117.013392 31.730535 51.9621

C. Procedure of In-Orbit Calibration

For the accurate atmosphere correction and precise location
determination of the transponder, a set of static GNSS is nec-
essary. It was set up at least 8 h prior to the satellite passing.
The GNSS antenna should be in the vicinity of 10 m to the
transponder antenna.

Some preparation should be done including charging the bat-
tery, accurate orbit prediction, and calculation of the transponder
rebuilt signals delay. About 30 min before the satellite passing,
the transponder antenna is set up on a sturdy tripod, which is
two-dimensional adjusted in azimuth and pitch. A PC is used to
monitor the transponder status and download the recorded data.
When the satellite passes, the transponder tracks and altimeter
signals record them and rebuild the RF signals to the altimeter.
Two inner calibrations are done just a few minutes before and
after the passing over, recording the variations of delay and gain
of the transponder instrument. The entire procedure is performed
automatically, controlled by the preset program in FPGA.

HY-2B orbit height is 970 km. Its beam width is 1.1° [1], so
the overhead time is about 23 s. After passing over, the antenna,
the GPS, as well as the battery, etc., are collected and put in the
truck. The procedure in one experiment is shown in Fig. 17.
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Fig. 17.  In-orbit calibration experiment procedure.

Fig. 18.

HY-2B in-orbit calibration experiment scenario.

Because of the narrow bandwidth of HY-2B antenna and
the transponder antenna, the accurate pointing between the two
is crucial. HY-2B altimeter is nadir-looking. The transponder
antenna must be pointing straight upwards. This is achieved by
ahigh precision electronic level meter. It is placed on the antenna
feeder plane, which is perpendicular to the antenna electric axis
by the mechanical technique. Its vertical error is less than 0.1°.
The experimental scenario and antenna leveling adjustment are
displayed in Figs. 18 and 19.
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Fig. 19. Electronic level meter used in experiment.

Reference plane

GPS antenna

Transponder
antenna

Fig. 20. Transponder geodetic height determined by GNSS.

The geodetic height of the transponder antenna phase center is
determined by the static GNSS, the height that is referred to the
bottom of the choke ring, and the transponder height reference
is at the feeder plane; therefore, a laser level meter is utilized to
correlate the GNSS geodetic height and the transponder refer-
ence plane, as illustrated in Fig. 20. The height difference X is
measured accurately by a laser level meter in every experiment.

The GNSS antenna was set up at least 8 h before the satellite
passing. To acquire the accurate position of the transponder,
data from multiple GNSS fiducial stations as well as land state
network are utilized, and the vertical precision of less than 1 cm
could be obtained.

D. Calibration Data Processing and Key Techniques

A special calibration mode was designed on HY-2B, in which
the raw I/Q data of all the odd number pulses in one burst
was downloaded, so the available calibration data are greatly
increased. It is essential to improve the calibration precision.
The downloaded data are indicated in Fig. 21.

Calibration data processing is complicated. It includes the
following steps.
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instrument delay estimation.

1) The time-frequency domain conversion of the transponder
data and the altimeter data.

2) The accurate matching between the altimeter and the
transponder pulses.

3) Obtaining the measured range from the altimeter data.

4) Obtaining the geometric distance from the precise orbit
determination (POD) file and the GNSS data.

5) Correction to the measured range, including Doppler cor-
rection, propagation delay correction, transponder delay
correction, tide correction, etc.

6) Obtaining the altimeter system delay, including the clock
drift bias and the instrument delay.

7) Subtracting the clock drift bias, obtaining the altimeter
instrument delay.

The procedure is described in Fig. 22.

The key techniques in the data processing are the altimeter-
transponder pulse matching and the altimeter clock bias cor-
rection. The method to estimate HY-2B altimeter clock drift is
similar to HY-2A [6], [7]. In HY-2B, a rubidium atomic clock
is used [1]. It is rather stable, with very small long-term drift.

Establishing correspondence between altimeter data and
transponder data is the first and crucial step in processing. A
new method based on shape match of the FFT waveforms of the
altimeter and transponder data is used. According to the principle
of the dechirping, the transponder data are displayed in Fig. 23.
On the contrary, the altimeter data are as shown in Fig. 24. Their
spectrums exhibit approximate mirror symmetry.

The abscissa of the maximum power in the FFT spectrum
represents the time difference (or frequency difference) of the
rising ends between the altimeter and the transponder pulses.
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Fig.23.  Transponder data FFT waveform (x-axis is the number of FFT points,

4096 points implemented, y-axis represents the relative power of signals).
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Fig. 24.  Altimeter data FFT waveform (x-axis is the number of FFT points,
4096 points implemented, y-axis represents the relative power of signals).
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Fig. 26.  Corresponding relationship between altimeter and transponder with

some data missing (x-axis is the recorded pulse number, y-axis represents the
FFT frequency difference).

In every successful experiment, about two or three hundreds
of valid pulses are recorded and transferred in FFT. Therefore
two sequences of frequency differences are obtained. For the
frequency difference is included in the transponder rebuilt sig-
nals, the sequences of the altimeter and the transponder exhibit
a similar shape, but in an opposite direction. Based on the shape
characteristic matching, the corresponding relationship between
the altimeter and the transponder would be established. The
matched forms of the two sequences are shown in Figs. 25
and 26. In Fig. 26, there is a little amount of data missing because
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s
97 x10

Geometric distance between

9.6995 " satellite and transponder

9.699

it: m

£ 9.6985

Un

9.698
9.6975

9.697
0

200 400 600 800 1000 1200
Pulse number
Fig.28. Geometric distance between altimeter and transponder during passing
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of tracking lost or spur noises, and the shape matching method
is still valid in this case.

According to the relationship between the satellite-
transponder geometric distance and the timing sequence of the
pulses [29], [30], the point target response of the transponder
moves all along the altimeter range window resulting in a typical
parabolic signature, as shown in Fig. 27. The blue curve presents
the response of the transponder in the altimeter. The red one
is the transponder measured one-way range changes relative
to the closest approach. In the case of the clock synchroniza-
tion of the satellite and the transponder, the vertices of the
two parabolas would be coincidence. Therefore, according to
the vertices deviation, the clock bias between the satellite and
the transponder could be acquired. The method of estimating the
altimeter clock drift was described in [6], [7].

The POD file is obtained one day after the satellite passes
over. Itis a 1-min timescale file. To match the altimeter transmit—
receive time sequence, a Hermite interpolation method is used. A
16-min data is cut from the POD file, covering 8 min before and
after the overhead epoch. The interpolated geometric distance
between the satellite and the transponder during the passing over
is shown in Fig. 28.

IV. CALIBRATION RESULTS AND COMPARISON WITH JASON-3
ON CROSS TRACK POINTS

A. Calibration Results of HY-2B Altimeter

The aim of the two calibration campaigns based on the
improved transponder is to obtain HY-2B altimeter instrument
delay and estimate its clock drift bias. The results show that the
altimeter instrument is very stable. The onboard atomic clock is
rather accurate. Its drift is almost negligible.
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In the two calibration campaigns April 2019 and October
2020, 13 successful experiments were done, 9 in 2019, and 4
in 2020. The mean of the altimeter instrument delay is 4.957 m,
and the std is 0.68 cm, as shown in Fig. 29.

The clock drift is displayed in Fig. 30. It presents a good
stability in the two years of operation. The mean bias is less
than 0.1 Hz. Its std is less than 0.001 Hz. The center frequency
of the clock is 80 MHz. An important parameter is DF/FO where
DF is the std deviation and FO is the center frequency. From the
obtained results, the parameter DF/FO is less than 10!, which
provides a best proof that HY-2B is much accurate and stable
than HY-2A for the improvement of the clock from the oven-
controlled crystal oscillator to the rubidium atomic clock.

The range drift linked to the clock drift is shown in Fig. 31.
Its mean value is less than 0.5 cm and the std is less than 1073
cm, which means the range drift introduced by the clock drift is
rather small.

B. Comparison With Jason-3 on Cross Track Points
HY-2B altimeter tracking bias to SSH is 14.508 m. Its instru-
ment delay is 4.957 m. Therefore, the total correction of SSH is
14.508 + 4.957 = 19.465 m.

For the further validation, the corrected SSH acquired from
HY-2B Interim Geophysical Data Record data is compared with
Jason-3 at the cross track points in the open ocean on the Pacific
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and the Atlantic. The time window is 5 min and the distance
window is 5 km. The comparison results are shown in Fig. 32.
The mean of the SSH difference is 0.016 m.

The high degree of consistency on the cross track points
provides a best validation that HY-2B altimeter measurements
are accurate and stable, and the calibration method based on the
improved transponder is reliable and effective.

V. CONCLUSION

An improved transponder was developed and employed in
HY-2B altimeter in-orbit calibrations in 2019 and 2020. It of-
fers a reliable and efficient approach to obtain the altimeter’s
instrument delay accurately. Furthermore, it provides a special
method to monitor the long-term drift of the altimeter clock. The
calibration and validation results show that HY-2B altimeter is
rather stable and accurate in the SSH measurement. By utilizing
a rubidium atomic clock, HY-2B clock drift is decreased signif-
icantly. It presents a good performance on long-term stability.
In the following Haiyang series missions, HY-2C, launched in
October 2020, and HY-2D, would be launched in May 2021, the
transponders would be modified and improved further to meet
the new calibration requirements and adapt to the different types
of signals forms. With the construction of the Chinese first ocean
calibration field in Wanshan islands, calibration infrastructure is
under rapid development. In China’s next five-year plan (2021-
2025), many more transponders and related calibration facilities
would be installed in the ocean calibration field, serving a variety
of different satellite altimetry missions. With the infrastructure
construction and the cooperation of multiple types of calibration
devices, more accurate and a wider variety of calibration and
validation achievements would be achieved.
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