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Abstract—Discrete anisotropic radiative transfer (DART) cali-
bration is an iterative inversion method that is applied to shortwave
(SW) satellite images to get maps of spectral signatures (SS) of city
materials at the satellite spatial resolution. Therefore, it is poten-
tially a handy spectral unmixing tool. However, up to now, it has
only been validated by comparing the time series of SW radiative
budget Q∗

SW from a flux tower in Basel to DART simulated Q∗
SW

using maps of SS derived from satellite images. This article thor-
oughly assesses the DART calibration accuracy with two synthetic
case studies, called “ideal” and “nonideal,” for short wavelengths.
In both cases, the satellite image is a DART simulated image of an
urban scene with ground, buildings with various structures, water,
and shrubs. In the ideal case, SS maps are the only unknowns
in the inversion process. The mean absolute value of the relative
errors over all bands for ground, roof, water, tree, and shrub
maps were 0.013, 0.005, 0.027, 0.297, and 0.250. In the nonideal
case, we considered an uncertainty on parameters assumed to be
known in the ideal case: solar zenith angle (SZA); satellite image
spatial resolution; pixel-shift; inaccuracy of landscape modeling;
and modulation transfer function (MTF). It led to larger errors:
for ground, roof, water, tree, and shrubs, the mean absolute value
of the relative error was 0.233, 0.507, 3.088, 0.834, and 1.256,
respectively. By descending order of importance, the parameters
that most affect the accuracy of the retrieved SS of urban material
were SZA, satellite image spatial resolution, pixel-shift, inaccuracy
of three-dimensional urban scene modeling, and MTF.

Index Terms—DART, reflectance, spectral confusion, spectral
mixed model, urban meteorology.

I. INTRODUCTION

S PACE-TIME variations of the spectral signatures (SSs) of
city materials play an essential role in the energy balance
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models, characterization, and classification of urban material
and surface changes [1]. They provide basic modeling parame-
ters for many research works, such as climate change adaptation
and sustainable human health development [2]. However, the
current understanding of the separation of city materials and
their spectral signatures is insufficient [3]. Indeed, it is chal-
lenging to determine SS since they vary with time and space.
The roof is a typical example since its reflectance depends
on its weathering state [4]. Therefore, it is necessary to con-
sider the spatial and temporal changes of each urban material
SS [5].

Remote sensing is a potentially ideal tool since it provides
time-series satellite images of cities [6]. However, cities have
very complex and various 3-D geometries [7]. The associated
multiple-scattering events explain that the observed reflectance
at the pixel level depends on the radiative interactions be-
tween the urban components present in the same pixel and
between these components and neighbor urban components [8].
In short, the observed pixel reflectance is a complex function
of the SS of urban components inside and outside that pixel.
The complexity of the problem depends both on the spatial
variability of the urban geometry and the spatial resolution of
the remote sensing sensor. Therefore, the accurate retrieval of
the SS of city material [9] is a complex mixed pixel prob-
lem, especially if several urban components are present in
the pixel [10].

Mixed pixels are generally analyzed using either a linear
spectral mixture analysis (LSMA) or nonlinear spectral mixture
analysis [11]–[15]. LSMA is widely used for its simplicity
because it ignores the multiple scattering among components
within a pixel and assumes that the reflectance of each mixed
pixel is a linear sum of the reflectance of the present components
or endmembers weighted by the endmembers’ abundance in
each mixed pixel [16]–[18]. Decomposing mixed pixels into
a number of endmembers SS requires approximating their pro-
portion per pixel (fraction images). Several standard methods
allow one to estimate fractional abundance, including the least
squares [18], modified Gramm-Schmidt orthogonal decompo-
sition [19], or singular value decomposition [20]. Model fit
is sometimes evaluated using error metric root-mean-square
error [21].

Early LSMA considers each endmember to have a unique
spectrum, assuming that the number of endmembers combined
with their spectral separability allows one to avoid confusion
[22]. Consequently, it cannot treat the full spatial variation of
urban SS in a given urban landscape. Depending on the spatial
resolution of the satellite image and the specific 3-D urban
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geometry and its numeric representation, two significant issues
are encountered when applying LSMA to an urban environment:
the multiple endmember problem in a class if the SS of this class
varies [23], and the nonpure pixel problem if there are no pure
pixels for urban materials [24].

Various methods have been devised to solve the above two
problems separately. For example, multiple endmember spectral
mixture analysis (MESMA) [23] and its derivation class-based
MESMA [25], hierarchical MESMA [21], and stratified classi-
fication MESMA [26] are used to solve the multiple endmember
problem. Their core concept is to classify distinct classes and
then use MESMA to identify multiple endmembers within the
classes and account for SS’ temporal changes. Besides, mini-
mum volume simplex analysis (MVSA) [24] addresses hyper-
spectral unmixing by applying a minimal volume simplex to the
hyperspectral images, minimizing the same objective feature,
and minimizing a regularized least-squares fit of the data restrict-
ing the abundance fractions that belong to the likelihood simplex
to solve nonpure pixel problems. Two significant issues must
be noted: MESMA needs various endmembers SS within each
class. In addition, very high classification accuracy is required
because the final accuracy depends heavily on the classification.
However, misclassification is very difficult to avoid for materials
that share similar SS. MVSA requires hyperspectral images,
and the number of bands of satellite images must be at least
larger than the number of endmembers. Moreover, due to the
frequent interclass and intraclass spectral variability in urban
areas, these two problems always exist together. In addition,
recent work has shown that the vertical dimension has a signif-
icant impact on the functioning of the specific ecosystem [27],
which stresses the interest in studying city landscapes from a 3-D
perspective.

Discrete anisotropic radiative transfer (DART) calibration
[28]–[30] can open new avenues to improve the retrieval of urban
SS, which allows the variation of endmember from pixel to pixel
when retrieving SS of urban components. This 3-D radiative
transfer model was selected because it offers the advantage of
working with any satellite image characteristics (spatial resolu-
tion, spectral band, etc.) and any urban architecture [31]–[34].
Indeed, it can simulate remote sensing images considering multi-
ple scattering events between the urban components [35], [36].
It has been widely used for remote sensing studies, including
vegetation [37], [38] and cities [39]. In addition, the DART
calibration has already been successfully used in urban studies
to map urban albedo and 3-D shortwave radiative budgets [30].

However, a current validation of DART calibration is still
lacking. Up to now, its only validation was done by comparing
the time series of the radiative budget Q∗

SW simulated by DART
and measured by flux towers in Basel, Switzerland. There-
fore, a more comprehensive accuracy analysis is essential for
DART calibration. This article focuses on quantitative analysis
of DART calibration accuracy under various situations. It also
investigates the factors that impact DART calibration accuracy.
This article is a synthetic study because DART simulated images
mimic satellite images. First, in the so-called “ideal case,” the
SS of the urban components are the only unknowns. Then, in
a “nonideal case,” we consider that a number of parameters
associated with satellite observations are not perfectly known.
Finally, we give an example of employing DART calibration in
one PlanetScope image to retrieve SS of land covers.

Fig. 1. Schematic urban scene: ground, water, shrubs, trees, and buildings
with flat, triangular prism, and frustum of a square pyramid roofs. (a) 3-D view.
(b) Top view.

II. MATERIALS AND METHODS

A. Description of the Urban Scene

The study site was a synthetic 128 m×128 m 3-D urban scene
with five types of components: flat ground; water; buildings;
shrubs; and trees (see Fig. 1). There were three 15 m × 15 m
water surface (opaque) and nine buildings with three kinds of
roofs evenly distributed in the scene. Roofs were triangular prism
on the left side of the scene, flat in the middle, and frustum of
a square pyramid on the right with the same inclination equal
to 20°. The length, width, and height of the buildings were 15
m, and the length and width of the ground surfaces between the
buildings were also 15 m. These are common values in European
cities [40].

The scene contained two shrubs whose length and width were
15 m with a 1 m height. The shrub was modeled as a uniform
volume of leaf elements with a spherical leaf angle distribution
(LAD) and a leaf area density equal to 0.5 m2/m3. The scene
also contained four trees. In order to simplify the analysis of
the inversion procedure, these trees were directly created by
DART and not imported. In addition, the foliar elements of
the tree crowns and shrubs were simulated with small triangles
and not with a turbid medium. The trees created with DART
have trunks simulated with frustum of a octagon pyramid and
crowns with specific vertical and horizontal profiles of LAD
and the volume density of the leaf area. Here, all trees had
the same geometric parameters: an ellipsoidal crown with 10 m
height and 10 m diameter at mid-height and homogeneously
filled with a 0.5 m2/m3 leaf density. The urban components were
spatially distributed to meet the usual illumination conditions
with shadows and mixed pixels effects.

B. DART Calibration

DART calibration is an iterative inversion method applied to
a satellite image to get a map of SS per type of urban com-
ponent with urban anthropogenic heat flux. DART calibration
first retrieves the SS of endmembers by iteratively comparing
simulated and satellite images. Then, this 2-D component SS
map allows one to compute anthropogenic heat flux maps. The
retrieved procedure comprises two major steps.

The first step provides first order SS maps using the LSMA
method. DART estimates the “amount” of urban components by
simulating a reflectance image and an image per type of urban
component called “component reflectance image.” The term
“amount” indicates the spectral contribution of each component
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TABLE I
INPUT SS PARAMETERS FOR THE DART CALIBRATION PROCEDURE. ρ MEANS REFLECTANCE AND τ MEANS TRANSMISSIVITY. SWIR MEANS SHORT WAVE

INFRARED

and not its relative area proportion. Therefore, its meaning
differs from the term “abundance,” and the presence of mul-
tiple scattering explains that the sum of the “amount” of all
components can be larger than one. The inversion method starts
with user-defined SS values that can be selected from the DART
database. First-order SS maps are calculated by assuming that all
urban components of the same type share the same SS within a
certain distance. In this step, the urban components with a small
amount are neglected for each pixel because they are difficult to
assess. Here, we used a threshold of 1%.

The second step is a sequence of iterations that converge
towards a final SS map per type of urban component at the
satellite image spatial resolution. It combines the bisection and
Newton’s methods. The SS is the independent variable, and the
component reflectance image is a dependent variable. Basically,
if the reflectance of a DART pixel is smaller than that of the
satellite image, the SS values of the components in this pixel
are increased, and vice versa. It is operated per pixel. The SS
values of the components in a pixel are no longer updated in the
following iterations if the relative difference of the DART and
satellite pixel reflectance is less than a user-defined threshold;
here, this threshold was set to 1%. This step implicitly considers
multiple scattering between components. At the end of the pro-
cedure, the DART image simulated with the retrieved SS maps
is nearly equal to the satellite image (i.e., mean relative error
smaller than 10−3). A detailed description of DART calibration
is in the literature [28]–[30].

The accuracy of the DART calibration method was assessed
using a DART simulated image that mimics an atmospheri-
cally corrected satellite image. Therefore, DART computed two
products: the pseudo satellite image and the so-called base image

that converges to the pseudo satellite image with the iterative
change of the component SS maps by the calibration method.
The relative difference between the true and retrieved SS values
was used to indicate the DART calibration accuracy. Six spectral
bands (three visible bands, near-infrared band (NIR), and two
short wave infrared bands) were considered. It must be noted
that DART calibration processes all bands independently; it
can process monoband images. Also, the DART atmosphere
radiative transfer module [41], [42] was not used because the
satellite image was assumed to be atmospherically corrected.

As already mentioned, two cases of base simulations were
studied: an ideal case and a nonideal case. In the ideal case, SS
values were the only unknowns (see Table I). All other input
parameters were identical between the base and satellite simu-
lations: 30° solar zenith angle (SZA); perfect sensor modulation
transfer function (MTF), 4 m satellite image spatial resolution,
perfect geometric registration of the base and satellite images,
etc., (see Table II). SZA greatly influences the bidirectional re-
flectance effect [43]–[45] by distributing shadows in the image.
Besides, together with the roof inclination, they determine the
angle of incidence of light hitting the roof. The MTF defines
how much contrast the sensor retains to the original target. It
defines the faithful transition of the object’s spatial frequency
content of the image. It can blur the image and thus affect SS
retrieval accuracy [46]. Spatial resolution refers to the dimension
of a pixel on the ground.

The nonideal case considered the complexity of the satellite
image. Indeed, several satellite observation factors, used as
DART input parameters of the base image, could not be precisely
known. Their imprecision influenced the retrieval of SS. The
six considered influence factors corresponded to two broad
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TABLE II
INPUT SIMULATION PARAMETERS FOR THE DART CALIBRATION PROCEDURE

categories: Image acquisition: SZA; image spatial resolution;
and MTF. Accuracy in image registration (x- and y-shift) and
3-D geometry of the urban scene.

In the nonideal case, SZA and spatial resolution of the satellite
image were identical in the pseudo and base images because
they were usually known. Conversely, MTF, registration errors,
and the accuracy of 3-D objects were often not well known.
Therefore, they differed between satellite and base simulations.
MTF was simulated using the Gaussian filter but was only used
in the satellite simulation because the current DART calibration
method did not consider it in the inversion process. Similarly,
the geometric registration of satellite images and the geometry
of 3-D urban scenes could not be perfectly known. Therefore,
they were fixed in the satellite simulation while varying in the
base simulation to mimic geometry inaccuracy. A total of 70
samples were generated per influence factor (see Table II), which
led to 420 samples. The range of MTF was set to 0.15–0.3,
corresponding to the 10 m spatial resolution band of Sentinel-2
images [47]. The range of SZA was set to 0°–60°. The range of
spatial resolution was set to 0.5–15 m, corresponding to most
high-resolution satellites, including Satellite Pour l’Observation
de la Terre (SPOT), RapidEye, Advanced Land Observing Satel-
lite (Alos), Ziyuan-3 (ZY3), Gaofen-1 (GF1), Keyhole (KH),
IKONOS, QuickBird, WorldView, GeoEye, and Pleiades. Ac-
cording to the literature [48], [49], the geo-positioning accuracy
of satellite images can be subpixel. Therefore, the maximal range
of pixel-shift was set to one pixel. Besides, the input parameters
(e.g., geometry of buildings, trees, water surfaces, and tree leaf
area) used to construct the 3-D landscape could not be precisely
known. Therefore, in the base simulations of the nonideal case,
these parameters were varied with factors from 95% to 105%
compared to the pseudo satellite simulation.

C. Sensitivity Analysis

Model sensitivity analysis focused on the effect of differ-
ences in the values of DART input parameters on the retrieved
SS accuracy. A global sensitivity analysis was done for the
non-ideal-case only. A global sensitivity analysis model, called
the extended Fourier amplitude sensitivity test (eFAST) [50],
was used to assess the influence of each factor mentioned
above: MTF, SZA, satellite spatial resolution, registration error x
and y, and imprecision of 3-D objects.

The eFAST is a sensitivity analysis method based on nu-
merical computations for the predicted value and variance of
a model prediction. The basis of the calculation is to turn a
multidimensional problem into a 1-D integral over all unknown
model inputs. To avoid multidimensional integration, a search
curve that passes through the entire parameter space is created.
The decomposition of the Fourier series representation is used to

Fig. 2. (a) DART pseudo satellite image of the 3-D scene. It has some spectral
confusions (e.g., the different reflectance for nine roofs and the same reflectance
of three roofs as ground reflectance). (b) DART image simulated with constant
SS per urban component. (c) DART image after the calibration procedure. All
images are RGB color composites.

obtain the fractional contribution of individual input variables to
model prediction variance. The analysis consisted of four stages.

1) Building the ranges and distributions for the input param-
eters and formally developing the predicted value and output
variance in terms of integrals for the input parameter space.

2) Transforming the given multidimensional integral into a
single-dimensional integral on input parameter space.

3) Estimating the predicted value and performance variance.
4) Estimating the sensitivity indices.
First-order sensitivity indices and total indices are computed

using the Fourier decomposition terms of the model output [51].
First-order sensitivity indices are a direct measure of sensitivity
based on variance and contribute to the output variance of the
principal effect of an input parameter. As a result, it measures the
effect of variation of an input parameter only but averaged over
the variations of other input parameters. Total order sensitivity
indices measure each input parameter’s contribution to the out-
put variation, including all variances produced by its interactions
with other input variables in any order.

III. RESULTS

A. Accuracy Assessment: Ideal Case

Fig. 2 shows the pseudo satellite image and the associated
base images before and after calibration. In the pseudo satellite
image, the roofs had reflectance values that differed and could
be close to those of the ground conversely to the uncalibrated
base image, where all roofs had the same reflectance. As ex-
pected, the calibrated base image was visually very similar
to the pseudo satellite image. Fig. 3 shows the evolution of
the mean absolute value of the relative error |ε|component per
component with iterations of the calibration method in the green
band. For each component, |ε|component was very large in the
uncalibrated image (ground: 13.08, roof: 8.72, water: 33.88, tree:
4.47, shrub: 5.27). It dramatically decreased down to around 0.01
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Fig. 3. Evolutions of the mean absolute value of the relative error of the
component SS with the iterations in the green band. The mean absolute value
of the relative error at iteration 0 is due to the selected initial SS value. Relative
errors are calculated pixelwise for each component, and a mean statistical value
of the absolute value of the relative error is calculated. Similar trends are found
in the other bands.

for ground, roof, and water in the calibrated image. However,
it only decreased down to 0.29 for shrubs and 0.36 for trees.
Besides, for the trees, this decreased oscillates with iterations.

Fig. 4 shows spatial images and violin diagrams of the relative
error of each component in the calibrated image. The calibration
appeared to be more accurate for pure pixels than for mixed
pixels: |ε|pure ground = 0.0065 with |ε|mixed ground = 0.0693,
|ε|pure roof = 0.0070 with |ε|mixed roof = 0.0089, |ε|pure water =

0.0015 with |ε|mixed water = 0.0268, and |ε|pure tree = 0.2519
with |ε|mixed tree = 0.3806. Besides, the accuracy of SS is very
similar in the sunlit and shaded areas. In addition, an initial
SS confusion had a negligible impact on εcomponent. Results
for ground [see Fig. 4(a) and (b)] were excellent, even for
shaded ground, except for mixed pixels with vegetation. Results
were also good for roofs [see Fig. 4(c) and (d)] and water
surfaces [see Fig. 4(e) and (f)], even in shaded areas, except for
mixed water pixels containing vegetation. The shape of roofs
had a negligible impact on εroof. However, the performances of
vegetation include shrub [see Fig. 4(g) and (h)] and trees [see
Fig. 4(i) and (j)], were relatively unideal compared to others.

B. Sensitivity Analysis and Accuracy Assessment: Nonideal
Case

1) Sensitivity Analysis: A sensitivity study was performed on
the nonideal case. Fig. 3 indicates that the calibration procedure
nearly converges at iteration five. Therefore, we set a constant
maximum iteration value of eight for all sensitivity analyses.

Fig. 4. Final calibration results of the error analysis for ground (a and b), roof
(c and d), water (e and f), shrub (g and h), and trees (i and j) in the green band in
the spatial and frequency domain. Relative errors are calculated pixelwise. Blank
in the image means there is no corresponding component in that pixel. Violin
range is limited to within the range of the relative error. A similar phenomenon
was also observed for other bands.

SZA, satellite image resolution, pixel-shift, landscape modeling
inaccuracy, and MTF were analyzed using eFAST sensitivity
analyses (see Fig. 5).

Modulation Transfer Function: The result shows that MTF
had very little influence on the calibration accuracy. The highest
mean first-order sensitivity (0.095) and total order sensitivity
(0.658) over all bands was the shrub. The lowest mean first order
sensitivity (0.018) and total order sensitivity (0.093) over all
bands was ground. The MTF mean first order and total order
sensitivity over all bands over all components were 0.056 and
0.346.

Solar Zenith Angle: Ground had the highest mean first order
sensitivity (0.721) and the mean total order sensitivity (0.861)
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Fig. 5. Sensitivity analysis results. The eFAST method is used for sensitivity
analysis based on 420 cases. Sensitivity indices are calculated per component
per band and stacked over all bands. All subplots share the same x-axis. The
effect magnitudes are SZA, satellite spatial resolution, pixel-shift, landscape
model inaccuracy, and MTF, in descending order of magnitude.

over all bands. Water had the lowest mean first order sensitivity
(0.047) and the mean total order sensitivity (0.348) over all
bands. Overall, the SZA mean first order and total order sen-
sitivity over all bands were 0.253 and 0.660, respectively.

Satellite Resolution: Water had the highest mean first order
sensitivity (0.327) over all bands, and shrub had the highest mean
total order sensitivity (0.891) over all bands. The lowest mean

first order sensitivity (0.036) and total order sensitivity (0.137)
over all bands was ground. The mean first order and total order
sensitivity of the spatial resolution over all bands were 0.222
and 0.628.

X-shift: The highest mean first order sensitivity (0.145) and
total order sensitivity (0.806) over all bands was the shrub.
The lowest mean first order sensitivity (0.033) and total order
sensitivity (0.129) over all bands was ground. The X-shift mean
first order and total order sensitivity over all bands over all
components were 0.096 and 0.441, respectively.

Y-shift: The roof had the highest mean first order sensitivity
(0.105) over all bands, and the shrub had the highest mean total
order sensitivity (0.727) over all bands. The lowest mean first
order sensitivity (0.050) and total order sensitivity (0.172) over
all bands was ground. The Y-shift mean first order and total order
sensitivity over all bands over all components were 0.085 and
0.437.

Accuracy of the 3-D scene model: The highest mean first order
sensitivity (0.094) and total order sensitivity (0.758) over all
bands was the shrub. The roof had the lowest mean first order
sensitivity (0.015) over all bands, and the ground had the lowest
mean total order sensitivity (0.088) over all bands. The accuracy
of the 3-D scene model mean first order and total order sensitivity
over all bands over all components were 0.054 and 0.407.

Overall, mean sensitivity values over all components were
close to each other for the six bands: 0.317 for the blue band;
0.305 for the green band; 0.307 for the red band; 0.264 for the
NIR; 0.301 for the short wave infrared 1 (SWIR1) band; and
0.342 for the short wave infrared 2 (SWIR2) band. Besides, the
mean total order sensitivity (0.485) was four times larger than
the mean first order sensitivity (0.127) over all bands and over
all components.

2) Accuracy assessment: Nonideal Case: Fig. 6 shows the
mean absolute value of the relative error per component over all
420 cases. Performances were excellent in all bands for ground
and roof: the range of |ε|was 0.015–1.572 for ground and 0.024–
1.7662 for roofs. The accuracies were less accurate for the other
components than ground and roof, especially for components
in the band with low SS. Large errors tended to occur if the
SS of the component was low. For example, for vegetation (i.e.,
shrubs, trees), the range of |ε| was 0.159–2.709 in the green
band. However, its range in the red band was even 0.341–11.445.
Similarly, |ε|water increased dramatically in SWIR1 and SWIR2,
where its SS is low. The range of |ε|water over all bands was
0.053–15.683.

IV. SATELLITE IMAGE APPLICATION

The DART calibration was also applied to real satellite data
to verify its accuracy preliminarily. The study area was selected
as Basel, a research target of the URBan ANthropogenic heat
FLUX from the Earth observation Satellites (URBANFLUXES)
project [52]. Basel is a city in northwestern Switzerland on the
river Rhine, where the Swiss, French, and German borders meet
[28], [30]. Our study area comprised almost the entire city of
Basel, with latitude from 47.53°N to 47.57°N, and longitude
from 7.55°E to 7.62°E. Its geometric database was very detailed
(see Fig. 7). These cities are characteristic European cities to
allow the extension of the results to other European cities. Their
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Fig. 6. Mean absolute value of the relative errors on the retrieved SS of scene
components for the blue, green, red, NIR, SWIR1, and SWIR2 bands. Relative
errors are calculated pixelwise per component. The absolute value of relative
error is averaged over all 420 cases. Violin range is limited to within the range
of the mean absolute value of the relative error.

3-D mock-ups were initially constructed and used by Landier
et al. [28]–[30]. The land cover classes of Basel included
buildings, impervious layer, water, low vegetations, bare soils,
deciduous, and evergreen, according to the URBANFLUXES
project [53], [54]. Here, some classes were grouped. The tree
class contained deciduous and evergreen; the ground class
contained impervious surface, low vegetations, and bare soils;
and the building and water classes were the same as in the
URBANFLUXES project. The location and geometric structure

Fig. 7. Basel 3-D scene. (a) Top view. (b) Side view of the red square in (a).
Buildings (roofs: dark, walls: light grey), trees (green), river (blue), and ground
(yellow).

TABLE III
SATELLITE IMAGE PARAMETERS

of all urban components, including the local digital elevation
model (DEM), were from the local city database. Trees were
defined by their location, height, and crown dimensions from
field measurements. DART simulated trunks with frustum of
a octagon pyramid and crowns as ellipsoidal volumes filled
with small triangles in this work. Here we only give necessary
information about the city database. More detailed descriptions
are presented in the literature [28].

We downloaded one 3 m resolution multispectral surface
reflectance image with four bands from Planet (https://www.
planet.com/). This image had undergone orthocorrection and
atmospheric correction, and it was selected because its off-
nadir angle was precisely 0.0. Table III gives the detailed
parameters of this image. Data processing included geometry
co-registration between satellite images and DART simulated
images. We first clipped the satellite images based on the
geographical latitude and longitude and kept only the remote
sensing images in the study area. Then we shifted the 3-D urban
database along the x- and y-axis to do the co-registration between
the DART image and the satellite image. Satellite images were
distorted due to factors such as observation angle and image dis-
tortion. Therefore, the geometric accuracy of DART simulated
images was much higher than that of satellite images. We set the
DART simulated image as the base image and used the GeFolki
[48], [49] developed by the French aerospace lab to warp the
satellite image to DART simulated image for co-registration.
Gefolki is a module allowing carrying out the co-registration of
two remote sensing images with a geometry accuracy of less
than 0.1 pixels. Finally, the warped satellite image was used for
inversion with DART simulated image.

https://www.planet.com/
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Fig. 8. (a) PlanetScope image in the Basel area. (b) DART image simulated
with constant SS per urban component. (c) DART image after the calibration
procedure. All images are RGB color composites.

Fig. 9. Retrieved SS of vegetation, river, roof, and ground by DART cali-
bration. All images are RGB color composites. The black pixels indicate no
corresponding element in that pixel.

Subarctic summer was selected as the atmosphere model in
the DART simulation. This atmospheric model was selected
using the total column water vapor and air temperature [55].
These data were from water vapor and surface temperature data
of the National Centers for Environmental Prediction and the
National Center for Atmospheric Research reanalysis data [56].
The aerosol model was selected as urban mode based on the
study area directly [55]. As atmospherically corrected surface
reflectance data were used, we assumed that the atmospheric
influence was removed, so the atmospheric parameters have
minimal effect on the results (only the skylight distribution is
affected). The input parameters of spectral bands, spatial res-
olution, and sun-target-satellite geometry were kept consistent
with the satellite image in the DART simulation (see Table III).

Fig. 8 shows the satellite image and DART simulated images
before and after DART calibration. Before calibration, the dif-
ference between DART simulated image and the satellite image
was tremendous. However, after calibration, the difference was
tiny. Figs. 9 and 10 depict the SS distribution in spatial and
frequency. We carefully examined the bimodal issue for the
water bodies and found that it was due to the lack of bridges
in the urban 3-D structure database, and therefore some of the
reflectance values of the bridges were assigned to the water body.
Also, some ground pixels showed typical vegetation SSs (some
pixels were very green in Fig. 9). It is because, in our city 3-D

Fig. 10. Frequency distribution of SS obtained from DART calibration in (a)
blue, (b) green, (c) red, and (d) NIR bands. The cross symbol indicates the SS
in iteration 0 of DART calibration in Fig. 8(b).

database, there was no distinction between ground and grass-
land. Therefore, during the DART radiative transfer simulation,
the grassland pixels were also considered as a opaque surface.
In all, there were significant spectral differences between the
different components, indicating good spectral unmixing.

V. DISCUSSION AND CONCLUSION

A. Discussion

1) Accuracy Assessment: The DART calibration method has
only been validated by comparing the time series of the short
wave radiative budget Q∗

SW simulated by DART and measured
in a flux tower in Basel, Switzerland [30]. The mean relative
difference over one year was 2.7%, which is a very encouraging
result. However, this comparison was only a kind of one-pixel
validation. Here, the validation is extended to every pixel by
using a DART simulated pseudo satellite image.

Our results [see Figs. 2 and 3] show that the DART calibra-
tion has an excellent overall accuracy under ideal experimental
conditions. However, vegetation has a markedly less accurate
retrieved SS compared to other urban components. Three expla-
nations are put forward.

1) Being a volume of foliar elements, vegetation cannot be
simulated as a simple surface like the other urban components.
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2) The leaf SS includes leaf transmittance and reflectance.
Here, it is represented by the leaf single scattering albedo,
with a predefined spectral ratio between its reflectance and
transmittance.

3) The low value of leaf SS in the considered spectral bands.
Other works already stressed the poor performance of vege-

tation in the unmixing model [21], especially for mixed pixels
that contain vegetation. The complexity of vegetation structure,
including multiple scattering, leads to complex nonlinear re-
lationships between leaf albedo and canopy reflectance [57],
[58]. These remarks are consistent because the DART calibration
provides maps of SS that are less accurate for vegetation than for
urban surface components such as ground and roofs. Similarly,
the low reflectance of water complexifies the retrieval of its SS
[21]. However, here, the results are excellent for water, even in
shaded areas (see Fig. 4). It is explained that water surfaces are
treated as opaque surfaces in this article.

Shadows are usually mentioned as an essential source of
inaccuracy in the retrieved SS [59]. For example, shadows
cast by buildings in urban densities considerably obscure local
information in the image, leading to possibly corrupted results
or interpretative errors [60]. Methods like MESMA try to solve
this problem by incorporating shade as an endmember [21].
Here, the impact of shadows on the retrieval of SS is relatively
low, suggesting that the algorithm of DART calibration is well
adapted to the processing of shaded urban areas.

The nonideal case stresses that inaccurate DART input pa-
rameters can significantly affect the calibration accuracy (see
Fig. 6). For example, an inaccurate geometric co-registration
of the satellite image leads to an inaccurate amount estimation
and finally leads to the poor estimation of SS. In contrast to
some traditional hybrid image unmixing, DART calibration does
not estimate the abundance calculated from the endmember SS,
which is a significant advantage because it allows the SS of the
endmember to vary from pixel to pixel. However, it needs a very
accurate co-registration of the satellite image and the 3-D scene
model. Besides, we find that some components with low SS (e.g.,
water and vegetation) produce high relative error and variance.
It is because we use the relative error, and if the pixel shifting
problem leads a high reflectance pixel to a low SS component,
the denominator is too small in relative error, leading to the high
relative error and variance.

2) Sensitivity Analysis: DART calibration accuracy is influ-
enced by SZA, satellite spatial resolution, pixel shift, landscape
model inaccuracy, and MTF in descending order of magnitude
(see Fig. 5). SZA significantly impacted ground apparent re-
flectance through shadows and bidirectional reflectance effects.
Also, for the roofs, SZA and the angle of the inclined roofs
determine the incidence angle. The low sensitivity of SZA on
water may be that water was treated as opaque surfaces without
topography in our article.

The spatial resolution of satellite imagery is an essential factor
in city studies because it determines the pure pixel distribution
in the satellite image [21]. High-resolution sensors tended to
produce pure pixels, while low-resolution sensors were more
likely to produce mixed pixels. Welch [61] uses average urban
plots to demonstrate that the high-frequency details that charac-
terize the urban scene are necessary for remote sensor data with
spatial resolutions of 0.5–10 m. A spatial resolution of at least
5 m is needed to capture urban structures for urban applications

adequately [62]. The spatial resolution of the image is also a
constraint on DART calibration because it assumes that the SS
of components in a pixel is constant in this pixel. A potential
solution could be to subclassify urban components. For example,
roofs in the same pixel could be classified into subcomponents
if additional information (e.g., type of material) is available.
Moreover, this assumption can also be mitigated with higher
image resolution.

Pixel shifting has little impact on the inversion accuracy of
continuous and homogeneous components (e.g., ground), and it
is the same for the accuracy of the 3-D model because they had
similar geometric effects on the amount estimation problem of
mixed pixels. MTF had less impact on large and homogeneous
scene components such as ground than on small components
such as roofs, trees, water, and shrubs. In all, the components
with small size and high heterogeneity are much more sensitive
than components with big size and high homogeneity.

3) Satellite Image Application: It should be noted that in
our work, we use a satellite image with off-nadir angle equal
to 0.0°. The primary difficulty in using the off-nadir image
is the inconsistent coordinate system between satellite image
and DART simulated image. Most surface reflectance satellite
products (e.g., Sentinel 2 L1C product with the date before
March 2021, https://sentinel.esa.int/web/sentinel/user-guides/
sentinel-2-msi/definitions) using DEM to do orthorectification,
and this rectification is called “orthorectification.” As a result,
some buildings are tilted in the image (the walls can be seen
in the image). However, the DART module uses digital surface
model (DSM) to do orthorectification, and this rectification is
called “true orthorectification.” As a result, all the buildings
are vertical (There are no wall pixels in the simulated image).
The coordinates of the corresponding image points in the two
kinds of images are different. However, geometry accuracy is
critical for DART calibration, especially for the scene with
strong heterogeneity. Research is being conducted for the DART
model to provide an “orthorectification” image in addition to the
“true orthorectification” image.

B. Conclusion

We assessed the accuracy of the DART calibration to retrieve
SS per component of an urban scene, for an ideal case (i.e., SS
is only unknown) and a nonideal case (i.e., SS is unknown with
inaccurate input parameters), for the visible, NIR and two SWIR
band. Sensitivity analyzes were also done on some parameters.
The major conclusions are as follows.

1) Calibration accuracy is influenced by SZA, satellite spatial
resolution, pixel shift, landscape model inaccuracy, and
MTF in descending order of magnitude.

2) In the ideal case, the mean absolute value of the relative
error over all bands of ground, roof, water, tree, and shrub
is 0.013, 0.005, 0.027, 0.297, and 0.250, respectively. It is
0.233, 0.507, 3.088, 0.834, and 1.256 in the nonideal case.

3) Calibration is insensitive to the number of bands and is
highly resistant to shadow interference.

4) Some uncontrollable external factors may be significant
to the accuracy image, such as co-registration error or the
user-defined ratio between leaf reflectance and transmit-
tance.

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/definitions
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Overall, the DART calibration (i.e., retrieval of SS maps
of urban components from remote sensing images) is generic,
accurate in ideal cases, and efficient in handling interclass spec-
tral confusion. Besides, present improvements in co-registration
procedures increase its potential. Its applications are numerous.
Indeed, the availability of up-to-date SS maps of urban scenes
using a time series of satellite imagery is valuable in many
domains, such as urban management and urban climate. For
example, it is essential for computing the urban radiative budget,
and consequently, the urban energy budget and associated heat
fluxes. Therefore, it helps to address significant issues facing
cities, such as urban climate and change detection.

Compared with the traditional spectral unmixing models that
can only identify the variability of endmember spectra only
within the interclass, DART calibration can identify the variabil-
ity of endmember spectra between pixels, which is extremely
helpful for studying high heterogeneous urban areas. Another
advantage of the DART calibration should be noted: it does not
need hyperspectral images because it can work with a single
band image. Therefore, it is well adapted to satellites with few
spectral bands with a high spatial resolution (e.g., Sentinel-2).

To upscale from micro to local scale, spectral un-mixing
approaches and radiative transfer modeling have been used in
past studies, with DART model to be the most comprehensive
physical modeling scheme [52]. A limitation in this article is that
DART calibration directly upscales to pixel level through mate-
rial fractions via spectral mixture analysis. The radiative transfer
of facet is implicitly considered in the simulation to calculate
“amount” because DART computations (e.g., scattering and
absorption) are done at the facet level. Another interesting idea
to retrieve SS of components might be making all calculations
at the facet level first and then upscale to the pixel level. In this
case, the urban morphology effect could be implicitly included
in the up-scaling procedure.
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