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Scale-Robust Deep-Supervision Network for
Mapping Building Footprints From High-Resolution

Remote Sensing Images
Haonan Guo , Xin Su , Shengkun Tang, Bo Du , and Liangpei Zhang

Abstract—Building footprint information is one of the key fac-
tors for sustainable urban planning and environmental monitoring.
Mapping building footprints from remote sensing images is an
important and challenging task in the earth observation field. Over
the years, convolutional neural networks have shown outstanding
improvements in the building extraction field due to their ability
to automatically extract hierarchical features and make building
predictions. However, as buildings are various in different sizes,
scenes, and roofing materials, it is hard to precisely depict build-
ings of varied sizes, especially in large areas (e.g., nationwide).
To tackle these limitations, we propose a novel deep-supervision
convolutional neural network (denoted as DS-Net) for extracting
building footprints from high-resolution remote sensing images.
In the proposed network, we applied deep supervision with an extra
lightweight encoder, which enables the network to learn represen-
tative building features of different scales. Furthermore, a scale
attention module is designed to aggregate multiscale features and
generate the final building prediction. Experiments on two publicly
available building datasets, including the WHU Building Dataset
and the Massachusetts Building Dataset, show the effectiveness of
the proposed method. With only a 0.22-M increment of parameters
compared with U-Net, the proposed DS-Net achieved an IoU of
90.4% on the WHU Building Dataset and 73.8% on the Mas-
sachusetts Dataset. DS-Net also outperforms the state-of-the-art
building extraction methods on the two datasets, indicating the
effectiveness of the proposed deep supervision and scale attention.

Index Terms—Building footprint extraction, convolutional
neural network, deep learning, remote sensing image.

I. INTRODUCTION

BUILDING footprint extraction is one of the research
hotspots in the remote sensing field due to the broad

application of building information [1], [2]. In recent years, the

Manuscript received June 27, 2021; revised July 27, 2021; accepted August 21,
2021. Date of publication September 10, 2021; date of current version October
15, 2021. This work was supported in part by Chang’an University, Xi’an, China,
through the National Key Research and Development Program of China under
Grant 2020YFC1512000 and in part by the National Natural Science Foundation
of China under Grant 61801332. (Corresponding author: Xin Su.)

Haonan Guo and Liangpei Zhang are with the State Key Laboratory
of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan 430079, China (e-mail: guohnwhu@163.com;
zlp62@whu.edu.cn).

Xin Su and Shengkun Tang are with the School of Remote Sensing and
Information Engineering, Wuhan University, Wuhan 430079, China (e-mail:
xinsu.rs@whu.edu.cn; shengkuntang@whu.edu.cn).

Bo Du is with the National Engineering Research Center for Multimedia
Software, Institute of Artificial Intelligence, School of Computer Science and
Hubei Key Laboratory of Multimedia and Network Communication Engineer-
ing, Wuhan University, Wuhan 430079, China (e-mail: gunspace@163.com).

Digital Object Identifier 10.1109/JSTARS.2021.3109237

demand for generating precise and up-to-date building footprint
information is increasing, due to its potential for sustainable
urban planning, smart city construction, and automatic driving
[3]. Traditionally, the building footprint information is generated
by manual surveying and vectorization, which is expensive and
time-consuming, especially for large-scale practice [4]. To fa-
cilitate building footprint generation, extensive researches have
focused on automatically extracting building footprints from
remote sensing images [5].

Conventional building extraction methods mainly include two
steps: handcrafted feature extraction and classification. Features
that can well represent buildings are firstly extracted from the
input image, such as color [6], geometry [7], texture [8], context
[9], and shadow [10], followed by a classifier that classifies
the features into the building and nonbuilding categories. For
example, Zha et al. [6] designed a normalized difference built-up
index for mapping urban areas using spectral information pro-
vided by the multispectral remote sensing images. Huang et al.
[9] proposed a morphological building index for building extrac-
tion by modeling the implicit features using building morpho-
logical operators. Ok [11] built the spatial relationship between
buildings and shadows and adopted the graph cut algorithm to
extract building regions. Although these methods work well to
some extent, they rely heavily on the selection of handcrafted
features. However, the hand-crafted feature selection process is
usually subjective and empirical, hampering the robustness of
these traditional methods [12], [13].

Over the years, the rapid development of deep learning
methods in the computer vision field provides an alternative
technique for extracting building footprints in a time-saving
and inexpensive way [14], [15]. Compared with the traditional
methods, the convolutional neural network (CNN) can automat-
ically extract hierarchical features from the raw images [16].
Moreover, the feature extraction and classification processes of
CNNs are integrated into a single model and can be trained in
an end-to-end manner [17]. Moreover, the fully convolutional
networks (FCNs) derived from CNNs are capable of making
pixel-wise classifications [18]. However, due to the large intra-
class variance and low inter-class variance of remote sensing
images, it has been proven that directly applying deep methods
designed for natural images to remote sensing images leads to
accuracy drop [2], [19], [20].

To tackle this problem, various studies have tried to improve
the traditional FCNs for building footprint extraction from very
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Fig. 1. Structure of the proposed deep-supervision network.

high-resolution remote sensing images. For example, Bittner
et al. [21] introduced fused-FCN4s to fuse the information from
the early layers to reduce the information loss in the building
extraction process. To balance the accuracy and network com-
plexity, Shrestha and Vanneschi [22] designed an FCN architec-
ture with the exponential linear unit as the activation function
for building extraction. Moreover, the conditional random fields
were adopted to suppress the false predictions and sharpen the
building boundaries. With the development of semantic seg-
mentation algorithms, the encoder-decoder framework of FCNs
has shown outstanding performance on the localization of the
building footprints due to the use of skip connection to fuse local-
detailed features in the decoder stage [23]. Based on the encoder-
decoder architecture, Liu et al. [24] designed an Inception-style
Res-Net and a densely upsampling module to aggregate the
spatial information in the building extraction process. Taking
advantage of the properties of capsule networks, Yu et al. [25]
combined the feature pyramid network with capsule network to
fuse different levels of capsule features for building extraction.

As buildings vary in different colors, shapes, and scales,
how to fully utilize the multiscale features extracted from the
encoder network is one of the key factors for maintaining both
building localization accuracy and building edge accuracy [26].
Low-level features are adequate with detailed information, while
high-level features are rich in global semantic information [27].
In order to fuse multiscale features, Sun et al. [28] designed an
SVM-based Multiscale CNN for fusing multiscale building pre-
diction. Li et al. [29] designed a multiple-feature reuse network
that enables the direct use of hierarchical features in each layer.
Inspired by the state-of-the-art (SOTA) HRNet [30], Zhu et al.
[31] proposed a parallel multipath network to extract high-level
semantic features while retaining spatial-detailed building infor-
mation. Liu et al. [32] modified ResNet-101 by a spatial residual
inception module to aggregate multiscale contexts. Moreover,
depthwise separable convolutions and convolution factorization
were introduced to reduce the GPU memory use and increase
the computation speed. For better hierarchical building feature
representation, Zhang et al. [33] designed a local-global dual-
stream network that combines local-global branches with deep
feature sharing. To tackle the building instance segmentation
challenge, Liu et al. [34] introduced a multiscale U-shape net-
work for multiscale building instance segmentation. In addition,
an edge-constrain network was designed to further refine the

building edges. Although much effort has been made to fuse
the multiscale building features, there is still a tradeoff between
the benefits of low-level details and high-level semantics; how
to adaptively integrate information of different scales remains a
challenge.

To tackle these problems, in this article, we designed a novel
deep-supervision FCN (denoted as DS-Net) for building foot-
print extraction. The proposed DS-Net is based on the encoder-
decoder architecture. In DS-Net, we designed a lightweight and
effective deep supervision sub network to boost the model’s
robustness to buildings of different scales, considering the large
scale-variant among buildings in the real-world datasets. This
deep supervision subnetwork is capable of generating multiscale
building predictions, which enables the model to learn more
representative deep features of buildings with varying scales.
Moreover, the gradient generated by our proposed deep supervi-
sion strategy can flow through the whole network. Furthermore,
a scale aggregation module is proposed to calculate the contribu-
tion of each scale and generate the final building predictions by
aggregating the multiscale predictions. The overall architecture
of our proposed DS-Net is shown in Fig. 1. Compared with the
traditional methods that directly apply supervision to the decoder
network [35], the main contributions of our proposed method are
as follows.

1) We proposed a DS-Net for accurate and effective building
footprint extraction through the deep-supervision convo-
lutional neural network. Different from the traditional
methods that directly apply supervision on the decoder,
we designed a lightweight deep supervision subnetwork
for generating multiscale building predictions combining
deep features and high-resolution features. In this way,
the gradients generated by multiscale predictions can flow
through the whole network by backpropagation and will
strengthen building feature representation.

2) We designed a scale attention module (SAM) to com-
pute global-local attention of different scales. The scale
attention vectors represent the contribution of each scale.
The final building extraction results can be generated by
combing the attention vectors and the multiscale building
predictions.

3) The proposed DS-Net outperforms other SOTA methods
on two publicly available building datasets, including the
WHU Building Dataset and the Massachusetts Building
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Fig. 2. Structure of the convolutional modules in the (a) encoder subnetwork
and (b) decoder subnetwork.

Dataset, which indicates the effectiveness of our proposed
method.

The rest of this article is organized as follows. Section II intro-
duces the structure of our proposed DS-Net in detail. Section III
describes the dataset and the experimental results, followed by
the analysis of the experimental results, and the conclusions are
presented in Section IV.

II. METHODOLOGY

In semantic segmentation, FCNs have shown great potential in
building footprint extraction by making pixel-wise predictions.
Inspired by these deep learning methods, we proposed an end-
to-end FCN for building footprint extraction namely DS-Net.
Fig. 1 shows the architecture of the proposed DS-Net, which
includes three components: an encoder–decoder architecture, a
deep supervision subnetwork, and an SAM. The input image is
first fed into the encoder subnetwork for hierarchical building
feature extraction. Then, the decoder subnetwork is used to refine
the feature resolution and generate multiscale refined features.
After that, the features are fed into the deep supervision sub-
network and generate multiscale building predictions combing
low-level features and high-level refined features. Finally, the
SAM computes the contributions of each scale and generates
the final building prediction. In this section, these three parts are
introduced in succession.

A. Encoder-Decoder Architecture

The encoder–decoder architecture in DS-Net follows the
basic architecture of U-Net [36], which is an effective network
that follows the encoder–decoder design for binary semantic
segmentation. Various U-Net-based building extraction methods
such as [37] and [35], have shown their effectiveness in building
extraction. Here we will introduce the encoder–decoder archi-
tecture applied in our method.

Given an input remote sensing image, a convolution layer of
kernel size (3,3) is first applied to increase the number of features
to 64 channels. After each convolutional operation, a batch norm
layer and a nonlinear activation layer are applied to increase the
features’ nonlinear representation. The output features are then
fed to another convolutional layer of kernel size (3,3), followed
by a max-pooling operation that halves the input feature size.
Then follows four convolutional modules. The architecture of
the convolutional modules is shown in Fig. 2(a). The number of

Fig. 3. Architecture of the proposed feature aggregation module (FAM).

the channels in the output features is twice the number of those in
the input features; while spatial resolution is half that of the input
features. As a result, the output features of the encoder network
contain 1024 channels, and the spatial resolution is one-sixteenth
of the input image.

Then follows the decoder network, which contains several
convolutional modules. The convolutional modules in the de-
coder take the concatenation of deep features and features
transmitted from the encoder subnetwork as input. As shown
in Fig. 2(b), the architecture of the convolutional module in the
decoder subnetwork is similar to the module in the encoder. For
parameter efficiency, we adopted bilinear interpolation instead
of deconvolution for up-sampling. The output features are half
of the input features in the number of channels, and twice of the
input features in spatial resolution. It should be noted that the
output features of the last convolutional layer have 64 channels
rather than 32 to contain more representative building features.

B. Deep Supervision Subnetwork

The encoder–decoder architecture is capable of extracting
hierarchical representative building features, which are bene-
ficial to the final prediction. Considering the large intraclass
scale variance of buildings in the real-world datasets, applying
the multiscale supervision strategy can enhance models’ gen-
eralization abilities to buildings of different scales. However, if
we directly apply multiscale supervision to the decoder network
like [35], the shortcomings lie in two aspects. First, the gradients
of generated by multiscale building supervision can only update
parameters of the shallower layers, hampering deep layers to
benefit from multiscale predictions. Moreover, with the limited
inception field of the shallow layers, the extracted features
could not well represent buildings, and the predictions directly
made by shallow features may be unconvincing. To tackle these
problems, we designed an extra deep supervision subnetwork
to generate multiscale building predictions and make deep su-
pervision. The proposed deep supervision subnetwork makes
up-bottom predictions by refining low-level predictions with
high-level features. In this way, the gradients generated by deep
predictions can flow through the whole network, which further
enhances the model’s robustness to buildings of different scales.

The proposed deep supervision subnetwork includes three
successive FAMs, as shown in Fig. 3. The proposed FAM module
takes the high-level features and the low-level features transmit-
ted from the decoder subnetwork as the input. For the high-level
features, an average pooling operation is adopted to halve spatial



10094 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 4. Structure of SAM.

resolution. For the low-level features, a convolutional layer of
kernel size (1,1) is adopted to reduce the feature channel to
64. Then, the low-level features and high-level features are
added, followed by a convolutional layer of kernel size (3,3) to
aggregate multilevel features. The output features of FAM are
the high-level features of the next FAM. A classifier is applied to
the output features and makes multiscale building predictions.
FAM aggregates multilevel features as follows:

F t = C64
3

(
C64

1

(
f t
)
+ Pool

(
F t−1

))
, t ∈ {2, 3, 4} (1)

where Ci
n denoted convolutional layers of kernel size n and

output channel i.f t represents features of scale t that are trans-
mitted from the decoder subnetwork. F t represents the building
features of scale t after feature aggregation. It should be noted
that FAM is designed lightweight for parameter efficiency. The
channel of features in each FAM remains 64, and the whole deep
supervision subnetwork only increases 0.2M in parameters.

C. Scale Attention Module

The deep supervision module is capable of generating multi-
scale building predictions in an up-bottom manner. However,
how to integrate multiscale predictions remains a challenge.
High-level predictions are high-resolution with detailed edge
information. On the contrary, low-level predictions may contain
better localization but are low-resolution. If we simply add
the multiscale predictions equally, it may fail to fully utilize
the benefits of the multiscale predictions and introduce false
predictions. To tackle this problem, we designed an SAM to
automatically decide the contribution of each scale.

More specifically, the multiscale building features, each of
which contains 64 channels, are fed into a global average pooling
module to capture global representations of different scales, as
shown in Fig. 4. Then the representative vectors are concatenated
and fed into a fully connected layer with a weight parameter
of 256 × 64. To avoid overfitting, we also adopted a dropout
strategy with a probability of 0.2. Then we fed the output
vector to two separate fully connected layers, and generate two
attention vectors of size 1 × 4 and 1 × 1, respectively. The scale
attention vector of size 1 × 4 determines the significance of
each scale, and the refined building prediction can be generated

as follows:

P r = w1 · P 1 + w2 · P 2 + w3 · P 3 + w4 · P 4

w = softmax (v1×4) (2)

where P i denotes the building prediction of scale i. w is
generated by applying softmax operation to the scale attention
vector, and wi represents the weight of scale i. Based on our
observation, high-resolution predictions contain more detailed
structural information and should contribute more to the final
prediction. Thus, we designed a global attention module to de-
termine the contribution between the refined building prediction
and the highest-resolution prediction. The final prediction can
be generated as follows:

P f = sigmoid (v1×1) · P 1 + (1− sigmoid (v1×1)) · P r.
(3)

III. EXPERIMENTAL RESULTS

A. Dataset Descriptions

To evaluate the performance of the proposed method, we
validated our proposed method on two publicly available build-
ing datasets, including the WHU Building Dataset [37] and
the Massachusetts Building Dataset [38]. Both datasets contain
high-resolution remote sensing images and their corresponding
building labels, as shown in Fig. 5.

1) WHU Building Dataset: Ji et al. [37] proposed the WHU
Building Dataset for building footprint extraction. We
selected the aerial subset of the WHU Building Dataset,
which covers various buildings of different appearances
and scales. The dataset covers over 450 km 2 areas,
with more than 187 000 buildings. The spatial resolution
of the aerial images is 0.3 m, with each image size of
512× 512. The dataset includes 8188 tiles, including 4736
for training, 1036 for validation, and 2416 for testing.
Our experiments are conducted on the original dataset
partition.

2) Massachusetts Building Dataset: The Massachusetts
Building Dataset is proposed by Mnih et al. [38]. The
dataset contains 151 R-G-B remote sensing images and
their corresponding building masks covering approxi-
mately 340 km2 in Boston, Massachusetts. Each of the
images contains 1500 × 1500 pixels, and the spatial
resolution is 1 m. The whole dataset was split into the
training set (137 tiles), validation set (4 tiles), and test
set (10 tiles). Following the data preprocessing method in
[20], we cropped the dataset into 256 × 256 patches with
an overlap rate of 0.5. Then the tiles without buildings
were removed. As a result, we obtained 14 705 patches
for training, 454 patches for validation, and 1116 patches
for testing. Some examples of the Massachusetts Building
Dataset are shown in Fig. 5(b).

B. Experimental Details

The proposed DS-Net was implemented using Pytorch [39] on
two NVIDIA RTX 2080Ti GPUs. The parameters of the network
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Fig. 5 Examples of the WHU Building Dataset and the Massachusetts Build-
ing Dataset.

were optimized with Adam optimizer [40]. The initial learning
rate was set to 0.01 and was reduced to a quarter when the
accuracy on the validation set failed to increase. The weight
parameters in the DS-Net were initialized using kaiming uniform
[41], and the bias is initialized with zeros. For the fully connected
layers in the SAM, the weights are initialized using a normal
distribution with 0.01 as the standard deviation and 0 as the
mean value.

The proposed DS-Net is capable of generating multiscale
building predictions, and the final prediction can be generated by
combing scale attention vectors and multiscale predictions. We
adopted binary cross-entropy loss for training DS-Net, which
can be described as

L = c1 · CE
(
y512, P

f
)
+ c2 · CE

(
y512, P

1
)

+ c3 · CE
(
y256, P

2
)
+ c4 · CE

(
y128, P

3
)

+ c5 · CE
(
y64, P

4
)

(4)

where P i denotes the building prediction of scale i, and P f

denotes the final prediction generated by (3). yj represents the
building ground truths that are resampled to j× j using bilinear
interpolation. c denotes the weight of the loss function among
different scales. High-resolution predictions contain more struc-
tural details, so c1, c2 are set to 1. c3, c4, c5 are set to 0.3 for deep
supervision. After the model converged on the training set, the

performance of DS-Net is assessed on the test set using several
evaluation metrics.

C. Evaluation Metrics

In this study, four evaluation metrics, including intersection
over union (IoU), precision, recall, and F1-score, were selected
to evaluate the performance of the proposed DS-Net and other
comparative methods from different aspects.

First, the confusion matrix between the building predictions
and the building ground truths were calculated, including true-
positive (TP), false-positive (FP), and false-negative (FN). Then
the IoU, precision, recall, and F1-score can be calculated as
follows:

IoU =
TP

TP + FN+ FP
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

. (8)

D. Comparison Methods

Five SOTA semantic segmentation methods, including Seg-
Net [42], Deeplab v3+[43], Res-U-Net [44], SRI-Net [2], and
MA-FCN [35] are selected as the comparison methods to evalu-
ate the performance of the proposed DS-Net. These methods
have been proven effective in semantic segmentation and/or
building footprint extraction. Here we will give a brief descrip-
tion of these methods.

1) SegNet: SegNet [42] is a fundamental FCN for semantic
segmentation designed by Badrinarayanan in 2015. Seg-
Net is designed based on the encoder–decoder architec-
ture. In the encoder part of SegNet, the pooling indices
are recoded and are transferred to the unpooling layers. In
this way, the upsampling operation can be done without
model learning, and the integrity of high-frequency details
can be preserved in the segmentation process.

2) Deeplab v3+: Deeplab v3+[33] is the masterpiece of
the Deeplab series. By retaining the advantages (e.g.,
atrous spatial pyramid pooling) of the previous version of
Deeplab, the network used a modified Xception model as
the backbone and improved the decoder module. Deeplab
v3+ reached SOTA performance on several semantic seg-
mentation benchmarks.

3) Res-U-Net: Xu et al. [44] introduced Res-U-Net model
for building footprint extraction in 2018. Res-U-Net takes
the deep residual network (ResNet) as the encoder, which
is effective in avoiding gradient vanishing and gradient ex-
plosion phenomena. Moreover, handcrafted features and
guider filters are designed to further improve the accuracy
of building extraction. Experimental results showed that
Res-U-Net is more effective in building extraction.

4) SRI-Net: The spatial residual network [32], termed as
SRI-Net, is a building extraction FCN designed by Liu
et al. SRI-Net is capable of retaining global semantic
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Fig. 6. Visualizations of building extraction results by our proposed DS-Net and other comparison methods on the WHU dataset.

information and local details by the proposed spatial
residual inception module. Moreover, depthwise separable
convolution was introduced to improve computational
efficiency. Experimental results show promising
performance for building extraction on a large scale.

5) MA-FCN: Wei et al. [35] designed MA-FCN for auto-
matic building footprint extraction and delineation from
aerial images in 2020, which is one of the most recent
building extraction networks. MA-FCN adopted VGG-
16 as the encoder, and multiscale feature aggregation
was adopted in the decoder part to generate scale-robust
building prediction. Meanwhile, postprocessing strategies
were introduced to refine and vectorize the segmentation
maps. MA-FCN reached SOTA performance on the WHU
dataset.

E. Results and Analysis

1) Results on the WHU Building Dataset: Fig. 6 displays
some visualization results of our proposed DS-Net and the SOTA
comparison methods on the WHU test dataset. As shown in
Fig. 6, DS-Net obtains the most precise building boundary with
the least false prediction pixels visually. It can be seen from
the highlighted red blocks in Fig. 6 that DS-Net is capable of
segmenting buildings of different scales precisely. From rows
1–4 of Fig. 6, we can see that the boundaries of the small build-
ings can be depicted completely by the DS-Net. By aggregating
multiscale building features, the proposed DS-Net is capable of
detecting tiny building objects from the remote sensing images,
as proven in the first and fourth row of Fig. 6. On the contrary,
Deeplab v3+ and SegNet perform worse on the small buildings,

which can be explained by the insufficient use of low-level
features. Among the SOTA models, SegNet performs the worst.
It is because the low-level features extracted by SegNet cannot
be transferred to the decoder part, and the local details are
lost with continuous downsampling operations. For buildings
with complex shapes, as shown in Fig. 6 row 5–6, DS-Net,
MA-FCN, and SRI-Net perform better than other comparison
methods, which demonstrates that the methods designed for
building extraction generally perform better than the traditional
semantic segmentation methods. In general, DS-Net performs
the best on the WHU Building dataset with good edge accuracy
and localization accuracy on buildings of different scales, which
benefits from the proposed deep supervision strategy and SAM.
Although MA-FCN also integrates multiscale features based on
the architecture of U-Net, the multiscale supervision is directly
applied to the decoder. In this way, the high-level features
are forced to make building predictions, which may affect the
representative ability of the features. On the contrary, in DS-Net,
we designed an extra lightweight encoder for deep supervision,
and the advantage is twofold. First, the high-resolution building
predictions generated by the decoder of DS-Net can be adap-
tively refined by deep features. Second, the gradient of deep
supervision can flow through the whole network, which enables
the model to learn more compact features.

The quantitative results of DS-Net and the comparison meth-
ods are shown in Table I. Values in bolded represent the high-
est value of the evaluation metrics among the methods. From
Table I, we can see that the proposed DS-Net outperforms
the SOTA comparison methods. DS-Net generates the highest-
quality building extraction results with an IoU of 90.4% and
an F1-score of 94.96%. Compared with MA-FCN, the DS-Net
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Fig. 7. Visualizations of building extraction results by our proposed DS-Net and other comparison methods on the Massachusetts Building Dataset.

TABLE I
QUANTITATIVE RESULTS FOR DS-NET AND THE COMPARISON METHODS ON

THE WHU BUILDING DATASET

The entities marked in bold indicate the highest score of the evaluation metric.

exhibits approximately 1%, 0.3%, 0.8%, and 0.5% increment in
IoU, precision, recall, and F1-score, respectively. It indicates that
the deep supervision strategy in DS-Net is more effective than
directly applying auxiliary classifiers on the decoder. It should
be noted that deep supervision only increases the parameter by
0.22M, but the improvement in building extraction results is
outstanding.

2) Results on the Massachusetts Building Dataset: Based
on the above-mentioned analysis, the proposed DS-Net model
achieved high building extraction accuracy on the WHU Build-
ing dataset, and can precisely depict buildings of different

TABLE II
QUANTITATIVE RESULTS FOR DS-NET AND THE COMPARISON METHODS ON

THE MASSACHUSETTS BUILDING DATASET

The entities marked in bold indicate the highest score of the evaluation metric.

scales. To verify the generalization ability of the DS-Net model,
we also conducted experiments on the Massachusetts Building
Dataset. The comparison results are shown in Fig. 7, from
which it can be seen that DS-Net outperforms the comparison
methods visually by the least false predictions and omissions.
Especially for the buildings in complex scenes, our proposed
DS-Net can successfully distinguish buildings from the complex
background. In the results of SegNet, MA-FCN, and Res-U-Net,
some nonbuilding areas are misclassified as buildings, resulting
in the over-segmentation phenomenon. Especially for SegNet,
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TABLE III
SETTINGS OF THE ABLATION EXPERIMENTS OF DS-NET ON THE WHU BUILDING DATASET

The entities marked in bold indicate the highest score of the evaluation metric.

there are many false predictions and omissions in the irregular
largescale buildings. The lack of local detailed information may
lead to low edge accuracy, while the lack of semantic information
may lead to holes and false predictions. The proposed DS-Net is
capable of detecting both largescale buildings and tiny buildings
by retaining global semantic characteristics and local details, as
shown in the area highlighted in the red boxes in Fig. 7. In
general, the model can extract buildings of different scales and
ensure the integrity of the extracted buildings.

The quantitative results of the proposed DS-Net and the
comparison methods are summarized in Table II, from which
we can see the outstanding performance of the proposed DS-Net
over other SOTA FCNs. DS-Net generated the best building ex-
traction results with an IoU of 73.79% and F1-Score of 84.91%.
Compared with SRI-Net, the DS-Net reached approximately
2% and 1.4% improvement in IoU and F1-Score, respectively.
Among the comparison methods, MA-FCN performed the best
with an IoU of over 73%, which indicates the importance of
utilizing multiscale features in the process of building extraction.
DS-Net performs better than MA-FCN with fewer FP predic-
tions. The improvements in the result confirm the effective-
ness of applying deep supervision in the process of building
extraction.

3) Ablation Study: To further validate the contribution of
the proposed modules in improving the performance of the
proposed DS-Net, ablation experiments were conducted on the
WHU Building dataset. The baseline was constructed base on
U-Net. Then, the multiscale prediction was added to U-Net to
quantitatively testify the contribution of utilizing multiscale pre-
dictions. It should be noted that, unlike DS-Net that applied deep
supervision on an extra subnetwork, the multiscale supervision
strategy (denoted as M) direct added the auxiliary classifiers on
the decoder to generate multiscale predictions. Then follows
our proposed deep supervision, which is denoted as D. In
terms of the deep supervision, losses are calculated between the
multiscale predictions generated by the deep supervision module
and the ground truths. In the test phase, only the highest-level
prediction with the highest resolution was outputted as the

TABLE IV
ABLATION EXPERIMENTAL RESULTS OF DS-NET ON THE WHU

BUILDING DATASET

The entities marked in bold indicate the highest score of the evaluation metric.

building extraction results. We further testified the effectiveness
of the proposed SAM, which is denoted as S. The SAM is
in charge of calculating the contributions of each scale and
generating the building extraction results with the weight vector,
and the global attention was to determine the weight of fusing
multiscale predictions and the highest-resolution prediction.
Baseline+D+S denotes the complete DS-Net. More detailed
settings of the ablation experiments can be found in Table III.

The ablation study results are shown in Table IV, in which
the bolded values represent the highest value of the evaluation
metrics. From Table IV, we can see that multiscale supervision
can improve the accuracy of building extraction results to some
extent, but the improvement is rather small. If we applied deep
supervision to U-Net by designing a lightweight encoder to
aggregate multiscale features, the performance was improved
by 0.57% on IoU. If we further combine deep supervision and
scale attention, the model achieved the highest accuracy, with
an IoU of 90.4% and F1-Score of 94.96%, which indicates the
effectiveness of our proposed method.
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IV. CONCLUSION

With the rapid development of deep learning techniques,
FCNs have shown great performance in building footprint ex-
traction. However, because buildings are various among dif-
ferent scales, scenes, and roofing materials, there appear false
predictions and omissions in the building extraction results due
to the inadequate use of multiscale features. In this article, a
novel deep-supervision network with an SAM is proposed. In the
proposed network, an extra lightweight subnetwork is proposed
to aggregate multiscale features in an up-bottom manner. In
this way, the gradients generated by deep supervision can flow
through the network. In other words, high-resolution building
predictions can be refined by deep features with rich semantic
information, and the deep supervision can also guide the learning
of shallow convolutional layers. Moreover, an SAM is designed
to predict the contribution of each scale and generate the final
building prediction by combining building extraction results of
different scales. Based on these modules, our proposed DS-Net
is scale-robust to buildings by retaining both high-level semantic
information and local details. Experiments on the openly avail-
able datasets show that DS-Net can effectively extract building
of different scales with fewer omissions and false predictions.
In our future works, we plan to focus on the vectorization of
the building footprint extraction results, as semantic labeling is
only a part of building extraction; how to convert building seg-
mentation results into vectors remains a challenge to be solved.
Moreover, with more SOTA classification networks appear, the
building extraction accuracy can be enhanced by using different
classification networks as the backbone. We will consider further
improve the accuracy of building extraction with the SOTA
backbones.
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