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Abstract—Spectral image classification uses the huge amount of
information provided by spectral images to identify objects in the
scene of interest. In this sense, spectral images typically contain
redundant information that is removed in later processing stages.
To overcome this drawback, compressive spectral imaging (CSI)
has emerged as an alternative acquisition approach that captures
the relevant information using a reduced number of measurements.
Various methods that classify spectral images from compressive
projections have been recently reported whose measurements are
captured by nonadaptive, or adaptive schemes discarding any con-
textual information that may help to reduce the number of captured
projections. In this article, an adaptive compressive acquisition
method for spectral image classification is proposed. In particular,
we adaptively design coded aperture patterns for a dual-arm CSI
acquisition architecture, where the first system obtains compressive
multispectral projections and the second arm registers compressive
hyperspectral snapshots. The proposed approach exploits the spa-
tial contextual information captured by the multispectral arm to
design the coding patterns such that subsequent snapshots acquire
the scene’s complementary information improving the classifica-
tion performance. Results of extensive simulations are shown for
two state-of-the-art databases: Pavia University and Indian Pines.
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Furthermore, an experimental setup that performs the adaptive
sensing was built to test the performance of the proposed approach
on a real dataset. The proposed approach exhibits superior perfor-
mance with respect to other methods that classify spectral images
from compressive measurements.

Index Terms—Adaptive acquisition, compressive spectral
imaging, spatial contextual information, spectral image
classification.

I. INTRODUCTION

S PECTRAL image (SI) classification is an important topic
in remote sensing that aims at assigning predefined labels

to the corresponding SI pixels. It has been widely used to
detect and characterize materials in a scene of interest given
the huge amount of discriminative spatial-spectral information
provided by SIs. In particular, SI classification has been used
in various remote sensing applications such as forest classifica-
tion [1], monitoring of agricultural land use [2], and precision
agriculture [3]. In the last two decades, different pixel-based
classification approaches have been proposed to label SIs, in-
cluding methods based on support vector machines (SVMs) [4],
random forest (RF) [5], [6], neural networks [7], dictionary-
based sparse representation [8], and multinomial logistic
regression [9].

In general, pixel-based classification techniques suffer the
so-called curse of dimensionality [10] degrading the labeling
accuracy as the number of spectral bands increases due to
the limited availability of training samples. To overcome this
drawback, various classification approaches resort to either di-
mensionality reduction (DR) or feature extraction techniques,
assuming that the relevant information embedded in spectral
signatures lives in a low-dimensional space. Principal com-
ponent analysis (PCA) [11], independent component analysis
(ICA) [12], and kernel-based methods [13], [14] are just few
examples of traditional DR approaches. Furthermore, different
techniques that extract the spatial contextual information (SCI)
have been used to improve the labeling accuracy, minimizing
the salt and pepper noise in classification maps [9], [15]–[17].
Recently, various optimization-based and deep learning-based
feature extraction methods (supervised and unsupervised) have
been developed yielding low-dimensional attributes for hyper-
spectral image classification [18], [19]. However, spectral image
classification methods are typically applied to datasets acquired
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by scanning sensors that obtain the entire image based on the
Nyquist sampling theorem [20], leading to a high demand in
storage and transmission during the acquisition process.

In this regard, compressive spectral imaging (CSI) has become
a compressive sensing-based acquisition framework that cap-
tures the relevant information in spectral images using a reduced
set of measurements [20]. The most representative CSI archi-
tecture was presented by Wagadarikar et al. in [21]—namely,
the coded aperture snapshot spectral imager (CASSI)—which
modulates and disperses the spectral density source before it
impinges into a camera detector. Furthermore, different variants
of the CASSI system has been proposed such as the dual dis-
perser CASSI (DD-CASSI) [22], the 3-D-CASSI [20], and the
colored-CASSI [23]. In addition, a multisensor CSI architecture
was recently implemented to recover high-resolution spectral
images from hyperspectral and multispectral compressive sam-
ples [24], [25].

An intuitive classification approach would involve the image
reconstruction from compressive measurements, and then, the
labeling map is obtained by applying a pixel-based classifier
to the reconstructed spectral image. In this sense, Ramirez
et al. proposed a classification method from CASSI projections.
Particularly, this method includes a reconstruction algorithm
that recover the PCA coefficients of the spectral image and the
labeling is performed using the nearest neighbor method [26].
This method is severely affected by classification noise and it
is computationally demanding. A classification method in the
compressive domain is also reported in [27] that is relied on
an adaptive sensing scheme [22]. This approach consists of an
adaptive coded aperture design method based on the Bayesian
classifier. However, this technique is tailored to the DD-CASSI
architecture, and its extension to other CSI sensors has become
a challenging task.

On the other hand, feature fusion for imagery classification
from multisensor data has become an important topic in the
last few years due to the large volume of information captured
by diverse remote sensing systems [28], [29]. However, these
methods have been designed to fuse multisensor data captured
by conventional acquisition systems, challenging the storage
and computing capabilities of processing systems. Various land
cover classification approaches from multisensor compressive
measurements have been recently proposed in [30]–[32]. These
approaches obtain the target fused features by solving regular-
ized optimization problems and the labeling maps are obtained
from fused features by using pixel-based classifiers. Nonethe-
less, these methods require capturing the entire sample set for a
given compression ratio. On the other hand, adaptive compres-
sive acquisition schemes that minimize the number of required
samples to achieve a high-quality reconstruction have also been
developed [33]–[35]. In this way, an adaptive multisensor ac-
quisition scheme that considers the local spatial information
in spectral images can be designed to reduce even further the
number of necessary measurements to achieve a competitive
labeling performance.

In this work, we aim to develop an adaptive acquisition
framework based on a multi-sensor compressive system for land
cover classification. In this sense, the proposed approach focuses

on capturing the relevant scene information to reduce the number
of measurements required for achieving the desired labeling ac-
curacy. In contrast to previous approaches that classify spectral
images from compressive measurements, the proposed method
includes an adaptive acquisition scheme designed to improve the
labeling performance. Moreover, the proposed adaptive method
does not solve a computationally costly optimization problem
to extract classification features from compressive projections.
Instead, this acquisition scheme uses the spatial contextual infor-
mation in spectral images to adaptively design the coded aperture
patterns of a compressive multisensor system equipped with
two CSI optical architectures. The proposed adaptive sensing
is evaluated on the 3-D-CASSI [20] and the C-CASSI [23]. As
far as we know, no other CSI systems are currently performing
adaptive CSI acquisition for SI classification. The contributions
of this article are threefold.

1) We develop an adaptive acquisition method to cap-
ture multisensor compressive measurements to classify
high-resolution spectral images without resorting to a
spectral image reconstruction algorithm. More precisely,
the proposed acquisition approach first takes advan-
tage of the spatial contextual information embedded in
MS projections to adaptively design the colored coded
aperture patterns of a multisensor compressive optical
system.

2) Second, we propose an algorithm that extracts classi-
fication features from adaptive compressive measure-
ments. This algorithm attains outstanding classification
results for a reduced set of multisensor compressive
projections, and it also remarkably improves the label-
ing accuracy as the number of compressive snapshots
increase.

3) The proposed approach outperforms other classification
methods from compressive measurements.

This article is organized as follows. Section II presents the
observation model, which describes the optical model comprised
of a dual-arm C-CASSI and 3-D-CASSI system. Section III
describes the proposed adaptive CSI classification scheme. Sec-
tion IV outlines the results using the adaptive approach using
synthetic and experimental hyperspectral datasets. Conclusions
are summarized in Section V.

II. OBSERVATION MODEL

Notice that the proposed classification method is applied to
compressive measurements captured by dual-arm systems based
on the 3-D-CASSI [20] and the C-CASSI [23] optical architec-
tures. Therefore, we start by presenting a brief description of
the CASSI-based sensors. Afterward, we introduce the proposed
dual-arm architecture comprised of a high spatial resolution sys-
tem and a high spectral resolution system. A specific description
of the dual-arm-based 3-D-CASSI and C-CASSI is presented in
this section.

A. CASSI-Based Optical Architectures

In order to describe the CASSI-based optical systems, con-
sider f0(x, y, λ) as the spectral density source associated with
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the scene of interest, where (x, y) represents the spatial lo-
cation and λ denotes a particular wavelength. In particular,
CASSI-based architectures encode the spectral density source
by including a coded aperture that typically consists of an array
of optical filters. In this sense, the encoded spectral density can
be described as

f1(x, y, λ) = f0(x, y, λ)t(x, y, λ) (1)

where t(x, y, λ) is a function that describes the spatial-spectral
encoding operation performed by the coded aperture. Then, the
encoded field is spectrally shifted by a dispersive element. Thus,
the encoded-and-shifted spectral field is given by

f2(x, y, λ) =

∫∫∫
f1(x

′, y′, λ′)

× h(x− ψ(λ)− x′, y − y′, λ− λ′)dx′dy′dλ′

(2)

where h(x, y, λ) is the impulse response of the optical system,
and ψ(λ) describes the shifting effect induced by the optical
dispersive element. In general, the sensor’s impulse response is
assumed as the Dirac delta function, i.e., h(x, y, λ) = δ(x, y, λ).
Furthermore, it is worth noting that the 3-D CASSI system
does not contain the dispersive element [20], therefore, for
this system, it is assumed that ψ(λ) = 0. Subsequently, the
encoded-and-dispersed spectral field is integrated over the spec-
tral sensitivity of the detector plane. In this regard, the projected
plane can be expressed as

g(x, y) =

∫
Λ

f2(x, y, λ). (3)

Moreover, let Δ be the pixel width of the camera detector;
thus, the intensity captured by the detector at the discrete coor-
dinate (i, j) can be described as

(Y)(i,j) =

∫
Δ

∫
Δ

g(x, y)rect
( x
Δ
− i, y

Δ
− j
)
dxdy (4)

where rect( x
Δ − i,

y
Δ − j) represents the area covered by the

detector pixel at the spatial location (i, j). The expression of
the intensity captured by a CASSI-based detector at the location
(i, j) is described by the discrete model shown as follows:

(Y)i,j =

L−1∑
�=0

Fi,(j−c�),�Ti,(j−c�),� + ηi,j (5)

whereF ∈ RM×N×L is a discrete version of the input spectral
image with dimensions of M ×N pixels and L spectral bands.
Every element of the input spectral image is denoted as Fi,j,�

with � as the spectral index. Notice that T ∈ {0, 1}M×N×L is a
binary cube with entries Ti,j,� that describes the spatial-spectral
encoding operation performed by the coded aperture; ηi,j is the
noise inherent to the sampling system; and c is a factor related to
the spectral shifting operation induced by the dispersive element
which typically is set to c = 1 for C-CASSI.

Multiple snapshots are frequently required to reconstruct a
reliable version of the discrete spectral image from CASSI
compressive measurements, where each snapshot is captured

Fig. 1. Schematic of the dual-arm architecture based on the colored-CASSI
optical system with a multispectral sensor and a hyperspectral sensor.

using a different encoding pattern. Hence, the intensity captured
at the coordinate (i, j) and the kth snapshot can be given by

(Y)ki,j =

L−1∑
�=0

Fi,(j−c�),�T k
i,(j−c�),� + ηki,j (6)

for k = 0, . . . ,K, whereK is the number of captured snapshots
and T k ∈ {0, 1}M×N×L is the binary model of a distinct en-
coding pattern used at the kth snapshot. Finally, the vectorized
CASSI compressive measurements can be obtained as

y = Hf + η (7)

where y ∈ RM(N+cL−c)K is the vector that contains the set
of compressive samples; H ∈ RM(N+cL−c)K×(MNL) denotes
the matrix that describes the acquisition process including the
encoding operation performed by the coded aperture, the disper-
sive element effect, and the projection onto the camera detector;
f ∈ RMNL is the input spectral image in vector form; and
η ∈ RM(N+cL−c)K is the additive noise vector.

B. Dual-Arm Architecture Based on C-CASSI

Fig. 1 illustrates a representation scheme of the dual-arm
architecture based on the C-CASSI optical system. As can
be seen, the beamsplitter divides the input spectral density
into two optical paths. The upper arm, which is referred to
as the multispectral arm, is a C-CASSI sensor that contains
two relay lenses, a dispersive element, a high-spatial-resolution
coded aperture, and a high-spatial-resolution detector plane.
On the other hand, the bottom arm called the hyperspec-
tral arm is a C-CASSI system equipped with a low-spatial-
resolution coded aperture and a low-spatial-resolution camera
detector.

This article proposes a spectral image classification method
from compressive measurements captured by the dual-arm sys-
tem. More precisely, the measurements captured by the dual-
arm system are adaptively obtained by considering the spatial
contextual information of the scene of interest with the aim of
improving the classification performance using a reduced set of
measurements. To this end, we also propose two algorithms that
adaptively design the encoding patterns of both the multispectral
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arm coded aperture and the hyperspectral arm code aperture.
Therefore, the multispectral arm and hyperspectral arm acqui-
sition processes for the C-CASSI is described next.

C-CASSI multispectral arm: This branch captures high-
spatial but low-spectral resolution compressive samples. More
precisely, the compressive measurements obtained by the C-
CASSI multispectral arm can be modeled as

y(ms) = H(ms)D(ms)f + η(ms) (8)

where H(ms) is the measurement matrix of the compressive

multispectral arm and D(ms) ∈ R
MNL

q ×MNL is the downsam-
pling matrix of that reduces the number of spectral bands with γ
as the spectral decimation factor. The measurement matrix that

describes the acquisition system at the kth snapshot H
k
(ms) can

be defined as

H
k
(ms) =⎛
⎜⎜⎜⎜⎜⎜⎝

T
(k,1)
(ms) 0M(1)×MN · · · 0M(L−1)×MN

... T
(k,2)
(ms) · · ·

...
...

...
. . .

...

0M(L−1)×MN 0M(L−2)×MN · · · T
(k,Lq )

(ms)

⎞
⎟⎟⎟⎟⎟⎟⎠

(9)

where T
(k,�)
(ms) = diag(T (ms)

:,:,� ) is the diagonalized version of
the �th band extracted from the binary model that describes
the coded aperture used by the compressive multispectral arm at
thekth snapshot, and0M×N is a matrix with dimensionsM ×N
whose entries are zero. It is worth noting that the proposed
approach adaptively designs the measurement matrices, and
consequently the coded aperture patterns, to improve the image
classification performance.

On the other hand, the multispectral decimation matrix can
be defined by D(ms) = Dλ ⊗ IMN , being Dλ ∈ R

L
q ×L the

matrix that averages the spectral bands of the original datacube,
⊗ denotes the Kronecker product, and IMN ∈ RMN×MN is
an identity matrix. Notice that the multispectral image can
be obtained as f(ms) = D(ms)f , and η(ms) is the additive
noise vector that contaminates the compressive multispectral
samples.

C-CASSI hyperspectral arm: This arm acquires low-spatial
resolution compressive measurements with rich spectral infor-
mation. In particular, the compressive samples captured by the
hyperspectral arm can be succinctly described as

y(hs) = H(hs)D(hs)f + η(hs) (10)

where H(hs) is the measurement matrix of the compressive

hyperspectral arm, D(hs) ∈ R
MNL

p2
×MNL is the downsamplig

matrix with p as the spatial decimation factor, and η(hs) is
the additive noise vector. In this case, the measurement matrix
that characterizes the compressive acquisition process at the kth

snapshot can be modeled as

H
k
(hs) =⎛
⎜⎜⎜⎜⎜⎝

T
(k,1)
(hs) 0M

p (1)×MN
p2

· · · 0M
p (L−1)×MN

p2

0 T
(k,2)
(hs) · · · 0

...
...

. . .
...

0M
p (L−1)×MN

p2
0M

p (L−2)×MN
p2

· · · T
(k,L)
(hs)

⎞
⎟⎟⎟⎟⎟⎠
(11)

where T
(k,�)
(hs) = diag(T (hs)

:,:,� ) is the diagonalized version of the
�th band extracted from the binary model that characterizes the
coded aperture used by the compressive hyperspectral arm at
the kth snapshot. A detailed description of D(hs) is presented
below.

1) The spatial decimation matrix D(hs) ∈ R
MNL

p2
×MNL can

be described as D(hs) = I(hs) ⊗ S(hs) where I(hs) ∈
RL×L is an identity matrix, and S(hs) ∈ R

MN
p2
×MN , it is

a matrix that degrades spatially each band, it is given by
S(hs) = DcDr.

2) The matrix Dc ∈ R
MN
p2
×MN

p decimates the columns
of each spectral band. In more detail, Dc = Ic ⊗GT

where GT ∈ R
N
p ×N is given by Gl = Θ(l)

c dc where
l = {0, 1 · · · , Np − 1} corresponds to the index of the

columns of matrix G, dc ∈ RN is a vector that selects
of columns, the position of the ones are determined by
iN
p with i = {0, 1 · · · , p− 1} and Θ(l)

c ∈ RN×N is a
permutation matrix is given by

Θc =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
. (12)

3) The matrix Dr ∈ R
MN
p ×MN decimate the rows of each

spectral band, which is given by Dr = Ir ⊗ dr where
dr = 1T is a vector of all ones such as dr ∈ Rp.

C. Dual-Arm Architecture Based on 3-D-CASSI

The compressive measurements of the 3-D-CASSI preserve
better the spatial distribution of the acquired projection than the
C-CASSI compressive measurements. The compressive mea-
surements of 3D-CASSI are given by (6) when c = 0, denoting
the absence of dispersion in the system. In the following are
presented the measurement matrix of the multispectral arm and
hyperspectral arm.

3-D-CASSI multispectral arm: The compressive samples cap-
tured by the 3-D-CASSI multispectral arm can be also expressed
by (8), using the following the measurement matrix representing
the acquisition system at the kth snapshot is defined as

H
k
(ms) =

[
T

(k,1)
(ms) ,T

(k,2)
(ms) , . . . ,T

(k,Lq )

(ms)

]
(13)
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Fig. 2. Sketch of the optical and processing algorithm of the 3-D-CASSI. In the optical layer, the light of the scene enters through the objective lens. After that,
the incoming light is divided by the beamsplitter. Thus, the beam in each arm is encoded by the coded aperture and multiplexed onto the detector. The compressive
measurements are used to estimate the grayscale image of the scene. The subsequently coded apertures are computed using the contextual spatial information of
the grayscale image estimation. At the end of the sensing process, the processing algorithm computes the classification map.

where (8) exhibits no dispersion, when the corresponding
measurement matrix is replaced by (13). The resulting com-
pressive multispectral measurements are given by yk

(ms) =

H
k
(ms)D(ms)f + η(ms), where D(ms) represents the decimation

along the spectral axis, f is the underlying datacube, and η(ms)

is the additive noise in the multispectral sensor.
3-D-CASSI hyperspectral arm: The compressive measure-

ments obtained by the 3-D-CASSI hyperspectral branch can be
represented by (10), utilizing the sampling matrix at the kth
snapshot can be described as

H
k
(hs) =

[
T

(k,1)
(hs) ,T

(k,2)
(hs) , . . . ,T

(k,L)
(hs)

]
(14)

such that (10) denotes no dispersion, when the associated mea-
surement matrix is substituted by (14). The resulting com-
pressed hyperspectral measurements are given by yk

(hs) =

H
k
(hs)D(hs)f + η(hs), whereD(hs) denotes the decimation along

the spatial dimensions, f is the underlying datacube, and η(hs)

is the additive noise in the hyperspectral detector.

III. DESIGN OF ADAPTIVE ACQUISITION

To perform the adaptive acquisition is required to compute
the contextual information of the scene. The contextual spa-
tial information is used to design the coded apertures. This
section describes the hardware and processing algorithm that
computes the contextual spatial information and the adaptive
coded aperture design. In particular, Fig. 2 shows the optical and
the processing algorithm that allows attaining the compressive
measurements and the classification maps, respectively.

A. Computation of the Contextual Information

1) Grayscale Image Estimation: The grayscale image is es-
timated to design the coded aperture by exploiting the spatial

resolution in the multispectral arm. The intuition is to reduce
the dispersion in the captured measurement. The acquisition of
the grayscale is different depending on the CSI architecture.
For the 3-D-CASSI, the colored coded aperture of the first
snapshot in the multispectral arm is set to an all-ones matrix
T (ms)
i,j,�,0 = 1, exploiting the lack of disperser. This structure has

the same effect as removing the coded aperture. For the C-
CASSI, the dispersion is reduced using a colored coded aperture
with bandpass filter T (ms)

i,j,m,0 = 1 in all the spatial position, where
m denotes the middle wavelengths. The bandpass filter samples
the central wavelengths. The purpose of this step is to attain
the first multispectral compressive measurement Y0

(ms) with
lower dispersion or approximately a grayscale image. Equation
(6) denotes the acquisition of first and successive compressive
measurements. In C-CASSI, the compressive measurements are
cropped to retain the scene’s spatial size. The contextual spatial
information is obtained from the estimated grayscale images
using two processes, high-pass filtering, and quantization.

2) High-Pass Filter: The high-pass filtering process ob-
tains the components of the high frequency of the estimated
grayscale image Y

0
(ms), i.e., detecting the edge of the estimated

grayscale image. The filtering is computed using Y
0
(ms)(i,j) =∑M−1

i=0

∑N−1
j=0 h(i−u,j−v)Y

0
(ms)(i,j), where Y

0
(ms)(i,j) is the

output image of the high pass filtering, h(i,j) is the filter impulse
response, Y0

(ms)(i,j) is the compressive measurement.
3) Quantization: In the quantization stage, the filtered image

(Y)0(ms)(i,j) is quantized according to the number of classes
in the scene nc. Due to our approach is supervised nc is
known, then it is assumed that the step size in the quan-
tizer γ = nc. The typical quantizer can be seen as segmenta-

tion method (Γ)(ms)(i,j) = γ�
(Y)0(ms)(i,j)

γ
+

1

2
�, where �.� is

the floor function, γ is the quantizer’s step size. The matrix
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Algorithm 1: Classification Using Adaptive Coded Aperture Design, and Exploiting Spatial Contextual Information in a
Multisensor CSI.

Input: Y0
(ms) � Inputs of the algorithm.

Output: Ctest. � Output of the algorithm.
1: function CLASSIFICATION USING ADAPTIVE CODING Y0

(ms)

2: Y
0
(ms) ← High− passfilter(Y0

(ms)) � High-pass filtering of grayscale image.

3: Γ(ms) ← Quantization(Y
0
(ms)) � Quantization of grayscale image.

4: M(ms) ← E(ms)I(ms) ⊗ 1(ms) � Matched filter in MS arm.
5: M(hs) ← E(hs)I(hs) ⊗ 1(hs) � Matched filter in HS arm.
6: Ξ(ms) ← Adaptive coding(M(ms),Γ(ms)) � Computes the position for each class solving (15).
7: Ξ(hs) ← Adaptive coding(M(hs),Γ(hs)) � Computes the position for each class solving (17).

8: [Y
1
(ms) . . .Y

W−1
(ms) ]← MULTISPECTRAL-ARMΓ(ms),Ξ(ms)

9: [Y
0

I(hs)
. . .Y

K−1
I(hs)

]← HYPERSPECTRAL-ARM Γ(hs),Ξ(hs)

10: R← [vec(Y
0
(ms)), . . . , vec(Y

W−1
(ms) ), vec(Y

0

I(hs)
), . . . , vec(Y

K−1
I(hs)

)]T � Spatio-spectral feature extraction.
11: Ctraining ← SVMtraining(R) � Classification labels using training data.
12: Ctest ← SVMtest(R) � Classification labels using test data.
13: return Ctest � Output of the algorithm.

Γ(ms) ∈ {0, γ − 1}M×N provides the prior spatial contextual
information to the algorithm. The quantization matrix in the
hyperspectral arm Γ(hs) ∈ {0, γ − 1}M

p ×
N
p that is 1

p times the
size compressive measurements Y(ms).

B. Matched Filter

Once it is computed the contextual spatial information; the
coded apertures are designed using the matched filter. The
matched filter is computed by M = EB, where E is the av-
erage of the training samples of each class, and B are the
designed complementary filters. The complementary filters are
a set of filters that adds to an all-pass filter, avoiding the spectral
redundancy of compressive measurements. The matched filter
computes the spectral response between the designed comple-
mentary filters and the average training samples of each class.

1) Matched Filter in the Multispectral Arm: In particu-
lar, the matched filter in the multispectral arm is defined
as M(ms) = E(ms)B(ms), such that M ∈ Rγ×n(ms) , where it
is assumed that γ = nc, and the number of filters n(ms) =
W , with W the number of snapshots in the multispectral
arm. Notice that E(ms) ∈ Rγ×L

q , where L
q is the number of

bands in the multispectral arm, and each column in E(ms) =
[e(ms):,0, e(ms):,1, . . . , e(ms):,γ−1]

T is the average of the train-
ing samples for each of the classes. In addition, the ma-
trix B(ms) ∈ {0, 1}

L
q ×nf(ms) are the designed filters such that

B(ms) = [b(ms):,0,b(ms):,1, . . . ,b(ms):,nf−1], where each col-
umn in B(ms) is a part of the complementary filter with filter’s
width α(ms) =

L
qW . The effect of a complemenatary filter is

sampled a different part of the spectral signature at each snap-
shot. The designed filter is B(ms) = I(ms) ⊗ 1(ms) where 1(ms)

is all-ones vector such that 1(ms) ∈ Rα(ms)×1, I(ms) ∈ RW×W

is the identity matrix, and ⊗ is the Kronecker product.
2) Matched Filter in the Hyperspectral Arm: The matched

filter in the hyperspectral arm is denoted asM(hs) = E(hs)B(hs),

such that M(hs) ∈ Rγ×n(hs) , where it is assumed that γ = nc,
and the number of filters n(hs) = K, with K the number of
snapshots in the hyperspectral arm. Notice that E(hs) ∈ Rγ×L,
where L is the number of bands in the hyperspectral arm, and
each column inE(hs) = [e(hs):,0, e(hs):,1, . . . , e(hs):,γ−1]

T is the
average of the training samples for each of the classes. Moreover,
the matrix B(hs) ∈ {0, 1}L×nf(hs) is the designed filter such
that B(hs) = [b(hs):,0,b(hs):,1, . . . ,b(hs):,nf(hs)−1], where each
column in B(hs) is a complementary filter with filter’s width
α(hs) =

L
K , which means that at each snapshot is capture a dif-

ferent wavelength. The designed filter is B(hs) = I(hs) ⊗ 1(hs)

where1(hs) is all-ones vector such that1(hs) ∈ Rα(hs)×1, I(hs) ∈
RK×K is the identity matrix, and ⊗ is the Kronecker product.
In the successive stage, the adaptive coding is performed from
the previous matched filter.

C. Adaptive Coded Aperture Design

To adaptive design the coded aperture entries, a sorting
process is performed over the filter to determine the order of
sampling according to the best spectral response [see (15) and
(17)].

1) Adaptive Coding in the Multispectral Arm: To design the
coded aperture is necessary to know the position of the filters at
each snapshot, which can be computed as follows:

Ξ(ms)(:,Γ(ms)i,j) = sort(MT
(ms)(:,Γ(ms)i,j)

) (15)

where sort(.) returns the sorted positions in descending order
of the filters at each class. Notice that Ξ(ms) ∈ {0, . . . ,W −
1}W×γ and the index of the filter is denoted by Ξ(ms)k,Γ(msi,j)

,
where k indexes the snapshots and Γ(ms)i,j is the quantization
matrix that index of the classes for each entry. The design of the
coded aperture in the multispectral arm is giving by

T (ms)
i,j,:,k = b(ms):,Ξ(ms)k,Γ(ms)(i,j)

(16)
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Fig. 3. Comparison between nonadaptive and adaptive colored coded aper-
tures when W = 6. The top row shows the non-adaptive random colored
coded aperture. The second and third rows depict the adaptive colored coded
apertures for the Pavia University and Indian Pines, respectively. Notice the high
correlation of the designed codes with the corresponding scene. (First column)
Denote the false color representation of the colored coded apertures; (second
column) show three slides of the 3-D block-unblock representation.

where b(ms):,υ is the each designed filter in the υth class. Notice
that the designed coded aperture in the �th spectral band for
the wth multispectral snapshot can be reorganize as follows
T

(w,�)
(ms) = diag(T (ms)

:,:,�,w). In particular, the L
q coded apertures in

Tw
(ms) for the wth snapshot are rearranged to yield the sensing

matrices H
w
(ms) according to (9). The random and designed

colored coded apertures are depicted in Fig. 3.
2) Adaptive Coding in the Hyperspectral Arm: In the same

manner, the design of the coded apertures for the hyperspectral
arm requires the location of the filters at each snapshot, which
is denoted by

Ξ(hs)(:,j) = sort(MT
(hs)(:,Γ(hs)i,j)

) (17)

where sort(.) returns the sorted positions in descending order
of the filters at each class, the matrix is Ξ(hs) ∈ {0, . . . ,K −
1}K×γ , and the quantization matrix in the hyperspectral arm
Γ(hs). The index of each filter is denoted byΞ(hs)k,Γ(hs)i,j

, where

k is the index of hyperspectral snapshots and Γ(hs)i,j is the
quantization matrix that index of the classes. The design of the
coded aperture in the hyperspectral arm is giving by

T (hs)
i,j,:,k = b(hs):,Ξ(hs)k,Γ(hs)i,j

(18)

where b(hs):,υ is each designed filter in the υth class. Notice
that the coded aperture in the �th band for the kth hyperspectral
snapshot is rearranged asT(k,�)

(hs) = diag(T (hs)
:,:,�,k). In detail, theL

coded apertures in Tk
(hs) for the kth snapshot can be rearranged

as the sensing matrix H
k
(hs) using (11). Once, the coded are

designed the compressive measurements are captured.

Fig. 4. Denoising of compressive measurements. (a) Multispectral compres-
sive measurements using nonadaptive coded apertures. (b) Hyperspectral com-
pressive measurements using nonadaptive coded apertures. (c) Multispectral
compressive measurements using adaptive coded apertures. (d) Hyperspectral
compressive measurements using adaptive coded apertures. Compressive mea-
surements after median filter with window size [7× 7], using nonadaptive coded
apertures (e), and (f), using adaptive coded apertures (g) and (h).

D. Acquisition of Compressive Measurements

In the fourth stage, each arm captures a different type of
compressive measurement. At each snapshot, the multispec-

tral compressive measurements yk
(hs) = H

k
(hs)D(hs)f + ηk

(hs)

are captured, and the hyperspectral compressive measurements
yw
(ms) = H

w
(ms)D(ms)f + ηw

(ms) are captured. Fig. 4 depicts an
example of the compressive measurements of the multispectral
and hyperspectral arms. Notice that when the coded apertures
are spatially and spectrally complementary but randomly dis-
tributed, a salt and pepper noise is produced over the compressive
measurements [see Fig. 4(a), and 4(b)]. In contrast, when the
coded apertures are designed the salt pepper noise is prevented
[see Fig. 4(c), and 4(d)]. Nevertheless, in order to include
the spatial contextual information in the extracted features, a
denoising stage is required. The following subsection explains
the denoising method, and the extraction of features.

E. Denoising and Feature Extraction

In the denoising stage, a median filter is applied over the com-
pressive multispectral, and hyperspectral measurements Y (hs)

i,j,k ,

and Y
(ms)
i,j,w to enhance the spatial contextual information. To

compute the output of the median filter, an odd number of
samples are sorted, and the middle value is used as the output of
the filter. If the filter length is ι = 2β + 1, the filtering procedure

is denoted as Y
(hs)
i,j,k = MED[Y

(hs)
i,j−β,k, . . . , Y

(hs)
i,j,k . . . Y

(hs)
i,j+β,k],

and Y
(ms)
i,j,k = MED[Y

(ms)
i,j−β,w, . . . , Y

(ms)
i,j,w , . . . Y

(hs)
i,j+β,k], where

Y
(ms)
i,j,w , and Y

(hs)
i,j,k are the (i, j)th multispectral, and hyper-

spectral output, respectively. The median filter with window’s
size [7× 7] is performed to promote the uniformity in both
compressive measurements Y (hs)

i,j,k , Y (ms)
i,j,w .

In addition, the filtered hyperspectral measurements

Y
k
(hs) are interpolated using a bilinear interpolator P

to attain the size of the multispectral measurements,

resulting in Y
k

I(hs)
= P(Y

k
(hs)). Using the filtered com-

pressive multispectral measurements Y
w
(ms), and the

filtered-interpolated compressive hyperspectral measurements
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Algorithm 2: Adaptive Coding and Processing in the
Hyperspectral-Arm.

function HYPERSPECTRAL-ARMΓ(hs),Ξ(ms)

2: for k ← 0,K − 1 do
for i← 0, Mp do

4: for j ← 0, Np do
υ ← Ξ(hs)k,Γ(hs)(i,j)

6: T (hs)
i,j,:,k ← b(hs):,υ

Yk
(hs) ← Acq(T (hs)

i,j,:,k) � Hyperspectral
measurements acquisition using (6).

8: Y
k
(hs) ←Med(Yk

(hs)) � Compute median
filtering.

Y
k

I(hs)
← P(Y

k
(hs)) � Interpolation of

hyperspectral measurements.

10: return [Y
1

I(hs)
. . .Y

K−1
I(hs)

]

Y
k

I(hs)
, the features are extracted in the matrix R =

[vec(Y
0
(ms)), . . . , vec(Y

W−1
(ms) ), vec(Y

0
I(hs)

), . . . , vec(Y
K−1
I(hs)

)]T .
Fig. 4(e) and (f) depicts the spatial and spectral features after
applying the median filter to the nonadaptive compressive
measurements. In contrast, Fig. 4(g) and (h) shows the spatial

Y
w
(ms), and spectral Y

k

I(hs)
features after applying the median

filter to the adaptive compressive measurements. Notice that
compressive measurements using the nonadaptive approach
attain lower spatial uniformity Fig. 4(e) and (f) than the
compressive measurements obtained using the proposed
adaptive design.

F. Classification

The classification is performed using as input the extracted
features of the previous step. The SVM classifier [4], using
a polynomial kernel computes the class labels for training
Ctraining , and the class labels for test Ctest to each spatial
position of the scene.

G. Algorithm

The algorithm 1 summarizes the proposed method. Which
has as input the compressive measurement of the multispectral
armY0

(ms). Using theY0
(ms), the high-pass filter is calculated in

step 4. Following, the quantization is computed in step 5. Sub-
sequently, the compressive measurements are captured Yw

(ms),

Yk
(hs), according to the sampling model in lines 10 and 11. The

process to obtain Yw
(ms), and Yk

(hs) is shown in algorithms 2
and 3. In the adapting coding process, the sampling matrix is
designed using the contextual information of the quantization
matrix Γ. The coded apertures T (hs)

i,j,:,k, and T (ms)
i,j,:,k are computed

in lines 6 of algorithms 2 and 3, respectively. The acquisition of
the hyperspectral and multispectral compressive measurements
using the adapted codes is attained in lines 7, and 7 of algorithms
2 and 3. The processing before to attain the features is composed
of denoising, and the interpolation. The denoising using median

Algorithm 3: Adaptive Coding and Processing in the
Multispectral-Arm.

function MULTISPECTRAL-ARMΓ(ms),Ξ(ms)

2: for w ← 1,W − 1 do
for i← 0,M do

4: for j ← 0, N do
υ ← Ξ(ms)w,Γ(ms)(i,j)

6: T (ms)
i,j,:,w ← b(ms):,υ

Yw
(ms) ← Acq(T (ms)

i,j,:,w) � Acquisition of
multispectral measurements using (6).

8: Y
w
(ms) ←Med(Yw

(ms)) � Compute median
filtering.

return [Y
0
(ms) . . .Y

W−1
(ms) ]

Fig. 5. Pavia University dataset. (a) RGB version of the high-resolution image,
(b) ground truth map, (c) RGB version of the HS image, (d) RGB version of the
MS image.

filter is conducted in line 8 of algorithms 2, and 3, respectively.
And, the interpolation is only performed to hyperspectral mea-
surements in line 9 of algorithm 2. Retaking the algorithm 1,
the extracted features denoted as matrix R are computed in line
12. After, the classification is computed in lines 13 and 14. The
output of the algorithm is the resulting classification labelsCtest.

IV. SIMULATIONS AND RESULTS

This section analyzes the performance of the proposed adap-
tive technique in terms of spectral image classification accuracy.
More precisely, the proposed method is evaluated on synthetic
compressive measurements obtained from two real datasets:
Pavia University and Indian Pines. Subsequently, the proposed
approach is tested on real compressive measurements captured
by a laboratory setup.

A. Pavia University Dataset

The first spectral image was obtained by the reflective optics
imaging spectrometer (ROSIS-02) over an urban region sur-
rounding the campus of the University of Pavia, Italy [36]. This
spectral image exhibits dimensions of 640× 340 pixels and 96
spectral reflectance bands in the wavelength interval from 0.43
to 0.86 μm. A RGB composite of the Pavia University dataset is
shown in Fig. 5(a). Furthermore, the ground truth labeling map
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TABLE I
PERFORMANCE OF THE PROPOSED ADAPTIVE METHOD ON THE PAVIA

UNIVERSITY DATASET FOR DIFFERENT SIZES OF THE MEDIAN FILTER

with nc = γ = 9 is illustrated in Fig. 5(b), where every label
refers to a distinct structure in a urban cover.

To evaluate the performance of the proposed method, the com-
pressive measurements are obtained using the proposed adaptive
acquisition approach. To this end, the low-spectral resolution HS
image is obtained by downsampling the high-resolution spectral
image with a spatial decimation factor p = 4. Therefore, the HS
image consists of 160× 85 pixels and 96 spectral bands. The
RGB version of the HS image is shown in Fig. 5(c). On the
other hand, the low-spectral resolution MS image is obtained
by downsampling the high-resolution image with a spectral
decimation factor q = 4. Hence, the MS image exhibits a size of
640× 340× 24. Fig. 5(d) displays the RGB version of the MS
image.

Subsequently, we implement the proposed adaptive method
by simulating the dual-arm acquisition system. In this work, we
simulate two dual-arm systems. Notice that each dual-arm sys-
tem is equipped with two CSI sensors belonging to a particular
optical architecture: 3-D-CASSI [20] or C-CASSI [23]. To label
the spectral image, a supervised pixel-based classifier is applied
to the extracted features. More precisely, we use SVM with a
polynomial kernel of degree d = 3.

We evaluate the effectiveness of the proposed classification
approach for different parameter settings. In particular, Table I
shows the accuracy results obtained by the proposed approach
for different window sizes of the median filter. Specifically,
we display the ensemble average of the overall accuracy (OA),
the average accuracy (AA), and the Cohen’s kappa statistic (κ)
for distinct sizes of the median filter. For this experiment, the
compression ratio is fixed to ρ = 16.67%. Each value is the
ensemble average of 25 realizations and at each trial, a different
set of training samples is randomly selected from the ground
truth map. Unless stated otherwise, 10% of the image pixels are
randomly selected as training samples and the remaining pixels
are considered as test samples. As can be observed in Table I, the
performance of the proposed approach improves as the window
size increases.

Fig. 6 shows the classification maps obtained by the proposed
adaptive approach using a dual-arm system with 3-D-CASSI
sensors for different compression ratios. Note that the compres-
sion ratio of 3-D-CASSI and C-CASSI are given by

ρ = K

(
M(N + cL− c)

p2MNL

)
+W

(
M(N + cL

p − c)
MNL

)
(19)

Fig. 6. Pavia University dataset. Labeling maps from adaptive 3-D-CASSI
measurements for (a) ρ = 8.33% with OA: 94.37%, (b) ρ = 12.50% with OA:
95.92%, (c) ρ = 16.67% with OA: 96.52%, and (d) ρ = 25.00% with OA:
97.19%.

Fig. 7. Pavia University dataset. Labeling maps from adaptive C-CASSI
measurements for (a) ρ = 8.33% with OA: 84.82%, (b) ρ = 12.50% with OA:
89.40%, (c) ρ = 16.67% with OA: 91.27%, and (d) ρ = 25.00% with OA:
91.18%.

where c is a parameter related to the spectral shifting of the
encoded image, K and W denote the number of camera shots
captured by the hyperspectral and multispectral arm, respec-
tively. In addition, we set the window size of the median filter
to 7× 7. Fig. 7 illustrates the labeling maps using the dual-arm
system with C-CASSI sensors for different compression ratios.

To test the performance of the proposed adaptive approach
for different detector resolutions, Table II shows the labeling
accuracy for various downsampling factors. Specifically, each
value is obtained by averaging 25 realizations of the respective
experiment. Notice that the window size of the median filter is
fixed to [7× 7] and the compression ratio is set to ρ = 16.67%.
Moreover, the results are obtained using 3-D-CASSI and C-
CASSI architectures. The ensemble average of OA, AA, and
κ are also shown in the three last rows of Table II, where the
best values of OA, AA, and κ are shown in bold font for each
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TABLE II
PERFORMANCE OF THE PROPOSED ADAPTIVE METHOD ON THE PAVIA

UNIVERSITY DATASET FOR DIFFERENT SENSOR RESOLUTIONS

Fig. 8. Indian Pines dataset. (left) RGB composite of the high-resolution
spectral image, and (right) ground truth map.

optical architecture. As can be observed in this table, the best
classification performance is obtained when (p = 2, q = 2).

B. Indian Pines Dataset

This spectral image was acquired by the airborne visible,
infrared imaging spectrometer (AVIRIS) over the Indian Pines,
USA [36]. This dataset consists of is 145× 145 pixels and 192
spectral bands in the wavelength interval from 0.5 to 2.5 μm.
An RGB composite of the high-resolution spectral image is
illustrated in Fig. 8(left). Furthermore, Fig. 8(right) shows the
ground truth map with nc = γ = 16 different classes that iden-
tify different crops and building structures.

1) 3-D-CASSI: Fig. 9 displays the labeling maps obtained
by the proposed adaptive approach using a dual-arm system
with 3-D-CASSI sensors. For comparison purposes, we also
show the classification maps obtained by the nonadaptive ap-
proach reported in [37]. For this dataset, we set ρ = 16.67%
and the window size of the median filter is fixed to [9× 9]. The
nonadaptive approach generates degraded labeling maps with
low OA values 49.89%, 56.55%, 59.73%, and 64.83% in com-
parison to those obtained using the adaptive approach 85.55%,
86.27%, 87.47%, and 87.70% for different compression ratios.
The proposed approach attains 85.55% of OA in classification
using 2 multispectral shots and 8 hyperspectral shots. In contrast,
the nonadaptive approach obtains 49.89% for the same number
of snapshots. Hence, the proposed adaptive method exhibits an
accuracy gain of at least 20% compared to that obtained by the
nonadaptive approach.

2) C-CASSI: Fig. 10 depicts the labeling maps using a dual-
arm system with C-CASSI sensors. The nonadaptive approach

Fig. 9. Indian Pines dataset. Labeling maps using 3-D-CASSI systems
for different compression ratios. Nonadaptive approach with (a) ρ = 8.33%,
(b) ρ = 12.50%, (c) ρ = 16.67%, (d) ρ = 25.00%. Proposed adaptive ap-
proach with (e) ρ = 8.33%, (f) ρ = 12.50%, (g) ρ = 16.67%, and (h) ρ =
25.00%.

Fig. 10. Indian Pines dataset. Labeling maps using C-CASSI systems for
different compression ratios. Nonadaptive approach with (a) ρ = 8.33%,
(b) ρ = 12.50%, (c) ρ = 16.67%, (d) ρ = 25.00%. Proposed adaptive ap-
proach with (e) ρ = 8.33%, (f) ρ = 12.50%, (g) ρ = 16.67%, and (h) ρ =
25.00%.

Fig. 11. Indian Pines dataset. OA versus the SNR of the compressive samples
for (left) 3-D-CASSI and (right) C-CASSI.

achieves low OA values 57.46%, 60.51%, 62.74%, and 66.21%
compared to the results obtained utilizing the adaptive approach
93.95%, 95.37%, 96.09%, and 94.49%.

To observe the performance of the proposed approach against
the variability caused by sensor noise [38], Fig. 11 shows the OA
as the SNR of the camera projections increases for 3-D-CASSI
and C-CASSI. In this case, we assume that projections are
contaminated by noise matrices whose entries are iid random
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TABLE III
COMPUTATION TIMES IN SECONDS ON THE INDIAN PINES DATASET FOR

DIFFERENT COMPRESSION RATIOS

samples following a Gaussian distribution. For comparison pur-
poses, we also show the OA curve yielded by the nonadaptive
approach. Each point of the curve is the ensemble average of 100
realizations. For each trial, a different set of contamination matri-
ces is generated and a different training set is selected. As can be
seen in this figure, the proposed approach exhibits outstanding
performance compared to the nonadaptive approach. Finally,
Table III displays the execution times generated by the meth-
ods under test. For this experiment, the computation times are
obtained using a desktop with an Intel Core i7 CPU, 3.00 GHz,
64-GB RAM, and Ubuntu 18.04 operating system. Although the
proposed approach is slower than the nonadaptive method, the
computation times are competitive with a remarkable accuracy
gain.

C. Experiments With Real Data

To experimentally prove the benefit of the proposed classifica-
tion approach the dual-arm C-CASSI was used to acquire com-
pressive measurements in the multispectral and hyperspectral in
accordance with [24]. In the following repository is available the
ground truth, the datacube and the source code.1 The apparatus
is made up of an objective lens (Thorlabs, MAP10100100-
A) and a DMD (Texas Instruments, DLI4130VIS-7XGA) to
encode the spectral image. The optical setup is composed of
two arms. The multispectral arm employs a relay lens (Thor-
labs, MAP10100100-A), a dual Amici prism (Shanghai Optics,
custom made), and a monochrome sensor (AVT, Stingray F-
080B) with 1032× 776 pixels and pixel size of 4.65× 4.65μm.
The hyperspectral arm utilizes a 4F-relay system build using
two lenses (Thorlabs, AC254-100-A-ML), with a transmission
diffraction grating (Thorlabs, GT50-03, 300 grooves/mm, 17.5
groove angle) in the middle, and a monochrome sensor (AVT,
Stingray F-080B).

Hereinafter, the evaluation of the performance of the pro-
posed classification approach is presented. One target scene,
named Hen is used to evaluate the performance of the compu-
tational classification setup. In particular, Fig. 12 depicts the
ground-truth and the RGB version of the scene using the testbed
implementation. The test use measurements data of 3-D-CASSI,
C-CASSI optical setup. A combination of multispectral and hy-
perspectral snapshots w = {2, 3, 4, 6} and k = {8, 12, 16, 24},
respectively. The spatial resolution of the emulated dataset is
512× 512, and spectral resolution is 96 bands, and nc = 4.

1The ground truth, the datacube, and the source code can be
downloaded from the following repository: https://github.com/nelson10/
CompressiveAdaptiveClassificationMultisensor.

Fig. 12. Laboratory dataset. (left) Ground truth map of the scene with nc = 4
classes, and (right) the RGB version of the scene.

Fig. 13. Hen dataset. Labeling maps from 3-D-CASSI measurements. Non-
adaptive approach (a) OA:97.76%, (b) OA:98.10%, (c) OA:98.67%, and
(d) OA:99.11%. Proposed (e) OA:99.19%, (f) OA:99.24%, (g) OA:99.11%, and
(h) OA:99.19%.

Fig. 14. Hen dataset. Labeling maps from C-CASSI measurements. Nonadap-
tive approach (a) OA:80.74%, (b) OA:84.35%, (c) OA:97.03%, (d) OA:97.90%.
Proposed (e) OA:99.18%, (f) OA:98.60%, (g) OA:98.60%, and (h) OA:98.19%.

To compare Figs. 13 and 14 shown in the classification map
obtained using the nonadaptive and adaptive approach the 3-D-
CASSI and the adaptive C-CASSI. A significant improvement
is shown when the compression ratio is ρ = 0.085, 1.43% for
the 3-D-CASSI, and 18.44% C-CASSI.

V. CONCLUSION

A method that adaptively designs the coded apertures to
classify multispectral and hyperspectral compressive measure-
ments of spectral images has been developed. In detail, the
approach captures a prior estimation of the grayscale image in
the multispectral arm using a coded aperture with all entries

https://github.com/nelson10/CompressiveAdaptiveClassificationMultisensor.
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with a bandpass filter to reduce the dispersion of the measure-
ment of the first snapshot. The discrete mathematical model
to design adaptive colored-coded apertures of the dual-arm
CSI is presented. The approach filter, and quantize the prior
estimation of the grayscale image according to the number of
classes. Moreover, the matched filter design the coded aperture
by computing spectral response between the designed filters and
the average training samples. The performance of the proposed
classification approach is assessed on two spectral datasets under
the OA metric. The simulation test also shows a remarkable
improvement in the accuracy classification in up to 99.68% in
the OA metric. According to the simulation results, a significant
reduction in the number of snapshots in the hyperspectral and
multispectral arm is achieved using the proposed approach.
Notice that the approach is successfully implemented on real
compressive measurements. The testbed implementation shows
a significant improvement in the overall accuracy.
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