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Abstract—In this study, wetland trends in Alberta were inves-
tigated in the past four decades using Landsat satellite imagery
to produce updated information about wetland changes and to
prevent further degradation of these valuable natural resources.
All the processing steps and analyses were conducted in Google
earth engine (GEE) to produce 16 wetland maps from 1984 to 2020.
A comprehensive change analysis showed 1) approximately 18% of
the province was subjected to change; 2) in terms of wetland classes,
there was a decreasing trend for the Shallow Water and Swamp
classes and an increasing trend for the Fen and Marsh classes; 3) in
terms of nonwetland classes, there was a considerable decreasing
trend for the Forest class and increasing trend for the Grass-
land/Shrubland class; 4) wetland loss was approximately 22 000
km2, which was mainly due to the conversion of wetlands to Forest
and Grassland/Shrubland; 5) wetland gain was approximately
24 000 km2, which was mainly due to the conversion from the Forest
class to wetlands, especially the Swamp and Fen classes; 6) the high-
est class transition was from Cropland to Grassland/Shrubland and
vice versa (29 000 km2), from Forest to different wetland classes
(18 000 km2), and from Fen to Forest (6000 km2). In summary, the
results of this study provided the first comprehensive information
on wetland trends in Alberta over the past 37 years and will assist
policymakers to adjust the required/established policies to mitigate
the potential wetland changes due to anthropogenic activities and
climate-related events.

Index Terms—Big data, change detection (CD), cloud computing,
Google earth engine (GEE), Landsat, machine learning, random
forest (RF), remote sensing (RS), wetland.
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I. INTRODUCTION

W ETLANDS provide diverse benefits to the environment
and are valuable habitats for numerous types of flora

and fauna. For instance, they clean water, prevent flooding, and
preserve soil [1], [2]. Wetlands, especially peatlands (i.e., bogs
and fens), are also important sources of carbon emission and
contain approximately 35% of the world’s terrestrial carbon [3].
However, these advantages were not well understood until recent
years, after a vast portion of wetlands were destroyed and/or
altered due to various human activities, such as urbanization,
resource development, agricultural lands expansion, as well as
intense irrigation and ground water extraction [4], [5]. Addition-
ally, climate change exacerbates wetlands degradation by exert-
ing a negative impact on the functionality of wetlands, leading
to changes in wetlands ecosystem [6]. Therefore, it is important
to assess the wetland changes over time and the reasons behind
them using advanced technologies, such as remote sensing (RS)
techniques. These analyses will help to make efficient policies
to conserve wetlands.

RS can assist in wetland change analysis by providing a rich
archive of a variety of datasets and offering numerous advanced
change detection (CD) algorithms. For example, launching the
first Earth observation (EO) satellite in the Landsat series dates
back to 1972. Currently, not only Landsat-7 and Landsat-8
satellites are still operational, but also an extensive record of the
Landsat images covering several previous decades exists. More
importantly, Landsat images, along with several other types of
RS datasets, are freely available, making change analysis more
cost-effective. However, this requires processing a large amount
of RS data. For instance, if the objective is wetland CD in a
large area (e.g., nation-wide) over several decades, thousands of
satellite images should be processed in a computation-efficient
approach. Therefore, an effective big data processing platform,
such as Google earth engine (GEE), is required for these types
of tasks [7], [8].

GEE is a big geo-data processing platform developed by
Google in 2010. This cloud computing platform efficiently
addresses the challenges of analyzing and prototyping big
geospatial data using parallel processing. Moreover, GEE
offers a variety of built-in codes, including preprocessing
and classification algorithms, which allow users to generate
the desired products with minimal effort [7], [8]. The rich
archive EO datasets within GEE makes it particularly useful for
long-term CD [9]. Since its development, GEE has been used in
a variety of disciplines, such as Land Cover/Land Use (LCLU)
classification [10]–[13], agriculture [14], [15], soil mapping
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[16], urban mapping and monitoring [17], glacier studies [18],
water detection and monitoring [19], [20], atmosphere and
climate analysis [21], [22], and LCLU CD [9], [23], [24].
There are a significant number of studies that have used GEE
for long-term change analysis. For example, Midekisa et al.
[25] identified the land cover changes in the continental Africa
over 15 years using Landsat images in the GEE platform.
Furthermore, Shimizu et al. [26] used a combination of
Landsat-8 and Sentinel-1 time series to detect disturbances
in tropical forests in Myanmar during 2014 and 2018. Chen
et al. [23] also investigated the changes in coastal wetlands and
the effect of reclamation in China’s Yellow Sea during 1984
and 2015. They found out that the areas of coastal wetlands
decreased by 53%. Additionally, Huang et al. [27] analyzed the
changes in green spaces of 28 cities during 10 years (2005–2015)
within GEE. The authors reported approximately 4% and 7%
increases in the availability and accessibility of the green spaces,
respectively. Finally, Mahdianpari et al. [9] analyzed wetland
changes over Newfoundland, Canada using 30-years Landsat
data within GEE. They observed the instability of wetland
classes over this period and argued that the changes were
mainly due to conversion from one wetland class to another.

Numerous CD algorithms have been so far proposed, which
could be widely divided into supervised and unsupervised meth-
ods [28]–[31]. Supervised CD methods require samples with
labels from the classes present in the study area, while unsu-
pervised methods can be applied without having field samples.
Although using unsupervised methods eliminates the require-
ment to conduct field work, these methods do not provide as
much information as supervised methods [32]. In other terms,
CD techniques can be widely divided into preclassification and
postclassification methods. Postclassification techniques consist
of creating the map two or more times and then, comparing
those maps to detect the areas of change. One limiting factor
in postclassification CD techniques is that the accuracy of the
change results has a direct relationship with the accuracy of
each of the produced maps. However, these methods have the
advantage of providing explicit labels for the type of changes
[33], [34]. On the other hand, the preclassification CD techniques
compare the original images acquired on two or more dates and
yield CD maps. These maps typically show the degree of change
and need to be binarized to accurately demonstrate the areas of
change and no change [35]. Some well-known preclassification
CD techniques include principal component analysis and change
vector analysis (CVA).

A large portion of Canada is covered by wetlands, which have
been degraded over the years. This degradation is more serious
in the Alberta province due to natural resource development,
several wildfires, and oil and gas activities. For example, it has
been reported that as much as 64% of wetlands in Alberta’s
White Area have been drained and lost [36]. Several studies
have so far been conducted to monitor and quantify wetland
changes in Alberta over relatively small regions [37]–[40]. For
instance, Gillanders et al. [38] employed seven Landsat images
to investigate the land cover changes in a small area of the
Athabasca Oil Sand region between 1989 and 2005. To this
end, the Iterative Self-Organizing Data Analysis unsupervised
classification method was applied to divide the images into 25
clusters. Later, the EO for Sustainable Development of Forest

land cover product was adopted to label each cluster. Finally, the
results revealed that more than 300 km2 vegetated land covers
were disappeared due to mine activities. In another study, Clare
and Creed [39] studied wetland changes and degradations in the
Beaverhill subwatershed in central Alberta. Two wetland inven-
tory maps of 1999 and 2009 were first produced through object-
based classification of aerial photographs and Light Detection
and Ranging (LiDAR) data, respectively. Then, the two maps
were subtracted to analyze the changes between these two years.
It was reported that over 240 wetland sites, covering an area of
71 hectares were lost due to the land cover transition of wetlands
to developed (i.e., urban and industrial) and agricultural ar-
eas. Furthermore, orthophoto mosaics, high-resolution satellite
images (i.e., GEOEYE1 and WorldView2), and field-collected
data were utilized in [40] to map wetland changes in Suncor
Base Plant, north of Fort McMurray, Alberta, between 2007 and
2015. Finally, 11 potential zones were manually and visually
delineated for CD analysis to reveal wetland reclamation in
mining areas using the topographic wetness index in [37]. The
analysis indicated that approximately 210 ha of wetlands was
spontaneously developed on reclaimed upland landforms.

Although several studies were carried out to map wetland
changes in Alberta, they were conducted using relatively tra-
ditional methods and within small time intervals and areas.
Managers and stakeholders still need reliable wetland data to
properly track past and future changes to wetland habitat over the
entire province. Doing this needs a long history of the previous
data, state-of-the-art image classification, and CD algorithms,
as well as powerful big data processing platforms. Therefore, in
this study, machine learning classification and CD algorithms
were investigated to comprehensively investigate the wetland
changes over the past four decades. To this end, the archived
Landsat imagery within the GEE platform was employed. This
study provides the first comprehensive investigation of wetland
changes in the province of Alberta over the past 37 years. The
possible reasons behind these changes are also provided to
improve the conservation and sustainable management of these
valuable natural resources.

The rest of this article is organized as follows. In Section
II, the descriptions of the study area, satellite data, and the
reference samples, which were used to train the algorithms and
evaluate the accuracy of the results, are described. Section III
comprehensively discusses the proposed methods for reference
samples refinement, wetland classification, and change analysis.
In Section IV, the results of classification and CD are discussed.
Finally, in Section V, the suggestions for future studies are
provided.

II. STUDY AREA AND DATA

A. Study Area

The study area is the entire province of Alberta, Canada, with
an area of ∼661 848 km2 (see Fig. 1). Fig. 1(c) also shows
the location of the three oil sand regions in which most of
the land cover changes were expected to occur. Alberta has six
ecosystem types, including Boreal, Canadian Shield, Foothills,
Grassland, Parkland, and Rocky Mountain Natural Regions [41].
Among these regions, the Boreal Forest has the largest area,
covering approximately 58% of the province [42]. Each of the
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Fig. 1. (a) Canada, (b) Alberta (study area), and the distribution of reference data with the black color. Purple boundaries show the location of oil sands regions.
(c) Three oil sands of the Athabasca, Peace River, and Cold Lake. (d) Zoomed image from one of the sample plots.

Alberta’s natural regions and subregions is characterized by
various species, which are thoroughly described in Downing and
Pettapiece [43]. The maximum and minimum elevations in this
province are 3747 m and 170 m above sea level in the Rocky
Mountains and the Wood Buffalo National Park, respectively
[44]. This much elevation difference in the province inevitably
creates a considerable variation in the climate [44].

It was reported that almost 21% of the province is covered by
wetlands [45]. More than 90% of these wetlands are peatlands
(i.e., Bog and Fen) and Swamp. Nonpeatland wetlands (e.g.,
Marsh and Shallow Water) are also frequently found in Alberta
[45]. Therefore, wetlands in Alberta correspond to the Canadian
Wetland Classification System (CWCS, [46]), which classifies
Canadian wetlands into five classes of Bog, Fen, Marsh, Swamp,
and Shallow Water.

B. Reference Data

In Alberta, there is a grid of photo-interpretation plots (each
3 × 7 km) at the space of 20 km throughout the province
[see Fig. 1(b) and (d)], which are generated by the Alberta
Biodiversity Monitoring Institute. Wetland types within each
plot were classified by interpreting ∼0.5 m spatial resolution

3-D imagery [42]. In this study, these reference samples were
used to train the classifier and validate the produced wetland
maps.

Table I provides the information about the number and area
of samples available from different years. The wetland classes
specified by the CWCS along with the following five main
nonwetland classes were considered in the classifications and
change analyses: Deep Water (i.e., open water with the depth
of more than 2 m), Forest (deciduous, coniferous, and mixed
woodlands), Grassland/Shrubland, Cropland, and Barren (i.e.,
urban, rock, bare soil, sand, and other nonvegetated areas).

In this study, all the 10 wetland and non-wetland classes
(called Category-1) were also merged into two additional cat-
egories (i.e., Category-2 and Category-3) for further change
analysis. Table II demonstrates the classes of each category.

C. Satellite Data

In this study, the archived Landsat-5, -7, and -8 images,
available in GEE,1 were used (see Table III). These images were

1[Online]. Available: https://developers.google.com/earth-engine/datasets/
catalog/landsat

https://developers.google.com/earth-engine/datasets/catalog/landsat


AMANI et al.: WETLAND CHANGE ANALYSIS IN ALBERTA, CANADA USING FOUR DECADES OF LANDSAT IMAGERY 10317

TABLE I
NUMBER (AREA/KM2) OF SAMPLE POLYGONS FOR THE WETLAND AND NONWETLAND CLASSES AT DIFFERENT YEARS

TABLE II
MERGING ALL CLASSES INTO DIFFERENT CATEGORIES TO BE USED IN THE

CHANGE ANALYSIS

acquired from 1984 to 2020. As outlined in Table III, the images
from every three years (1984–1998) or every two years (1999–
2020) were combined to produce cloud-free mosaic images from
all of Alberta. This was because the study area is covered by
clouds and snow most of the times, and creating cloud-free
images with less time intervals (T), such as annual images, were
not possible. In total, 16-time intervals were considered and,
thus, 16 wetland maps were produced to analyze changes over
the past four decades.

III. METHOD

The proposed methodology includes three main steps. Ini-
tially, all the available reference samples (see Table I) were
analyzed to select the spectrally unchanged samples to be used in
the classifications of the years when no reference sample existed
(Section III-A). Then, the selected samples were applied to the
proposed classification algorithm to produce wetland maps at
different time intervals (Section III-B). Finally, a CD algorithm
was applied to assess wetland trends over the past four decades
(Section III-C).

TABLE III
LANDSAT IMAGES USED AT DIFFERENT TIME INTERVALS (I.E., TWO OR THREE

YEARS) TO PRODUCE 16 WETLAND MAPS

The time interval which is bold was used as the reference time interval for change analysis.

A. Unchanged Reference Samples Selection

As clear from Table I, reference data were available from only
six years out of the total 37 years. However, to conduct super-
vised classifications over all 16 intervals provided in Table III,
reference samples were required for each interval. Therefore,
references samples for the intervals with no samples had to be
generated using other methods. For this purpose, a method called
the Continuous Change Detection and Classification (CCDC,
[43]) was used. The general procedure is illustrated in Fig. 2 and
is explained below. In summary, CCDC analyses all the reference
samples and only the samples whose spectral responses have not
changed during the past four decades. These samples were called
unchanged reference samples.

The first step for applying CCDC was masking cloud, cloud
shadow, and snow/ice from the Landsat images to use only clear
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Fig. 2. Continuous CCDC algorithm for selecting spectrally unchanged ref-
erence samples over the past four decades from the study area (NDVI, NDWI,
NDBI).

pixels. This was performed using the quality band of Landsat
(i.e., Bitmask for pixel_qa) within GEE. The attributes of this
band were generated using the C Function of Mask (CFMASK)
algorithm [47]. In this band, the undesired pixels (e.g., cloud
and snow) are flagged using either the class name or with the
word unused depending on the Landsat generation [48]. In this
study, Landsat bands were initially converted to three spectral
indices of the Normalized Difference Vegetation Index [NDVI,
(1)], Normalized Difference Water Index [NDWI, (2)], and Nor-
malized Difference Build-up Index [NDBI, (3)]. These indices
were then used to select the unchanged samples. These three
indices have proved to have a high potential for wetland mapping
and change analysis in many wetland studies. Moreover, they
contain all important spectral bands of Landsat satellites [e.g.,
green, red, near infrared (NIR), and shortwave infrared (SWIR)].
Consequently, the sole use of them was satisfactory for select-
ing unchanged reference samples and significantly reduced the
processing time.

NDVI =
NIR− RED

NIR + RED
(1)

NDWI =
Green−NIR

Green + NIR
(2)

NDBI =
SWIR−NIR

SWIR + NIR
. (3)

A model (4) was developed to perform CCDC and, in fact, to
define unchanged reference samples

F (i, x) = a0,i + a1,i cos

(
2π

t
x

)

+ b1,i sin

(
2π

t
x

)
+ c1,ix (4)

where i, x, and t, respectively, indicate the spectral index, Julian
date, and the number of days per year (i.e., 365.25 days); a0,i
stands for the overall value of the spectral index i of a Landsat
image; a1,i and b1,i specify the intra-annual change; and c1,i

show the inter-annual change. Based on the available reference
samples for any specific time interval, the coefficients of (4)
were determined. Then, every new sample was inserted into this
equation to estimate the model value and model residual by
comparing the observed and model values of the samples. In
this study, the threshold value was set to 20%, meaning that if
the residuals exceeded this threshold value, then an abrupt (or
inter-annual) change occurred over that sample and, therefore,
that reference sample could not be used in the classification
of another time. At the end of this process, only samples that
had stable spectral responses remained and, thus, could be
applied to classify wetlands over all 16 intervals. Finally, these
unchanged reference samples were randomly divided into two
groups of training (50%) and test (50%) samples. The training
and test samples were used for training the machine learning
algorithm and assessing the accuracy of the produced wetland
maps, respectively.

B. Classification

After generating unchanged reference samples using the
method described in the previous section, wetland maps were
produced for each time interval using the method presented
in Fig. 3. The first step was masking cloud, cloud shadow,
and snow/ice pixels from all images. Then, these images were
divided into two groups based on the season in which they
were acquired: 1) the months of April, May, June, and July,
which was called the Spring-Summer time, and 2) the months of
August, September, and October, which was called the Summer-
Fall time. Subsequently, all the images in each group were
down-sampled to a single mosaic image by taking the mean
over the entire time series images (i.e., the Spring-Summer and
Summer-Fall mosaic images).

In this study, considering the computation efficiency of the
proposed classification method, 10 features were extracted from
each mosaic image and were used in the classification [49].
These features (layers) were the seven main spectral bands of
Landsat images (i.e., blue, green, red, NIR, two SWIR, and
thermal infrared TIR bands) and three spectral indices of the
NDVI, NDWI, and NDBI.

It has been widely reported that object-based classification
techniques produce better results compared to pixel-based meth-
ods [1], [10], [50], [51]. Additionally, wetland classes are large
heterogeneous landcover types that require an object-based anal-
ysis [52]. Therefore, the mosaic images were ingested into the
simple noniterative clustering (SNIC) algorithm, available in
GEE, to be segmented. In the SNIC method, initially, a number of
seeds were evenly distributed throughout the image to partition
it into several number of superpixels. Then, a priority queue
was applied to select the next pixel to be assigned to a cluster
based on the distance of the pixel from the segment centroid.
After adding each new pixel to a segment, a new centroid was
computed. This process continued until centroid convergence
[53].

The final segmented mosaic image with 20 layers (i.e., 10
layers from each of the Spring-Summer and Summer-Fall mosaic
images) was ingested into a supervised random forest (RF)
classifier. RF has proved to be an effective classifier for image
classification, especially for wetland mapping [1], [10], [54].
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Fig. 3. Classification method to produce wetland maps.

RF contains a set of decision trees that divide the input pixels into
mutually exclusive groups until each node represents one of the
final classes. RF has a number of tuning parameters that should
be selected based on the available samples and the objectives of
classification [54]. In this work, these parameters were selected
after several trials and errors and based on the results of previous
wetland mapping studies within GEE [55], [56].

After the classification was conducted, it was first visually
assessed based on the available high-resolution maps and images
(e.g., ArcGIS base maps). If the results were not satisfactory, the
classification parameters and/or the training samples were re-
vised, and the classification was repeated until visually accurate
results were obtained. For the statistical accuracy assessment,

the maps were compared with the test data (i.e., 50% of the
field samples), and the result of this comparison was presented
in the form of a confusion matrix. To this end, several indices,
including overall accuracy (OA), Kappa coefficient (KC), pro-
ducer accuracy (PA), user accuracy (UA), omission error (OE),
and commission error (CE), were extracted from the confusion
matrix and reported.

C. Change Detection

After producing all the 16 wetland maps, change analysis
was conducted using the methods provided in the two following
subsections. To implement the proposed CD method, it was
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Fig. 4. Method for wetland CD between two time intervals. T indicates the time interval (see Table III).

important to first detect the changes between every two time
intervals (Section III-C1) in order to detect the overall changes
over the past four decades (Section III-C2). Moreover, it was
required to select one of the time intervals/maps as a reference
interval/map. In this study, the map produced for 2007–2008
(T10 in Table III) was selected as the reference map due to the
relatively higher quality of this map and availability of more
reference samples from this interval compared to others (see
Table I). It should be noted that changing this reference interval
does not considerably affect the change analysis, and this is in
fact, only a start point for the CD algorithm.

1) CD Between Two Time Interval: Fig. 4 illustrates the
proposed method for the CD between two-time intervals using
the seven spectral bands of the Spring-Summer and Summer-Fall
mosaic images. To this end, two different CD methods of class
differencing and image differencing were combined to produce
the final change map. A combination of two methods resulted
in more accurate change results compared to using only one of
them. Furthermore, using the pixel-based and object-based CD
methods reduced the overestimation in the changed areas and
noises, respectively.

The object-based change analysis was conducted by differ-
encing two object-based wetland maps. On the other hand, the
pixel-based change analysis was conducted using the spectral
distance between the mosaic images of two-time intervals based
on the spectral angle mapper distance. To this end, the per-pixel
distance between each pair of mosaiced images was calculated
using “ee.Image.spectralDistane” function in GEE. Later, the
threshold value was set to determine the unchanged samples
between each time interval. In this study, a threshold value of
70% was selected after several trail and errors to make sure that
there were enough unchanged reference samples to train the
algorithms and validate the results. This threshold value means
that if the difference between the spectral responses of pixels
at two different time intervals were more than 70%, they were
selected as the changed pixels. Finally, the intersection of the
pixel- and object-based change maps was considered as the final
change map. It should be noted that the final change map was
object-based.

2) CD Through All Time Intervals: Since the main objective
was analyzing the changes over the entire 16-time intervals,

a method (see Fig. 5) was also proposed to obtain the overall
changes over the past four decades. If it is assumed that the
reference time interval (i.e., T10 in this study) is one of the two
maps for change analysis in Fig. 4, the other map (e.g., T11)
can be updated after producing the final change map. In fact,
the class labels of the changed objects in the second map (T11)
can be updated based on the labels of the reference map. In this
study, considering this approach, all the 15 wetland maps (other
than the reference map) were hierarchically updated using the
method illustrated in Fig. 5. Finally, the difference between the
updated wetland maps of T1 and T16 was the overall changes
that occurred over the past four decades.

IV. RESULTS AND DISCUSSION

A. Classification

1) Classified Maps: All the 16 wetland maps were produced
using the method discussed in Sections III-A and III-B. One of
the maps produced for the reference time interval (2007–2008) is
illustrated as an example in Fig. 6. Based on the visual accuracy
assessment, the maps were quite accurate. For example, large
water bodies were accurately classified as Deep Water, while the
small areas around them were either mapped as Shallow Water
or Marsh. Moreover, the southwest part of the map, where the
Rocky Mountains are located, were correctly classified as Bar-
ren. Likewise, the croplands were delineated accurately. Overall,
based on the visual accuracy assessments, it was observed that
all maps had acceptable accuracies.

2) Accuracy Levels: Fig. 7 demonstrates the OAs and KCs
for all 16 maps. As can be seen, all the OAs were around
88% which were considerably high for mapping an area as
large as a province with only optical Landsat data. Moreover,
KCs were never lower than 86%, indicating a good agreement
between the produced maps and reference data. The maximum
accuracies were obtained for the time intervals of 2009–2010 and
2007–2008 (reference map), and the minimum accuracies cor-
responded to the time intervals of 2015–2016 and 1999–2000.
However, the variation of the accuracies was rather consistent
among different years, such that the difference between the
maximum and minimum accuracies was less than 1%. This fact
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Fig. 5. Method for wetland CD over the entire four decades. T indicates the time interval (see Table III) and CD is the method proposed in Fig. 4.

Fig. 6. (a) Produced wetland map for the reference time interval (i.e., 2007–2008) along with (b) high-resolution image and (c) zoomed wetland map from the
Cold Lake oil sand.

Fig. 7. Overall classification accuracies and KCs for the wetland classified
maps in different time intervals.

proved the robustness of the proposed GEE method for wetland
classification using Landsat imagery.

Fig. 8 shows the PAs and UAs for all time intervals. The PAs
and UAs for all classes in different time intervals except for
the UAs of the Swamp class were more than 80%, indicating
the high potential of the developed method to discriminate
different wetland and nonwetland classes using Landsat data.
As expected, the Barren and Deep Water classes had the highest
PAs and UAs, ranging from 96% to 100%. The reason can be
attributed to the spectral signatures of these two classes, which
are easily distinguishable from the other classes. The PAs of the
Shallow Water class and the UAs of the Bog class were also very
high (∼95%).

The confusions between different classes in the wetland maps
were also investigated using the confusion matrices of the classi-
fications. For this purpose, the confusion matrix corresponding
to the reference wetland map is provided in Table IV as an
example.
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Fig. 8. Producer and user accuracies for various classes in different time intervals.

TABLE IV
CONFUSION MATRIX OF THE REFERENCE WETLAND MAP (TIME INTERVAL OF 2007–2008) BASED ON THE NUMBER OF PIXELS
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Fig. 9. (a) Binary changed/unchanged map of Alberta over the past four decades. Zoomed maps of the (b), (d) first and (c), (e) last time intervals as examples
of the major and minor rates of land cover changes, respectively (see Fig. 6 for the legend of the classification). Green stars show the locations of three wildfire
events for further investigations.

As expected, the highest confusions occurred between the
wetland classes. This is because the wetland classes share many
ecological characteristics, which causes their spectral signatures
to be similar. In this regard, the confusion between the Bog and
Fen classes was more significant, which is rooted in the fact that
Bog and Fen are the most similar wetland classes. For example,
6395 pixels out of the 109 404 pixels of the Bog class were
wrongly classified as Fen. These two classes were also mixed
with the Swamp class. For instance, 4712 and 7484 samples
of the Bog and Fen classes were incorrectly classified as the
Swamp class, respectively. This was, in fact, the main reason for
the low UA of the Swamp class. Furthermore, relatively high
confusions were also observed between Marsh and other wetland
classes. In fact, the condition of emergent Marsh was closely
related to local weather patterns, which can make these areas
to be flooded at the time of imaging, such that the classifier
was unable to discriminate Marsh from Shallow Water. On the
other hand, meadow Marsh can also bring difficulties for the
classifier to separate these areas from Bog and Fen [57]. Finally,
it was observed that the confusion between wetland classes is
less significant in the case of Shallow Water as this class is less
similar to the other wetland classes.

Some wetland classes were also mixed with nonwetland
classes, especially Forest, Grassland/Shrubland, and Cropland
classes. In this regard, the main confusion was related to the
confusion between the Swamp and Forest classes. This was
because these two classes are mainly treed classes, the discrim-
ination of which is challenging using only optical satellite data.
For example, 4501 out of 89 661 samples of the Swamp class
were misclassified as the Forest class. Likewise, 6907 out of
105 565 samples of the Forest class were incorrectly classified

as Swamp. This fact was another reason for the low UA of the
Swamp class. Moreover, the Marsh, Shallow Water, and Fen
classes had a slight confusion with the Deep Water class. This
might be because wetlands, as highly dynamic environments, are
sometimes flooded, and can therefore be easily confused with
the Deep Water class.

Among the nonwetland classes, Barren and Deep Water had
the least confusion with other classes. The highest confusions
were observed between the Cropland and Grassland/Shrubland
classes, as well as between the Forest with other vegetated
nonwetland (VN) classes. For example, 9.57% of the Cropland
samples were misclassified as Grassland/Shrubland.

B. Change Analysis

After producing 16 wetland maps, several CD analyses were
performed to examine changes from different perspectives.
Since the achieved OAs of the maps were high, the produced
CD maps also had high reliability for further investigations.
However, it is worth noting that although all the wetland maps
obtained high OAs, the inherent misclassifications and errors
(e.g., see Section IV-A-2) would definitely propagate into the
results of CD analyses steps, causing different uncertainties.
The CD analyses are explained through spatial and statistical
investigations in the following subsections.

1) Overall Change: The first change analysis (see Fig. 9) was
a binary changed/unchanged map over the past four decades, pre-
senting any land cover change between the Category-1 classes
(see Table II). The results showed that approximately 18.25%
of Alberta (120 919 km2) was subjected to changes, while the
remaining 81.75% (541 734 km2) were unchanged. Visually, the
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Fig. 10. Changed/unchanged maps over three fire events of (a) Richardson fire, (b) Horse River fire, and (c) Chuckegg Creek fire (see Fig. 9 for the legend). The
central location of each fire event is determined by green stars in Fig. 9.

spatial patterns of changed/unchanged areas do not have specific
regularity across the study area. However, several parts, such
as the northern and north-eastern regions, can be mentioned
as the hotspots, in which more intense changes occurred. For
instance, Fig. 9(b) and (c) shows the maps of the first and last
intervals over a zoomed area, which includes severe changes be-
tween different land cover classes, especially Fen degradation to
Grassland/Shrubland. Further investigations revealed that some
of the changes in this area are linked with the Richardson wildfire
event in 2011, causing peatland (i.e., Bog and Fen) losses and in
the last time interval become shrubby and, thus, were classified
as Grassland/Shrubland. Likewise, considerable changes were
observed in the oil sands regions [black boundaries in Fig. 9(a)],
which could probably be due to the oil exploration activities
and infrastructure development [58]. However, other climatic
alterations in the last four decades, intra-annual land cover vari-
ability, and catastrophic events can be considered as causes of
higher land cover changes, which requires further investigations.
For example, based on the changed/unchanged map illustrated
in Fig. 9, the Cold Lake region experienced nearly 23.32%
change, which was 5.07% higher than Alberta’s overall change.
Additionally, Fig. 9(d) and (e) presents a zoomed area, in which a
Fen area was changed into Shallow Water. Further investigations
using satellite images revealed the impact of the anthropogenic
(AN) activities of road construction, leading to hydrological
alteration of wetland regions. This result was also in accordance
with a previous study by Willier [59], which conducted a field
survey over this region. On the other hand, the southwest and
southeast regions [e.g., Fig. 9(d) and (e)] were among the most
unchanged parts of Alberta between 1984 and 2020. This is
likely due to the relative amounts of wetlands in this area and
the uniform landcover types (conifer forest/barren for the Rocky
Mountains and grassland/agriculture for the south-east).

Additionally, the applicability of the proposed CD method
was also examined by analyzing its capability to capture in-
tense changes that occurred from wildfire events. In this regard,
three different wildfire events, including Richardson, Horse
River, and Chuckegg Creek fires, which happened in 2011,
2016, and 2019, respectively, were analyzed [60]. To this end,
the classification maps of the relevant (i.e., T associated with
the wildfire event) and previous intervals were used to gener-
ate the changed/unchanged maps of each event (see Fig. 10).
Fig. 10(a) shows the changed/unchanged map over the catas-
trophic Richardson wildfire event that resulted in a vast area

Fig. 11. Change trends for the (a) wetland classes and (b) non-wetland classes
in Alberta from 1984 and 2020. The rates indicate the percent of change in area
relative to the first-time interval.

being consumed by fire. Likewise, the proposed method suc-
cessfully delineated the changed areas related to the Horse River
wildfire event [see Fig. 10(b)], which resulted in peatland burn
losses [61]. Additionally, Fig. 10(c) illustrates the immense
changes that occurred after the Chuckegg Creek wildfire event,
in which a vast spatial extent of forests burned.

2) Change Trend Analysis: The change trends between 1984
and 2020 for wetland and nonwetland classes are illustrated in
Figs. 11 and 12. Regarding wetland classes, the changes for
the Fen, Bog, and Swamp classes were relatively stable [see
Fig. 11(a)]. Moreover, Fig. 11(a) shows that Shallow Water dra-
matically declined from 1984 to 2007 and, then, took an upward
trend and compensated its decrease by about 6.57%, reaching
-16.33% in 2020. This amount of decrease was unexpected and
might be due to the misclassification with the Deep Water class
in the produced maps. In contrast, Marsh had an overall upward
trend almost in all time intervals, except for a notable reduction
in 2001, leading to a final overall growth of 14.36%.
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Fig. 12. Variation of the area of each class over the past four decades (see Table III for the corresponding years of each time interval).
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Fig. 13. Rate of changes for the (a) wetland classes and (b) and (c) nonwetland classes in Alberta from 1984 to 2020 over three oil sand regions (i.e., Athabasca,
Cold Lake, Peace River). The rates indicate the percent of change in area relative to the first time interval.

Regarding nonwetland classes, they experienced a higher
rate of oscillations compared to wetland classes. For instance,
the fluctuations for the Barren and Deep Water classes were
considerable [see Fig. 11(b)]. Although Barren and Deep Water
were respectively decreased by about 6% until 2005 and 2001,
their significant increase in the subsequent years resulted in a
total gain of approximately 4.90% and 1.96%. Human-induced
activities, such as urban expansion, mining, and infrastructure
development, as well as climatic alterations and natural events,
could be the main reasons for Barren growth in Alberta, though
more investigations are required for a firm conclusion. Addi-
tionally, Forest had a more stable downward trend and almost
declined in nearly all-time intervals and took about 5.08% loss
between 1984 and 2020 (10 927 km2). Although AN activities
(i.e., agricultural expansion and oil/gas explorations) can be
regarded as deforestation reasons, this considerable amount of
loss was mainly due to forest fires and wildfires in Alberta.
In particular, based on the National Forestry Database on the
Canadian Council of Forest Ministers, over 38 000 forest fires
were recorded between 1990 and 2019, which resulted in a
substantial forest loss [62]. The trends of the Cropland and
Grassland/Shrubland classes were also fluctuating in different
years; however, their general rising tendency resulted in nearly
2.25% and 5.84% growth in 2020, respectively.

Furthermore, the area of each class in 16 wetland maps was
also analyzed in Fig. 12 to explore further change trends over the
last four decades. As is clear, the Forest class had significantly
more area than other classes. For instance, on average, 31.72%
(210 182 km2) of the province is covered by different forest
types. In terms of wetland classes, the study area is mostly
dominated by Fen (12.90% of the province) with an average area

of about 85 459 km2. The smallest coverage also belonged to the
Shallow Water and Barren classes, which on average, cover only
1.26% (8370 km2) and 2.74% (18 177 km2) of Alberta.

Based on Fig. 12, the greatest change was related to the Forest
class, the area of which decreased by approximately 1.65% of
the total study area (from 214 915 km2 to 203 987 km2). Like-
wise, the Swamp and Shallow Water classes were respectively
declined from 53 108 km2 and 9277 to 51 278 km2 and 7761 km2,
which are accounted for 0.27% and 0.22% of the total study area.
On the other hand, the Marsh, Cropland, Grassland/Shrubland,
Barren, Deep Water, and Fen had an upward trend with increases
of approximately 14.36%, 2.25%, 5.83%, 4,89%, 1.96%, and
1.43%, respectively.

As discussed in Section IV-B-1, oil sands regions were among
areas with high changes, in which broad disturbances to ecosys-
tems occurred [58]. Therefore, similar trend analyses were also
conducted over the three oil sand regions (see Fig. 13). Compar-
ing Figs. 11 and 13, the nonwetland classes had a higher range of
fluctuations, while the range of oscillations for wetland classes
was modestly similar. Generally, wetland classes over the oil
sands regions experienced similar trends to Alberta as a whole,
except for the Shallow Water and Fen classes, in which the
amount of changes were different, reaching−27.4% and 7.61%,
respectively. Fig. 13(b) and (c) presents considerable changes in
nonwetland classes over the three oil sand regions. The most
notable change in the area was related to the Barren class, by
which its area was increased over 400% by the end of 2020. This
significant growth was probably due to multiple wildfires which
led to deforestation [63], as well as other possible AN activities,
such as mining and oil explorations in these areas. Additionally,
the variation in the areas of the Forest class over these regions



AMANI et al.: WETLAND CHANGE ANALYSIS IN ALBERTA, CANADA USING FOUR DECADES OF LANDSAT IMAGERY 10327

Fig. 14. (a) Spatial pattern of wetland gain and loss over Alberta in the last four decades. (b) Sample area over a dense wetland gain along with the (c) first and
(d) last maps of wetland/nonwetland. (e) Sample area with severe wetland loss along with the (f) first and (g) last maps of wetland/non-wetland.

Fig. 15. Loss, gain, and difference between loss and gain values of each class in Alberta over the past four decades. The numbers indicate the difference values.

was higher than all of Alberta by about 1%, reaching -6.16% in
2020.

3) Gain and Loss: Several analyses were performed to reveal
the gain and loss in wetlands and non-wetlands over the past
40 years (see Figs. 14–16). First, the changed/unchanged map
(see Fig. 9) was reclassified into two classes in Fig. 14: 1)
areas that the nonwetland classes were converted to the wetland
classes (wetland gain); and 2) areas that the wetland classes
were converted to the nonwetland classes (wetland loss). As is
clear in Fig. 14(a), the northern parts of Alberta were associated
with more wetland gain and loss compared with the southern
parts. Fig. 14(b)–(d) illustrates a wetland gain area, for which
the results suggested that the Forest class was mostly changed to

wetland classes of Swamp and Fen. However, in-depth analyses
revealed that this region is associated with the wildfire event of
Chuckegg Creek, in which a vast area of forests was consumed
by fire, and the burned forest areas were confused with peatlands
(e.g., Fen) due to spectral similarity. This similarity is rooted in
the fact that the characteristics of the burned forest areas are sim-
ilar to different moss species (e.g., Sphagnum Magellanicum)
that grow in boreal wetlands. In contrast, a severe loss, especially
for Fen, occurred due to wetland degradation to Barren [see
Fig. 14(e)–(g)]. Overall, it was observed that approximately
38.68% of changed areas were related to the land cover transition
between wetlands and nonwetlands. In particular, between 1984
and 2020, nearly 24 506 km2 of Alberta experienced wetland
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Fig. 16. Loss, gain, and difference between loss and gain values of each class in the (a) Athabasca, (b) Cold Lake, and (c) Peace River oil sands over the past
four decades. The numbers indicate the difference values.

gain, whereas around 22 271 km2 underwent wetland loss. Fur-
ther investigations showed that this much of wetland gain was
mostly associated with the transition of Forest to wetland classes.
For example, over 70% of the wetland gain (17 217 km2) was
related to the Forest transition to the wetland classes of Fen
(34.74%), Marsh (27.97%), Swamp (25.07%), Bog (6.28%),
and Shallow Water (5.94%). These transitions were generally
linked with two reasons: 1) deforestation activities and subse-
quent abundance that could result in the transition of upland
forested areas to wetlands over the past four decades; 2) possible
classification errors, especially between Swamp and Forest, due
to their spectral similarity when only optical data are used.

Fig. 15 provides a more detailed overview of the gain and loss
for each class. The Forest and Grassland/Shrubland classes had
the biggest loss. Moreover, Grassland/Shrubland and Cropland
were two classes with major gain, respectively. The Fen and Bog
classes had the highest and lowest amount of loss among wetland
classes with an area of about 15 408 km2 and 4406 km2, respec-
tively. Likewise, Marsh and Bog had the highest and lowest gain
of nearly 17 580 km2 and 4253 km2, respectively. The green
color in Fig. 15 represents the difference values between gain
and loss over the past four decades. Forest, with an approximate
area of 10 927 km2, was subjected to the most severe degradation,
while the area of Grassland/Shrubland increased by about 4671
km2. In terms of wetland classes, Swamp and Marsh experienced
the highest amount of coverage decrease and increase of about
1831 km2 and 4524 km2, respectively.

Similarly, the statistical gain and loss analysis was performed
over the tree oil sand regions (see Fig. 16). Like all of Alberta,
these oil sand regions were subjected to higher Forest loss than
Forest gain, which resulted in deforestations of about 1919 km2,
1033 km2, and 172 km2 in Athabasca, Peace River, and Cold
Lake, respectively. Moreover, a remarkable increase in the areas
of the Barren and Cropland classes reflected a greater rate of AN

and human-induced activities. Likewise, the Cropland coverage
was increased in the Peace River, which was also associated with
deforestation for agricultural expansion. Regarding the change
of wetland classes, the area of Fen increased by 1243 km2 and
154 km2 in Athabasca and Cold Lake, while in Peace River,
Marsh had a larger increase of over 600 km2. On the other hand,
Swamp was the dominant wetland class with declined coverage
of about 1474 km2 over the oil sand region.

4) Transition Between Classes: To further enrich the CD
analyses, transitions between each pair of classes were also
examined. To this end, the first and last wetland maps were
processed to generate the from/to results, which provides the
land cover transition between each pair of classes. It should
be noted that although the first and last wetland maps achieved
acceptable OAs, their possible misclassification are accumulated
and affect this step. Fig. 17 shows the Sankey diagram that
pictured the transition based on the first and last wetland maps.
The quantitative land cover transitions between different classes
are also provided as the From/To matrix in Table V. The results
showed that Forest was the dominant land cover type in Alberta,
followed by Cropland with average areas of about 209 450 km2

and 121 448 km2, respectively. Regarding wetland classes, Fen
was the dominant class in Alberta with areas of nearly 83 807
km2 and 85 011 km2 in the first and last time intervals over the
past four decades. Among nonwetland classes, the largest land
cover transitions occurred between Grassland/Shrubland and
Cropland areas, with the interchangeable conversion of about
31 429 km2 in total. Furthermore, Fig. 17 revealed that the Forest
was also notably affected by land cover disturbances, including
conversion to vegetated wetlands (VWs) (i.e., Bog, Fen, Swamp,
and Marsh) with an area of approximately 17 132 km2. Addi-
tionally, 1300 km2 and 2621 km2 of Forest were converted to
Barren and Cropland due to AN activities, such as deforestation
due to fire events (e.g., human fire and wildfire), infrastructure
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Fig. 17. Sankey diagram of transitions between different classes. Each line represents the transition between each pair of classes from T1 (first wetland map) to
T16 (last wetland map). The thicker the lines, the higher the area of transition.

TABLE V
FROM/TO MATRIX BASED ON THE AREAS OF THE CLASSES KM2 BETWEEN 1984 AND 2020

development, and agricultural encroachment. Fig. 17 also re-
flects the land cover transitions between different VW classes,
which can be the result of the natural process due to climate
change that exerts considerable influence over the governing
ecosystem functionality and characteristics of wetlands. In this
regard, Fen was subjected to a higher rate of transition to Bog
(1770 km2), Marsh (4186 km2), and Swamp (2057 km2). How-
ever, the Fen class was increased from land cover conversions of
the Forest and Swamp classes by approximately 6328 km2 and
3449 km2, respectively. In the second place, Swamp was also
converted to other VWs with a total area of 5843 km2.

Based on the results provided in Fig. 17 and Table V, the
major reason for wetland changes was associated with the
transition between different wetland classes and accounted for

about 19 062 km2. For instance, Fen was subjected to sub-
stantial transition to other wetland classes of Bog, Marsh, and
Swamp by approximately 8013 km2. This considerable transi-
tion was due to two reasons: 1) wetlands’ natural succession; and
2) classification errors due to spectral similarity of wetland
classes. For instance, most peatlands start developing as Fen and,
then, they are eventually converted to Bog due to long-term peat
accumulation [64]. Likewise, the continuous drying condition as
a result of temperature rise and precipitation deficiency prepares
the required condition for woody vegetation growth over time,
leading to conversion of Fen/Bog to Swamp [64]. Similarly, with
regards to the hydroseral succession, as a frequently autogenic
natural succession, Marsh areas are to be converted to peatlands
(i.e., ombrotrophic and minerotrophic) of Bog and Fen due to
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Fig. 18. (a) Spatial distribution of land cover transition based on the Category-2 classes (see Table II). (b)–(d) The sample satellite images over different areas
with land cover transition between 1984 and 2020 (VW, VN, and AN).

organic and mineral materials accumulation [65], [66]. The latter
reason is caused by the spectral similarity between different
wetland classes. For instance, a notable confusion was found
between the Bog from Fen classes (see Table IV) since these
two wetlands are ecologically similar [67].

The transition between classes was also assessed based on
classes of Category-2 (see Table II), where the results are illus-
trated in Fig. 18. The biggest conversion occurred between the
VN class and two other classes, which in total accounted for
39 765 km2. The conversion of the VN class was specifically
associated with human-induced activities, such as deforestation
and agricultural expansion. For instance, Fig. 18(d) shows the
satellite images from 1984 and 2020, in which well sites devel-
opment resulted in the loss of VN (e.g., Forest) and VW (e.g.,
Bog, Fen, and Swamp) areas. Similarly, the VN transition to
AN (i.e., deforestation) occurred due to agricultural expansion,
as shown in Fig. 18(b). Furthermore, the VW class was also
subjected to a substantial change of approximately 16 958 km2

to VN. Likewise, nearly 3847 km2 of VW was converted to
AN, resulting from possible wetland drainage for agricultural
purposes. Fig. 18(c) shows the tailing pond developments that
caused a loss of VW, especially the Swamp and Fen classes. Ad-
ditionally, over the past four decades, AN was mostly changed
to VN with an area of about 16 512 km2 that can be linked to
land reclamation purposes, such as afforestation. In particular,
such a map [see Fig. 18(a)] can be efficiently applied to monitor
and certify the land cover reclamations (i.e., adjusting soil layers
and tree planting) over the oil sands sites, which are established
by causing VW and VN disturbances.

5) Land Cover Consistency: Finally, to determine the sta-
bility of the class label of pixels within the study period, a
consistency map was produced and illustrated in Fig. 19. In
this regard, all 16 wetland maps were processed to generate the
consistency map, which can be used as a sophisticated change
indicator. The consistency map values varied between 0 and 15,

TABLE VI
DEFINED CONSISTENCY CLASSES WITH THEIR CORRESPONDING CONSISTENCY

VALUES AND AREA

in which 0 means that the corresponding pixel has not changed
in the last four decades, and 15 implies that the considered pixel
has changed in all time intervals. Generally, in most cases, which
accounted for nearly 78.12%, only 1 or 2 changes in the labels
of classes have occurred for pixels and can be inferred via visual
inspection of Fig. 19(a). Furthermore, to provide an enhanced
overview of the consistency of the land cover anomalies, the
consistency map was classified into five classes.

1) Very-high.
2) High.
3) Medium.
4) Low.
5) Very-low.
Very-high indicates that these pixels had higher stability than

others. The classified consistency map and areas of each class,
along with corresponding consistency values, are provided in
Fig. 19(b) and Table VI, respectively. It was found that several
locations were among Low and Very-low classes, in which land
cover labels experienced high oscillation. Further investigations
showed that these high fluctuations were associated with three
reasons.

1) Change between the deep water and shallow water class.
2) Change between the marsh and shallow water classes.
3) Misclassification error between the swamp and forest

classes.
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Fig. 19. (a) Consistency map and (b) the classified consistency map based on classes of Table VI, generated by employing 16 wetland maps over the past four
decades.

Fig. 20. Heat map generated by integrating the first wetland and the classified
consistency maps to reveal the stability of different classes over the last four
decades (values indicate the area of classes in km2).

The first was most probably linked to the water level alteration
in different time intervals and alteration in water properties (e.g.,
turbidity and algal bloom) that caused the algorithm to misclas-
sify the corresponding pixel to either Deep Water or Shallow
Water alternatively. In particular, Deep Water was surrounded
by Shallow Water, and the change of their discriminating bound-
ary introduced such misclassification. The second was mainly
related to the existence/abundance of different vegetated areas
in the water (e.g., emergent marsh), which led to the misclassi-
fication between Marsh and Shallow Water. The latter was also
related to the classification error in discriminating Swamp and
Forest due to the spectral similarity of these two classes in optical
satellite data. Based on Table VI, almost 87.97% of the pixels
were assigned to Very-high that only experienced 1–3 land cover
shifts, while a small portion (0.20%) of pixels were classified as
Low and Very-low.

Finally, the first wetland map and the classified consistency
map were integrated to identify the most stable classes over the
past four decades. Fig. 20 presents the heat map generated from
this combination. Based on the provided heat map, Cropland
and Forest classes were the most stable, respectively, which can
also be related to their large coverage in Alberta. Moreover, Fen

was the most consistent among the wetland classes, with an area
of about 33 815 km2. Additionally, two classes of Barren and
Marsh with areas of approximately 6722 km2 and 4926 km2

were the most unstable classes over the last four decades.

V. SUGGESTIONS FOR FUTURE STUDIES

Due to the acknowledged efficacy and high potential of the
RF classifier for wetland mapping [54], [55], an RF classifier
was employed to generate 16 wetland maps of Alberta between
1984 and 2020. The non-parametric characteristics, resistance
to noise and overfitting issues, high-computational efficiency for
large-scale mapping, as well as providing accurate classification
results make the RF a beneficial classifier for this task [10],
[68]. The obtained overall accuracies and KCs (see Fig. 7) of all
wetland maps also proved the capability of the RF for large-scale
wetland mapping and CD. However, since a large number of
permanent reference samples are available for Alberta, other
sophisticated and state-of-the-art deep neural networks algo-
rithms can be implemented in future works for wetland change
analysis to produce more accurate results.

In this study, Landsat archive (i.e., Landsat 5, 7, and 8) datasets
were employed for wetland mapping and CD. This was because
Landsat archive is the only option when the objective is CD over
a very long period (e.g., four decades). However, the medium
spatial resolution of the imagery collected by the Landsat series
can be an inherent source of misclassification and errors in the
wetland change analyses. For instance, separation of the Swamp
and Forest classes is a challenging task without the use of Syn-
thetic Aperture Radar (SAR) data. In fact, these two woody veg-
etation and treed areas possess similar spectral signatures and,
thus, SAR data with longer wavelength (e.g., L-band) is required
to precisely separate these classes. This is rooted in the fact that
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SAR data can penetrate from the vegetation canopy of trees and
capture discriminative information about the low-lying lands of
Swamp and Forest [1]. Unfortunately, there is no long-term SAR
data available that can be integrated with the Landsat archive to
empower the classifier for long-term wetland mapping and CD.
However, if the objective is shorter-term wetland CD, open-
access Sentinel-1/2 and RADARSAT datasets can be effectively
utilized. Moreover, as the results suggested, the high confusion
between Bog and Fen causes several uncertainties and, thus, in
future studies, these classes may be integrated as a peatland class
to improve the reliability of results. Additionally, the dynamic
characteristics of wetlands and their seasonal variabilities could
also affect the CD results and be regarded as other sources of
errors. In fact, the dynamic interaction of wetlands with the
surrounding environments causes wetland features, including
water, vegetation, and chemical characteristics, to change over
time and, thus, they may look different over years and months.
Furthermore, the variation in the number of images in each time
interval might also be considered another source of error. This is
because each time interval included images with different dates
and, thus, the image compositions were modestly different.

Finally, considering all the advantages of this study, such
as the high classification accuracies and robust advanced RS
and machine learning models, it is recommended to evaluate
the developed models over the other Canadian provinces or the
entire country.

VI. CONCLUSION

Wetlands in Alberta have been negatively affected by various
natural and AN disturbances over the past decades. In this study,
a long-term wetland change analysis (37 years) was conducted in
Alberta to provide comprehensive information about the wetland
gain and loss, as well as transitions between wetland and non-
wetland classes. In total, 16 wetland maps were first produced
from 1984 to 2020. It was observed that all the produced maps
had a high quality in terms of visual assessment. Moreover, the
OAs and class accuracies (i.e., PAs and UAs) of all maps were
generally above 87% and 80%, respectively.

Additionally, various change analyses based on the pro-
duced 16 wetland maps were conducted. The results showed
that 18.25% (120 919 km2) and 81.75% (541 734 km2) of the
province have been changed and remained unchanged over the
past four decades, respectively. The highest changes were over
the north and north-east areas, as well as oil sands regions,
where there was a significant decrease in the amount of Forest
(from 214 915 km2 in 1984 to 203 987 km2 in 2020). In terms of
the wetland classes, the decreasing and increasing trends were
observed for the Shallow Water and March classes, respectively.
However, the trends for the Bog, Fen, and Swamp were relatively
stable. The results of gain and loss for only the wetland classes
also showed that the biggest gain and loss were for the Mash and
Fen classes, respectively, while the lowest gain and loss were for
the Shallow Water and Bog classes, respectively. Furthermore,
it was observed that there was a significant transition between
the Cropland and Grassland/Shrubland classes over the period
of this study. There was also a considerable transition from the
Forest class to other wetland and nonwetland classes, indicating
the significant amount of deforestation in the province.

The satisfactory results of this study proved the applicability
of the proposed approach for CD analysis in Canada. Therefore,

it is believed that the adopted CD approach can be integrated
with other complementary data (i.e., field surveys) for profound
investigations over the intensified changed areas of oil sand
regions. Therefore, it is of great importance to employ advanced
RS technologies for continuous and near-real-time monitoring
of these regions. Additionally, the methodology presented in
this study can be applied to investigate the success of landscape
reclamation in Alberta, especially over oil sand regions. In
conclusion, the analyses performed in this study are valuable
for monitoring wetlands in Canada, which contain ∼24% of
the global wetlands and preventing these natural resources
monitoring.
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