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Flower Detection Using Object Analysis: New
Ways to Quantify Plant Phenology in a

Warming Tundra Biome
Karol Stanski , Isla H. Myers-Smith , and Christopher G. Lucas

Abstract—Rising temperatures caused by global warming are af-
fecting the distributions of many plant and animal species across the
world. This can lead to structural changes in entire ecosystems, and
serious, persistent environmental consequences. However, many
of these changes occur in vast and poorly accessible biomes and
involve myriad species. As a consequence, conventional methods of
measurement and data analysis are resource-intensive, restricted
in scope, and in some cases, intractable for measuring species
changes in remote areas. In this article, we introduce a method
for detecting flowers of tundra plant species in large data sets ob-
tained by aerial drones, making it possible to understand ecological
change at scale, in remote areas. We focus on the sedge species E.
vaginatum that is dominant at the investigated tundra field site
in the Canadian Arctic. Our system is a modified version of the
Faster R-CNN architecture capable of real-world plant phenology
analysis. Our model outperforms experienced human annotators
in both detection and counting, recording much higher recall and
comparable level of precision, regardless of the image quality
caused by varying weather conditions during the data collection.
(K. Stanski, GitHub - karoleks4/flower-detection: Flower detection
using object analysis: New ways to quantify plant phenology in a
warming tundra biome. GitHub. Accessed: Sep. 17, 2021. [Online].
Available: https://github.com/karoleks4/flower-detection.)

Index Terms—Object recognition, remote sensing.

I. INTRODUCTION

THE Arctic is warming more rapidly than any other biome
on the planet, experiencing an average temperature in-

crease of more than 2°C since 1950 [1]. Its average temperature
is predicted to rise by a further 6°C–10°C within the next 100
years [1]. This warming leads to a longer growing season [2]
which has been estimated by recent studies to increase in the
future by approximately 4.7 days per decade [3]. However, veg-
etation change research is constrained by the logistics of in situ
field observations [4]. These standard techniques are extremely
costly and cannot be scaled to cover large areas [5]. Therefore,
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the exact influence of warming on tundra plant communities
remains uncertain.

Phenology is a study of plant and animal life cycle events
including flower and leaf emergence and decay [6]. The timing
of plant phenology can be influenced by changes in a variety
of factors, including temperature [5], [7]. Thus, phenological
records are valuable for studying the influence of climate change
across the world’s biomes [6]. The typical way that ecologists
have gathered phenological data is to observe phenological
changes on-site in localized plots (e.g., 1 m2 patches or along
short transects) [8]. Unfortunately, on-site observations are ex-
tremely time-consuming and highly difficult in less accessible
areas, including areas of particular importance for understanding
ecological and climate change [9]. However, rapidly developing
technology allows for new data collection approaches, includ-
ing proximal remote sensing using drones [10]. The use of
unmanned aerial vehicles (UAVs) is a cost-effective method
of conducting detailed analysis with high spatial and tempo-
ral resolution while avoiding destructive sampling of sensitive
ecosystems [11].

Plant phenology captured using high spatial resolution drone
imagery comes with methodological challenges such as variable
light conditions and complex background [12]. Initial attempts
of robust and accurate data analysis included template match-
ing [13], geographic object-based image analysis (GOBIA) [14],
regression analysis [15], and Markov point processes [16], none
of which yielded accurate enough results to draw meaningful
ecological conclusions [17]. A more advanced method, utilizing
maximally stable extremal regions (MSER) from drone im-
agery [18], has been used for turtle and seabird counting with
limited success [18], [19].

Recent advances in deep-learning-based models, including
convolutional neural networks (CNNs), present new opportu-
nities for efficient and accurate image analysis. Models based
on these architectures learn features that tend to be more infor-
mative than handcrafted features [20] such as scale-invariant
feature transform (SIFT) or histogram of oriented gradients
(HOG) [21], and achieve higher image classification accuracies
than their predecessors. Moreover, accompanied by hardware
advances (i.e., GPUs), some models are now capable of real-time
detection [22].

In this article, we propose a fully automated and effi-
cient method for plant flower detection and counting from
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high-resolution drone imagery utilizing recently developed
deep-learning techniques. Such a tool allows us to quantify the
effects of climate change on a tundra biome and other flower-
ing ecosystems, complementing and potentially eliminating the
need for on-site measurements. We focus on the sedge species
Eriophorum vaginatum (E. vaginatum), which was the most
abundant flowering plant within the investigated area (Qikiq-
taruk - Herschel Island; 69°N, 139°W) [23].

The main contributions of our article are as follows.
1) Detection model

Our model yields better than human-level performance in
detecting E. vaginatum flowers in Arctic tundra, and can
easily be extended to detect other objects. The following
modifications make it possible to detect smaller objects
than the original faster R-CNN [24]:
a) parametric ReLU (PReLU) activation unit to alleviate

the issue of vanishing gradients [25];
b) shallow feature extractor to boost small object detec-

tion performance;
c) context path to eliminate false positive detections by

considering the information enclosing an object.
2) Dataset

We have created a dataset of 2592 manually annotated
images containing nearly 50 000 E. vaginatum flower
objects. As a result, our database is a valuable resource
for future studies regarding the phenology of E. vaginatum
species as well as tundra biomes in general.

3) Novel evaluation process
We introduce a comprehensive evaluation process for our
method assessing its performance against human annota-
tors in both object detection and counting.

II. RELATED WORK

Object detection is a fundamental problem in analyzing re-
mote sensing imagery. Recent advances in detection methods,
based on CNNs, have led to dramatic improvements in detection
accuracy relative to earlier methods that rely on handcrafted
features. State-of-the-art architectures include two-stage region
proposal based CNNs (R-CNNs), such as faster R-CNN [24] or
feature pyramid network (FPN) [26], which achieve very high
accuracy at the cost of real-time performance, and more direct
single-step approaches like you-only-look-once (YOLO) [22]
which are often capable of real-time detection but have slightly
lower accuracy [27].

Most previous work has focused on improving detection
accuracy for objects occupying a sizeable area of an image based
on standard datasets such as Pascal VOC with instances taking up
14% of the image on average. However, some increasingly pop-
ular applications, including analysis of remote sensing imagery,
have led to demand for detectors that can identify distant and
small objects, requiring architectural improvements. In addition
to frequently involving small or low-resolution objects, remote-
sensing imagery often includes noisy backgrounds and variable
lighting and weather conditions, compounding the challenges in
creating high-performance detection systems [17].

Fig. 1. Examples of false positives generated by the model before the addition
of the contextual path. Green and red circles denote effective receptive fields
with and without the addition of the contextual path.

One approach to improving the accuracy of small object de-
tection involves using multiple-scale features of increasing com-
plexity. For instance, single shot multibox detector (SSD) [28]
predicts objects at each feature level whereas some fully con-
volutional networks (FCN) [29] combine multiple predictions
by averaging segmentation probabilities. Furthermore, higher
level fine-grained features provide vital contextual information
surrounding an object by increasing the network’s effective
receptive field to disambiguate an instance from a noisy back-
ground (see Fig. 1). Recent studies provide many examples
of incorporating context through feature fusion using simple
concatenation [12], [30], or element-wise addition operations
on the extracted feature maps which greatly improve network
performance [31].

Despite introducing various techniques to improve small ob-
ject detection, most of the studies concerning object detection
from remote sensing imagery have been focused on analyz-
ing urban scenes and vehicles in particular. Examples include
ships [32] or aircraft [12], [33] as well as buildings such as air-
ports [34]. Few efforts have been made to apply recent advance-
ments to quantify ecological events such as phenological stages.
Some attempts involving flower objects and UAV imagery fo-
cused mainly on segmentation rather than counting [35]. Other
examples include automatic counting of rice seeding [36] or oil
palm trees detection and counting [37]. However, these methods
are unable to detect overlapping objects and are neither efficient
nor robust due to the fixed-size sliding window approach they
employ. Another example of applying object analysis in ecology
is camera trap detection of wildlife where studies often utilise
state-of-the-art model architectures and achieve high levels of
accuracy [38]–[40]. Most recently, deep learning models had
been used to detect and count insects although from much
lower height [41]. Therefore, to analyse the extensive ecological
imagery collected throughout the years, including observations
of various plant and animal species at long ranges, it is vital to
have efficient, reliable, and robust systems [17].

III. DATASET

The original remote sensing imagery was collected from four
different sites across Qikiqtaruk - Herschel Island in the Cana-
dian Arctic. The images were gathered between June 2017 and
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TABLE I
SPECIFICATIONS OF THE ORIGINAL DRONE IMAGERY AND OUR FINAL

DATASET; PS1-PS4 DENOTE PHENOLOGY SITES AT DIFFERENT PARTS OF

HERSCHEL ISLAND

August 2017 using Phantom 4 Advanced Pro drone platforms.
The flights were conducted in variable weather (e.g., wind, cloud
cover, mist, etc.) and at different times of the day under variable
lighting conditions, giving a wide range of image qualities and
appearances of the E. vaginatum flowers. Each site was surveyed
from four different altitudes, ranging from 12 to 100 m, yielding
high-resolution imagery of size 5320 × 4200 pixels. Table I
summarizes the details original dataset.

We divided the images into 440 × 440 pixel tiles, to sim-
plify the annotation process for human experts and reduce the
memory consumption when training our network. At this stage,
we considered only data collected from the 12 m altitude due
to its high resolution and visibility of the objects for the human
annotators. From this subset, we extracted a uniform random
set of 2592 tiles which include a 20 pixel overlap with adjacent
tiles to avoid any object truncation and allow lossless recon-
struction of the original images of greater size. The overlap was
crucial to provide necessary context information regarding the
surrounding of the instances which otherwise could be missed
or incorrectly classified as a flower.

The ground-truth had been generated through an annotation
procedure including nine human experts, mainly Ph.D. and
Masters students, who were present on the sites or who were
carefully instructed on specific E. vaginatum flower character-
istics. Data annotation had been split into two parts each lasted
between September to December 2017 and 2018, respectively.
To achieve the best possible quality of the ground-truth, each tile
was annotated by multiple experts with differences resolved by
the majority vote and average bounding box generation. Fig. 2
demonstrates an example of an annotated tile. The total number
of annotated objects in the dataset reached 50 521 flowers,
indicating the scale of the task. Furthermore, the dataset itself
represents a valuable resource for the studies of the Arctic tun-
dra phenology by providing accurate locations and population
estimates of the E. vaginatum species.

Finally, we split the data into three randomly selected,
nonoverlapping datasets. The training set was by far the biggest,
accounting for 66.6% (1728 tiles) of the annotated images. The
remaining tiles were evenly divided into the validation and
test sets, both representing 16.6% (432 tiles) of the original
dataset. These sets were used to determine the best performing
hyperparameter setup and network evaluation, respectively. We
also evaluated our model by comparing its performance directly

Fig. 2. Example tile from our dataset. The green bounding boxes denote the
ground-truth annotated by human experts.

with the detection and counting accuracy of the human experts
(see Sections V-D and V-E).

IV. METHOD

The original faster R-CNN architecture is capable of accurate
detection of objects that occupy a sizeable area of an image,
such as animals or vehicles in the foreground of a photograph.
However, remote sensing imagery poses the additional chal-
lenges of much smaller object sizes and their resolution. In
particular, a single E. vaginatum flower occupies only about
0.1% of the whole image area compared with the average of
14% for instances in Pascal VOC dataset [42].

Previous attempts to adjust faster R-CNN to various small
object detection tasks included anchor box size adjustments [42],
multiscale feature fusion using concatenation [12] or element-
wise addition [31]. Here, we modify the faster R-CNN archi-
tecture for small object detection used specifically for plant
phenology analysis from remote sensing imagery. The detection
pipeline, shown in Fig. 3, consists of a backbone feature extrac-
tor, region proposal network (RPN) and the final fast R-CNN
detector.

The first stage of the pipeline involves feature extraction from
the entire input image performed by the backbone network which
we describe in more detail in Sections IV-A and IV-C. This fully
convolutional network produces a set of features that is shared
by the remaining two components making the model a unified
framework.

The second stage denotes region proposal generation by the
RPN. This small class-agnostic network was the most prominent
improvement as the predecessors of the faster R-CNN heavily
relied on less efficient methods including selective search to gen-
erate a predefined number of proposals that were most likely to
contain objects [43]. This nearly cost-free solution significantly
improved the model’s efficiency by the RPN sharing feature
extractor with the rest of the detection network.
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Fig. 3. Architecture diagram of our modified faster R-CNN pipeline for E. vaginatum flower detection from remote sensing imagery.

The original implementation of this component involved three
anchor sizes (1282, 2562, 5122) of three different ratios (1:2,
1:1, 2:1). However, as suggested by [42], such large sizes are
unsuitable for detecting smaller objects which can be enclosed
by a smaller box. Thus, we decreased the anchor sizes to
(122, 142, 162, 212) and reduced them to just a single 1:1 ratio,
reflecting the fact that E. vaginatum imagines can be reliably
enclosed by a square bounding box. The number of proposals
generated for each training and testing image was set to 2000
and 300, respectively, following previous work [24].

The final step in our pipeline is the fast R-CNN detector which
utilises the image features extracted by the base network along
with the proposals generated by the RPN. The proposals are
processed by the detector’s region of interest (RoI) pooling layer
to produce a fixed-size feature vector followed by a set of fully
connected layers. The primary purpose of the detector is further
classification and bounding box refinement to produce the final
detections. For this step, our methods follow those described
in [43]. We used the same loss function as the original faster
R-CNN architecture consisting of classification and regression
components (i.e., multitask loss) with the latter utilizing smooth-
L1 loss [24].

A. Shallow Feature Extractor

We reduced the overall depth of the feature extractor com-
pared with the original VGG-16 backbone network, making it
much more appropriate for small object detection [44]. Using
fewer blocks results in a more suitable receptive field and re-
duced risk of object characteristics being lost during pooling
operations [12]. Shallower convolutional layers extract coarser
low-level features which are more appropriate for detecting
simpler shapes of E. vaginatum flowers. Moreover, feature ex-
tractors based on the VGG architecture and its variations yield
promising results over other alternatives in tasks involving small
object detection [45]. Therefore, our baseline network contains
three blocks, each consisting of two to three convolutional
layers complemented by activation units and followed by a
max-pooling layer (see Table II).

TABLE II
ARCHITECTURE OF THE FEATURE EXTRACTOR BLOCKS

Due to the specificity of our task and dataset characteristics
compared with any standard datasets, we did not utilise pre-
trained VGG-16 layers. Instead, we trained our network from
scratch. That is because the objects of the desired domain ought
to be of comparable shape and size as the objects on which the
network was pretrained [46]. Hence, the network designed for
a new domain is unlikely to benefit from the set of parameters
after being trained on a completely unrelated dataset [47].

B. PReLU

Despite a wide variety of available activation functions, ReLU
has been the most widely used among the state-of-the-art archi-
tectures, including the original VGG-16 feature extractor within
faster R-CNN. ReLU activation functions are computationally
efficient due to simple thresholding at zero (1) which greatly
accelerates the network’s convergence; six times faster than
sigmoid or tanh functions in some cases [48]. However, since
the negative inputs and gradients are all set to zero, those units
will eventually stop responding to variations in error/input and
die, making that segment of the network passive [49]. This
phenomenon could significantly limit the ability of the network
to properly learn from the data [25]

relu(yi) =

{
yi, if yi > 0

0, if yi ≤ 0.
(1)

To alleviate this issue, many alternatives including leaky
ReLU introduce a leakage parameter (αi) to the horizontal part
of the ReLU graph. However, a constant parameter value for
leaky ReLU has a marginal impact on improving network per-
formance when compared with the equivalent architecture using
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ReLU [50]. Thus, we followed the idea of leakage parameter and
incorporated PReLU which progressively learns such parameter
for each input channel [αi, (2)] yielding higher accuracy with a
marginal extra computational cost [25]

prelu(yi) =

{
yi, if yi > 0

αiyi, if yi ≤ 0.
(2)

PReLU introduces a small number of learnable parameters,
equal to the total number of channels, which does not slow
the training process significantly [25]. Due to the parameter
adaptation for each channel, PReLU eliminates the dying ReLU
problem as well as reduces the risk of overfitting due to its
randomness especially in deeper architectures [51]. Given these
advantages of PReLU over standard ReLU activation functions,
we experimented with PReLU and found that it improved aver-
age precision and F1 score by 4% and 1% respectively despite
our network being relatively shallow. To our knowledge, this is
the first work demonstrating PReLU’s performance advantages
when used within the faster R-CNN framework.

C. Feature Fusion (Context)

Reducing the depth of the feature extractor by eliminating
the number of convolutional blocks and pooling layers can
bring significant performance improvements while detecting
smaller objects [12]. Our first version of the model consisted
of only two such blocks with an effective receptive field of
14 pixels delivering a satisfactory F1 score of 0.74. However,
this architecture was highly susceptible to the noisy background
including light reflections and field markers, yielding a high
number of false-positive detections.

To tackle this issue, we incorporated context information
from the enclosing pixels for each object instance by adding
an extra convolutional block with a bottom-up path for feature
fusion. This way, we extended the effective receptive field to as
much as 40 pixels with no information loss due to the coarser
features from the shallower block being included in our final
set of features. The effective receptive field of 40 pixels is a
result of operations applied in each convolutional block with the
output fields being 6, 14, and 40 pixels for block-1 to block-3,
respectively, when applied in sequence. Similar solutions had
been utilized by other faster R-CNN implementations regardless
of the feature extraction network type (i.e., VGG-16, Res-Net),
which boosted the detection accuracy of smaller objects [12],
[30], [31].

The purpose of the additional feature block is to allow the
model to extract more complex features. Those features needed
to be rescaled in order to perform the fusion with the other set
from the higher block. We used a 1× 1 convolutional and a
2× 2 transposed convolutional operations to compress channel
and adjust height/width dimensions, respectively. We performed
feature fusion using an element-wise addition layer which sim-
ply adds the inputs channel by channel.

After merging, fused feature maps were passed through
another convolutional layer with 3× 3 kernel followed by
PReLU activation to degrade the spatial aliasing effect of down-
sampling [31], producing the final output of the feature extractor.

TABLE III
PARAMETER SETUP FOR EACH TRAINING STAGE

Hence, the feature extractor component produced 128 feature
maps of size 220× 220which were then passed to the remaining
two components of our faster R-CNN pipeline.

V. RESULTS AND EVALUATION

Throughout this research, we have tested the original faster
R-CNN with VGG-16, VGG-19, and ResNet feature extractors,
along with the previous iteration of the faster R-CNN meta-
architecture, namely R-CNN [52], and fast R-CNN [43]. How-
ever, none of these models proved to be suitable for the task of
E. vaginatum flower detection and model-to-model comparison,
as each achieved final F1 score of below 0.5. Nevertheless,
our evaluation procedure includes other points of reference
such as comparison against human experts or counts collected
on the ground to deliver a thorough assessment of the model
performance. All the experiments and network training were
conducted on a machine with an NVIDIA Titan V GPU and
32 GB of memory.

A. Parameter Setting

Our setup included the four-stage alternate training procedure
described in [24]. Specific parameters used for each training
stage are presented in Table III. The learning rate decay param-
eter was set to 0.1. The optimiser chosen was mini-batch gradient
descent with the momentum parameter of 0.9 and weight decay
set to 0.0005. Each mini-batch included one image and 256
proposals per image in detector training. The weights were
randomly initialized using zero-mean Gaussian distribution with
a standard deviation of 0.01. Furthermore, we applied normal-
ization of each input by subtracting the mean channel values
from each colour channel of the image which were determined
from the training set.

B. Evaluation Metrics

Our evaluation procedure was based on widely-used met-
rics within the object detection community. These included
precision, recall, F-measure, and average precision (AP) [20].
Furthermore, we used the percentage ratio between the number
of the model to ground-truth detections. This metric was vital to
establish our network’s capabilities of tracking patterns within
a species population.

The correctness of each detection is determined by the in-
tersection over union (IoU) with the ground-truth bounding box
being at least 0.5. The number of correct detections is denoted as
true positives (TP) whereas the incorrect ones as false positives
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TABLE IV
FINAL MODEL PERFORMANCE ON THE TEST SET

(FP). The instances which are not detected by the network are
defined as false negatives (FN). Thus, precision and recall are
defined as follows:

precision =
true positives

true positives + false positives
(3)

recall =
true positives

true positives + false negatives.
(4)

Average precision is a single metric capable of expressing
the complex relationship between precision and recall. Mean
average precision (mAP) denotes the mean of APs among all
considered classes. Since our task considers only one class
(E. vaginatum), AP is equivalent to mAP. AP denotes area under
the precision-recall curve where the integral representing the
average precision is approximated by the finite sum over every
position in the ranked sequence of the detected objects

AP =

∫ 1

0

p(r)dr ≈
n∑

k=1

P (k)Δr(k). (5)

The F-measure is another metric capable of expressing the
relationship between precision and recall scored by a model.
We used F1 score, weigh precision, and recall equally. F1 score
is defined as

F1 =
2× precision × recall

precision + recall
. (6)

C. Standard Metrics Evaluation

To ensure that our results were representative of the actual
model performance, we followed the standard validation and
testing procedures. Validation set was used to determine the
most optimal hyper-parameter setup whereas the model’s final
performance was established based on the testing set. The results
were presented in Table IV with respect to different evaluation
metrics.

The original version of faster R-CNN struggled with detect-
ing small objects, recording values below 0.3 across all the
considered metrics. In comparison, our version of the network
recorded values of precision and recall of 0.81 and 0.97, re-
spectively. Significantly higher recall value can be attributed
to the model’s tendency to detect more flowers than indicated
by the ground-truth (i.e., over-counting by 20% on average)
suggesting a noticeable number of false positives. Nevertheless,
recorded values of precision and recall demonstrated a balanced
performance of the network, summarized by the F1 score of
0.87. Our network yielded an average precision of 0.91, which
we regard as high when compared to other results for similar
remote sensing tasks [31], [53].

Furthermore, in the inference phase, our faster R-CNN can
process each 440 × 440 tile in 0.05 s on average while running

TABLE V
COMPARISON OF HUMAN AND NETWORK PERFORMANCE BEST SCORES

INDICATED IN BOLD

The best scores indicated in bold.

on a single GPU. This corresponds to the processing speed of just
over 7 s per single remote sensing image (5320 × 4200 pixels)
and introduces a negligible total cost to the overall data collection
and processing pipeline.

D. Network-Human Evaluation

Due to the uniqueness of the task and the goal to achieve
a human-like performance of our method, we compared our
faster R-CNN with the performance of human experts in E.
vaginatum detection and counting. We formed a testing set using
15 randomly selected tiles from the validation set and asked
six independent human experts (A-F) who were involved in
the dataset annotation to repeat the process. The same set was
processed by our model. The results are presented in Table V.

Despite the small size of our corpus relative to the very large
corpora in standard image detection tasks, our results present
consistent patterns. Humans recorded significantly smaller num-
bers of detected objects compared with the model, which was
indicated by humans’ low recall values. This suggests that
human annotators struggled to notice certain objects due to their
very small area and background noise (see Fig. 4). An alternative
explanation could be that humans are generally more reluctant
to annotate objects, but we did not further investigate the specific
causes of human recall failures. Humans also tended to record
fewer false positives (10% of their outputted detections on aver-
age compared with nearly 15% for the model), explaining higher
precision scores. Human annotators were also inconsistent in the
number of flowers they detected. This finding underscores the
complexity of the task and the need for a reliable automatic
method, setting aside the costs of obtaining human annotations.

Despite the network’s precision of 0.87 being far from the best
human annotator’s score of 0.98, the network’s score was mid-
range, with two annotators recording much lower values of 0.82.
Nevertheless, the human annotators’ extremely low recall scores
prevented them from achieving accurate counts, with nearly half
of the ground-truth flowers being missed on average. Thus, our
model was decidedly closer to the expected number of flower
objects present within each tile, recording an impressive 0.93 of
the expected number of objects with the highest human’s score
being only 0.74, with most human annotators not exceeding 0.60.
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Fig. 4. Example of flower detections made by different subjects (b), (c) when compared to the ground-truth annotations (a). Red bounding boxes denote the
detections.

Fig. 5. Example tiles of varying brightness due to changing weather conditions. The red and green boxes denote model detections and ground-truth, respectively.

Based on the results, our method outperformed all human
annotators, with much higher F1 and AP scores. The poorer
performance of human annotators may be attributed to their
inability to notice very small flower objects or possibly frus-
tration caused by the tedious nature of the task. These factors
did limit our modified faster R-CNN making it more suitable
and reliable for analysis of phenology data. Furthermore, faster
R-CNN is highly scalable and capable of covering vast areas,
which would otherwise require hundreds or thousands of trained
annotators.

E. Ground Counts

During the data acquisition, researchers collected flower
counts on the ground within 2˜m× 2˜m areas around each
investigated site. These counts were gathered to determine the
number of flowers present at each area unaffected by any image
qualities, noise or distortions, unlike the annotation process.
Since these data were obtained in person on the ground, those
counts are the closest to the true ground-truth making it an

TABLE VI
COMPARISON OF HUMAN AND NETWORK PERFORMANCE AGAINST

THE GROUND COUNTS BEST SCORES INDICATED IN BOLD

The best scores indicated in bold.

appropriate means of assessing our method’s performance. We
only considered the number of detections (counts) as specific
flower locations were not recorded.

The sample consisted of 12 images of the investigated sections
from all sites. This set was presented to three human experts
(H-I) who performed manual counting. The same imagery was
processed by our system. The results are presented in Table VI.
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TABLE VII
E. VAGINATUM FLOWER POPULATION ESTIMATION

The results follow our previous observations regarding incon-
sistent human performance compared with the model, despite
the humans having prior experience with the task. Their counts
varied greatly between each image which is summarized by the
higher value of standard deviation compared to 0.11 for our
method. These results are highly encouraging due to the fact that
individuals who took part in the evaluation process were experts
within the biodiversity field. The annotators had extensive ex-
perience in studying, counting and analyzing habitats of various
plant species. They have been analyzing similar data before and
knew exactly how E. vaginatum flowers look like. They were
also familiar with their habitat as well as growing patterns (i.e.,
often in clusters). Thus, we expected human annotators to be
an appropriate benchmark of the model performance. Humans’
underperformance can be attributed to severe image distortions
such a light reflections or blur as well as very small object size
relative the tile dimensions.

Furthermore, our network detected a marginally higher num-
ber of objects on average (1.06) than was counted on the ground.
This surplus of detections matched our previous testing results
although the overcount was not as profound (1.20 on the test
set), possibly due to a much smaller image sample size. Despite
yielding too many objects, the model’s result was consistently
closer to the true value than the best human score of only 0.83.
Once again, humans detected less than 0.85 of the total number
of flower objects, most likely due to the small visible flower
area and partial obstruction by grass and other obstacles. On
the other hand, small object sizes and background noise did not
prevent the network from delivering more accurate counts due
to its ability to extract relevant multilevel features and consult
contextual information around each instance. This conclusion
had been drawn on the fact that our early iteration of the network
did not include the contextual path which had an adverse effect,
particularly in the case of the most ambiguously looking flowers.
That version reported a high number of false-positive detections,
especially in presence of light reflections or white field markers
as shown in Fig. 1.

F. Population Tracking

With our faster R-CNN capable of reliable object detection
and counting, we tested it in a potential real-world environment.
To do this, we selected imagery of the four sites from two
different days including variable weather conditions to evaluate
the robustness of our method regarding changing lighting and
image quality. The results are presented in Table VII.

Our faster R-CNN detected a very similar number of flowers
on both days, regardless of the site. Real-world flower counts
were expected to be similar due to the 48-hour difference in data
collection. Such consistency indicated the network’s potential
reliability even on a much larger scale than previously consid-
ered under different lighting and wind conditions (see Fig. 5).
Furthermore, we did not observe any extreme variation between
the estimates among different sites. According to the results in
Table VII, the variation was estimated as ±5%, partially due
to noise (i.e., lighting) and occlusion (i.e., branches or grass
covering flowers). Nevertheless, the true population size of E.
vaginatum flowers is likely to be marginally lower than presented
in Table VII. That is due to our method’s tendency to detect a
higher number of objects as shown by our previous results (1.06).

VI. CONCLUSION

In this article, we introduced our modified version of the faster
R-CNN architecture capable of E. vaginatum flower species
detection and counting. Our major modifications of the feature
extractor component included reduced depth and utilization
of context information through feature fusion along with the
incorporation of a PReLU activation unit. These adaptations
yielded promising results in the testing phase, which were further
confirmed by the network consistently outperforming human
experts at both detection and counting tasks despite varying
image quality due to differing weather conditions during data
collection. Furthermore, our method did not suffer from random
light reflections or noisy background as much as human subjects
as indicated by its significantly higher recall scores.

Although we were unable to assess the accuracy of the flower
count estimates for E. vaginatum species within the investigated
area, our results which consistently exceed 20 000 objects per
site demonstrate how time-consuming the task of manual count-
ing would be. Other conventional methods involving tracking
the numbers within a much smaller region and assuming a
similar distribution for the rest of the area might lead to only
rough and most likely inaccurate estimations. That is because
they do not consider abnormalities caused by varying terrain
characteristics or distribution patterns. Our faster R-CNN can
cover a much broader area with a high density of flowers in
just over 5 minutes per site consisting of 44 images on average.
Such scale could only be matched by dedicating a vast number
of human annotators to the task, at great expense, and would
lead to less accurate counts.

As a future improvement, we found the idea of utilizing
multispectral datasets in addition to the conventional RGB op-
tical bands particularly interesting. Adding bands of different
wavelengths such as near-infrared (NIR) proved to be beneficial
in low visibility conditions in other object detection tasks [54].
Additional bands would help the model to avoid or significantly
reduce the number of nonvegetation false-positives by applying
NDVI index [55]. Ultimately, all spectral bands could be utilized
to make the model decide which bands are the most significant
to detect the specific plant species [56].

Global change impacts necessitate new tools to capture eco-
logical responses across the world’s biomes [9]. Our work
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indicates the great potential of faster R-CNN models for im-
age analysis as reliable tools in plant phenology research. Our
method is likely to generalise well to different flower species
as well as other kinds of plant phenology or ecological data
given a thoroughly annotated and sufficiently large image set.
Thus, future phenology research can extend localized on-site
measurements to landscape scales by combining drone-based
data collection with automated flower detection systems.
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