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An Efficient Organization Method for Large-Scale
and Long Time-Series Remote Sensing Data in a
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Abstract—Historical earth observation (EO) data have played
an important role in long-term scientific and environmental mon-
itoring. The effective organization of large-scale and long-term
remote-sensing data to achieve efficient retrieval and access has
become one of the important issues. However, inherent big data
characteristics, such as a large scale, and asymmetrical temporal
and spatial distributions, have caused problems with the efficiency
of data retrieval and access. Therefore, this study proposes an
efficient data organization method for use in a cloud-computing
environment that has two aims. First, it addresses the problem of
low retrieval efficiency. An asymmetrical index model for the image
metadata is constructed that is based on a unified spatio-temporal
grid coding; a prepartitioning mechanism under the HBase archi-
tecture is established to realize the uniform storage of the metadata
with an asymmetrical spatiotemporal distribution and to avoid
retrieval efficiency bottlenecks caused by a load imbalance. Second,
it addresses low access efficiency. By dividing the remote-sensing
image into tiles, a unified spatio-temporal code is established for
each tile, and a consistent hash operation is performed; tiles with
similar hash values are stored in the same or adjacent Hadoop
Distributed File System nodes. In this way, tiles with temporal or
spatial correlations can be gathered and stored, and lots of disk
seeks can be avoided during retrieval, thereby greatly improving
the data access efficiency. Comparative experiments showed that
the data organization method can effectively improve the retrieval
and access efficiencies of large-scale and long time-series remote-
sensing data in a cloud-computing environment.

Index Terms—Cloud computing, data management, data
organization, remote sensing, time series.

NOMENCLATURE

EO Earth observation.
HDFS Hadoop Distributed File System.
GFS Google File System.
TB TeraByte.
NetCDF Network Common Data Form.
API Application Programming Interface.
MB Million Byte.
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GB Giga Byte.
ISO International Organization for Standardization.
JSON JavaScript Object Notation.

I. INTRODUCTION

LARGE-SCALE and long time-series remote-sensing data
will inevitably produce repeated observations of the same

area, providing sufficient and usable data sources for the detec-
tion of land cover changes [1], urban expansion analysis [2], and
environmental pollution prevention and control [3]. However,
the massive, multisource, heterogeneous, and long time-series
characteristics of remote-sensing data also bring great chal-
lenges to data organization and management, such as making
retrieval and access efficiency low, and not convenient to com-
prehensively and in-depth analyze the hidden information from
multiple dimensions and multiple angles.

In terms of the abovementioned problems, some scholars have
proposed carrying out geometric and radiation normalization
on long-term remote-sensing data, splitting and organizing the
segmented tiles into a three-dimension datacube [4] in chrono-
logical order, and finally, performing information extraction and
time sequence analysis using the constructed datacube. How-
ever, this spatio-temporal sequence organization of large-scale
and long time-series remote-sensing data still has the following
problems.

1) The DataCube stores the remote-sensing tile metadata and
catalog data directly in the PostgreSQL database in the
JavaScript object notation (JSON) document format by
default [5]. However, due to the performance limitations
of the PostgreSQL database in terms of expansion and
concurrent access, such as the maximum relation size of
32 TeraByte (TB) and the maximum number of columns
per table 1600 [6], this mode cannot meet the unlimited
growth of remote-sensing tile data storage and manage-
ment requirements.

2) The remote-sensing tile storage does not fully consider the
temporal and spatial logical relationships, and the retrieval
efficiency of massive remote-sensing tiles is not high [7].
The DataCube model stores the segmented tiles in file
directories and does not consider the spatial proximity
and time-series relationships between the segmented tiles,
which makes tiles from the same or similar areas lack
logical relevance, and the retrieval efficiency is not high.
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3) The DataCube model is based on the Python or Dask
parallel computing libraries for multiprocess parallel pro-
cessing, which are not conducive to a large data vol-
ume, multitasking, and multinode parallel computing and
cannot meet the rapid processing needs of massive remote-
sensing tiles [8].

Dask is a Python parallel-computing tool based on external
memory. By dividing a dataset into blocks and allocating the
amount of calculation according to the number of cores it has,
Dask can improve the parallel-computing efficiency of a single
machine to a certain extent [9]. However, Dask should manually
intervene in data scheduling between clusters. When the number
of parallel tasks increases, the task scheduling of Dask often
deadlocks, which is very unfavorable for large data volumes,
multitasking, and multinode parallel computing [10]. Massive
remote-sensing tiles after segmentation will inevitably be stored
in multiple data nodes in a distributed manner, and Dask will not
be able to meet their rapid-processing needs.

The abovementioned DataCube model’s shortcomings in
terms of index management and the rapid processing of massive
tiles have limited its application in information extraction and
mining. Therefore, how to effectively manage large-scale and
long time-series remote-sensing data to achieve efficient index-
ing and retrieval and how to quickly access and obtain large-scale
remote sensing data to conduct multidimensional and multiangle
information extraction and mining, are urgent needs in the field
of EO.

This study aims at the shortcomings of the current remote-
sensing big data spatiotemporal sequence organizational model,
takes advantage of cloud computing’s advantages in massive
data storage management and processing, and establishes a
cloud computing-based remote-sensing big data spatiotemporal
asymmetrical index and distributed storage optimization model.
Finally, this study performs large-scale and long-term data re-
trieval in Hadoop ecosystem, which is a mature and popular used
distributed system, to verify the effectiveness of the model.

In particular, the study accomplishes the following.
1) It addresses the problem of low retrieval efficiency caused

by the characteristics of a massive amount of remote-
sensing data with an asymmetrical temporal and spatial
distribution. An asymmetrical index model for the image
metadata under the HBase [11] storage architecture is
constructed that is based on a unified spatio-temporal grid
coding of the remote-sensing image metadata; a preparti-
tioning mechanism under the HBase architecture is estab-
lished to realize uniform storage of remote-sensing image
metadata with an uneven temporal and spatial distribution
and to avoid retrieval efficiency bottlenecks caused by a
load imbalance.

2) It addresses low access efficiency caused by the massive
number of remote-sensing image files. A distributed stor-
age optimization strategy for remote-sensing tiles based
on consistent hashing is constructed. That is, by dividing
the remote-sensing image file into tiles (each with a size
of about 128 MB), a unified spatio-temporal grid code is
established for each tile, and a consistent hash operation
is performed; tiles with similar hash values are stored

in the same or adjacent Hadoop Distributed File System
(HDFS) [12] nodes. In this way, remote-sensing tiles with
temporal or spatial correlations can be gathered and stored,
and a large number of disk seeks can be avoided during
spatio-temporal retrieval, thereby greatly improving the
efficiency of data access.

II. RELATED WORK

The efficient organization and management of long time-
series remote sensing data can provide guarantee for in-depth
data analysis and understanding [13], [14], and effectively im-
prove the convenience of data mining. At present, the storage
and management of remote-sensing data mostly adopts a hybrid
method of file system and database; that is, remote-sensing
image files are stored on a file system other than the database
system, and the database system stores and manages attribute
data and catalog information [15]. Therefore, the related work
research focuses on the following two aspects: 1) remote-sensing
data storage and management and 2) the spatio-temporal orga-
nization and indexing of metadata.

A. Remote-Sensing Data Storage and Management

In general, distributed file systems commonly used for
remote-sensing data storage include the Google File System
(GFS) [16], HDFS [17], Lustre [18], FastDFS [19], GridFS [20],
GlusterFS [21], MooseFS [22], etc. Luo et al. [23] proposed
RAMCloud, a cloud storage system, to achieve efficient random
reading in a cloud environment. The storage system is based on
the distributed file system HDFS, which improves the through-
put and I/O performance of the system by reading and writing
data in the memory and has good availability and scalability.
Qin et al. [24] proposed a remote-sensing data storage model,
which used GridFS [20] to store the remote-sensing images and a
MongoDB database to store their relevant attribute information.
Experimental results showed that this method was superior to
relational databases in all aspects.

Remote-sensing data storage and management based on dis-
tributed storage-related technologies has very important re-
search value and practical significance. However, for specific
business scenarios, native distributed file systems still need
to be expanded and optimized. Kuang et al. [25] proposed
a copy placement strategy based on consistent hashing. This
strategy is based on the HDFS copy placement strategy, which
optimizes the server load and improves the access efficiency
and performance of the system. Yang [26] proposed a dynamic
copy storage scheme. The solution was based on a distributed
file system, which improved its network access rate and storage
efficiency. Zhou [27] proposed a small file-merging strategy
based on an eigenvalue classification algorithm. This strategy
is based on the problems caused by the large number of small
files in the distributed file system; it improves the memory
consumption of the system and the reading efficiency of the small
files. Zhao et al. [28] proposed an improved block placement
strategy to address some of the defects of the default HDFS.
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However, none of the abovementioned studies has optimized
the placement of replicas based on the temporal and spatial logi-
cal correlation characteristics of remote-sensing data; therefore,
their proposed solutions are not directly suitable for the storage
and management of large-scale and long-term remote-sensing
data. Therefore, in this research, a spatiotemporal correlation
strategy for remote-sensing data based on a consistent hashing
algorithm to optimize the storage and placement of data and its
copies in the distributed file system is constructed to improve
the access efficiency of remote-sensing image files.

B. Spatiotemporal Organization and Indexing of Metadata

The spatiotemporal organization and indexing of remote-
sensing metadata further introduces time information to form a
complex data structure that contains spatiotemporal information.
This mainly includes two types: a tree structure-based spatiotem-
poral index and a spatial grid-based spatiotemporal index.

A tree structure-based spatiotemporal index refers to a data
structure that is arranged in the order of rectangle (R)-trees,
quad-trees, K-dimensional trees, etc., according to the posi-
tion and shape of spatial objects or a certain spatial rela-
tionship between them, and superimposes temporal attributes.
Xu et al. [29] proposed an ST-OpenGIS spatio-temporal data
model for geographic information system (GIS) data. The model
maintains the spatiotemporal data structure and correlations;
abstracts the spatiotemporal data out of space, time, attributes,
and other information; uses the spatial Z-curve to reduce the
dimensionality of the spatiotemporal data; and constructs a
B+ tree to build a global distributed index. It has been veri-
fied by experiments that this method has high efficiency for
querying spatio-temporal data, but the model cannot process
spatial topology and temporal information at the same time.
In summary, for the spatio-temporal index methods based on
tree structures, although the spatial range query is efficient, the
construction of a balanced tree structure requires a great deal of
resources.

Spatial grid-based spatiotemporal indexes can use excellent
spatial grid models, such as GeoHash and GeoSOT, to traverse
spatial objects; they can effectively avoid the resource con-
sumption problem caused by the construction of a balanced tree
index. Li et al. [30] proposed a spatiotemporal indexing method
based on improved GeoHash coding that used the ElasticSearch
engine to store data to improve query processing efficiency. This
method expands the spatial grid GeoHash code, combines time
and the GeoHash, can support spatial and temporal queries of
spatiotemporal data, and has better query performance than the
traditional databases PostgreSQL and MySQL. Li et al. [31]
proposed a spatiotemporal block index framework STB-HBase.
Two HBase tables are constructed to achieve secondary indexes.
Experiments showed that this method can effectively avoid
storage hotspots of traffic data and support spatio-temporal range
queries. However, it needs to build two tables, which are difficult
to maintain, and the efficiency of multiple queries is low. Zhao
et al. [32] built a two-layer spatiotemporal index GRIST, based
on GeoHash and an R-tree. This method uses a two-layer index
structure; the first layer uses spatial grid GeoHash coding, and

the second layer uses an R-tree to process time information. The
index construction of this method was greatly improved com-
pared to the GeoMesa [33] and PostGIS [34] systems. However,
it did not effectively combine time information and space, and
the filtering of spatiotemporal data required a secondary index,
which weakens the effect of the index to a certain extent. Jiang
et al. [35] proposed a spatio-temporal hybrid index, based on
the combination of Hilbert coding [36] and an R-Tree. Zhang
et al. [37] proposed an HBase spatio-temporal index, which is
implemented through a secondary index.

The spatiotemporal indexes constructed by the abovemen-
tioned methods can improve the spatiotemporal retrieval ef-
ficiency of remote-sensing data to a certain extent, but most
of the algorithms use a simple spatiotemporal index super-
imposed on a secondary index to process the spatiotempo-
ral data, and it needs to be filtered twice during a query,
which reduces the indexing efficiency. Therefore, this study
proposes a GeoSOT-ST-based data organization method, which
converts high-dimensional time and space information into a
one-dimensional GeoSOT-ST [38], code, thereby effectively
reducing the amount of conditional filtering in the query process.
For remote-sensing metadata, an HBase database was chosen as
the storage medium. In view of the asymmetrical temporal and
spatial distribution of remote-sensing data, the HBase region
prepartition is constructed based on GeoSOT-ST coding in the
process of metadata storage to achieve balanced storage, thereby
improving the data retrieval efficiency. For image files, HDFS
was selected as the storage medium. Spatio-temporal informa-
tion hash coding was used to optimize the replica placement
strategy and store the space-time related data in the same or
adjacent data nodes, thereby improving the efficiency of the data
access.

III. METHOD

The efficient organization model of large-scale and long time-
series remote-sensing data in a cloud-computing environment
mainly includes the following content.

1) Deheterogeneity. This addresses the problem of inconve-
nient access to multisource remote-sensing images caused
by different storage formats. The data ingest application
programming interface (API) of the DataCube is used
to realize a unified storage format, as well as splitting
large volume images into small tiles for convenient access.
In view of the heterogeneity of the multisource remote-
sensing data, the International Organization for Standard-
ization (ISO) geographic information metadata standard is
adopted to realize the unification of the metadata, and the
GeoSOT-ST spatio-temporal grid is established to realize
the unification of the spatial and temporal reference of the
multisource remote-sensing tiles.

2) GeoSOT-ST-based unified tile spatio-temporal identifi-
cation construction in HBase. This uses unified spatial
identification, time identification, and sensor information
to establish an asymmetrical spatial-temporal grid index
under the HBase architecture to achieve the rapid retrieval
of massive remote-sensing tiles.
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Fig. 1. Overall technical route.

3) Distributed storage optimization of remote-sensing tiles
based on consistent hash coding of spatio-temporal infor-
mation. This uses the asymmetrical spatio-temporal grid
index of the tiles to construct a consistent hash code and
establish a mapping relationship with distributed storage
nodes based on it. In this way, the tiles that are logically
related in time and space are stored in the same or nearby
cloud storage nodes to achieve distributed and optimized
storage of massive tiles, thereby improving the efficiency
of the distributed data access.

The overall technical route is shown in Fig. 1.

A. Deheterogeneity

1) Standardization of Spatial Reference and Storage For-
mat: The storage formats of multisource remote-sensing im-
ages are diverse, typically including GeoTIFF [39], hierarchical
data format (HDF) [40], etc.; there are also spatial reference
and projection differences, such as moderate-resolution imag-
ing spectroradiometer (MODIS) series data that use sinusoidal
projection [41], Landsat-series data based on the Worldwide
Reference System-2, and universal horizontal-axis Mercator
projections [42]. Remote-sensing images with different storage
formats and spatial references are inconvenient to establish a
unified data-access interface, which reduces the availability and
scalability of the storage system. In addition, the volume of a

single remote-sensing image is often very large. For example,
the image size of a single scene Landsat _8 OLI_ TIRS image is
about 900 MB. When a distributed file system is used for image
storage, a single scene image will be automatically divided into
several small blocks. The original spatial neighbor relationship
between blocks is not considered, as they are arbitarily dis-
tributed to a data node. This will greatly reduce the efficiency of
data retrieval related to the original image.

Therefore, this study uses the data ingest API of the
DataCube [43] to physically partition the entire image. It then
organizes each partitioned slice into the same file format and uses
a unified metadata standard model to extract the slices’ metadata
(see Fig. 2). In this article, the actual volume of the divided tiles
is less than 128 MB to meet the block storage requirements of
the HDFS, and each divided tile is uniformly converted into
the network common data form format for unified data access.
In addition, each segmented tile is uniformly converted to the
EPSG:4326 geographic coordinate system to facilitate a unified
spatial query.

2) Unified Remote-Sensing Image Metadata Format: Mul-
tisource remote-sensing data are generated in different data
centers, using independent metadata standards, such as the HDF-
EOS metadata standard, which is not convenient for unified
data organization, management, and retrieval. Therefore, this
research refers to the ISO geographic information metadata stan-
dard in constructing a unified metadata model (see Table I); each
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Fig. 2. Unified spatial reference and storage format.

TABLE I
UNIFIED REMOTE-SENSING IMAGE METADATA

segmented tile needs to perform metadata production according
to the standard metadata model.

B. GeoSOT-ST-Based Unified Tile Spatio-Temporal
Identification Construction

As typical spatio-temporal data, collecting the time, space
range, satellite, and sensor information of remote-sensing data
is necessary for its identification for later query and access.
However, whether for data query in traditional structured query
language (SQL) or NoSQL, multicondition joint retrieval is
a major bottleneck that restricts query efficiency. Therefore,
how to establish spatial identification based on the necessary
satellite, sensor, time and space information and reduce the
multicondition joint search to a single-condition search are the
keys to improving the efficiency of massive data query.

The GeoSOT spatial-grid-coding model is a spatial index
model based on space division. It takes the intersection of
the prime meridian and the equator as the center point and

transforms the earth into a plane through simple projection.
The size of the plane is expanded from 180◦ × 360◦ in the
earth space to 512◦ × 512◦, which will be the 0th layer of the
spatial division. Through the quad-tree recursive subdivision of
the earth’s surface, different subsection levels are formed, and
finally, the entire earth space is divided into multilevel grids of
whole degrees, whole minutes, and whole seconds.

Each level grid unit of GeoSOT is coded according to the
inverse Z-space-filling curve. The code is unique, that is, each
grid unit has a unique code. This unique code corresponds to a
rectangle that describes a geographic space of remote-sensing
images. Moreover, the code uses a dimensionality reduction
method to identify the two-dimensional spatial latitude and
longitude area with a one-dimensional spatial code. Because
the next-level grid is expanded on the basis of the last-level grid,
their binary codes have the same prefix, which improves the
spatial correlation of the remote-sensing data. When the image
is segmented into small tiles, the spatial area of each segmented
tile can be represented by the latitude and longitude of its center
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TABLE II
SIZE OF A GEOSOT-ST SEGMENTATION BLOCK AT DIFFERENT LEVELS

point. Therefore, when calculating a tile’s GeoSOT code, it is
only necessary to calculate the GeoSOT code corresponding
to the latitude and longitude of its center point to represent
its spatial identification. Converting the two-dimensional spa-
tial information of remote-sensing data into a one-dimensional
GeoSOT code not only effectively improves the efficiency of the
data retrieval but also can greatly improve the spatial correlation
degree of the remote-sensing tiles.

GeoSOT-ST coding is based on spatial GeoSOT segmentation
coding [44] but expands the time dimension. Its start time is
January 1, 1970, and the time span is 128 years. A time between
0 and 64 years is coded as 0, and a time between 64 and 128
years is coded as 1; recursive subdivision is performed in turn
to form different hierarchical levels. In the continuous recursive
division process, when the division reaches one year, one year
will be expanded into 16 months; when the division continues to
month, each month will be expanded into 32 days. In this way,
the time division code converts the time range from 1970 to 2098
into whole years, whole months, and whole days. See Table II
for the size of a GeoSOT-ST segmentation block at different
levels.

The calculation method of GeoSOT-ST code is as
follows.

1) Determine the slice level. The default level is 21; that is,
the space is divided into seconds, and the time is divided
into hours. If the level of spatial calculation is less than
21, directly fill it with 1.

2) Because the area of each tile is very small, they can be
treated as points during retrieval. Therefore, the GeoSOT
grid code of the center point of each segmented tile is used
as its spatial identification.
Assuming that the latitude and longitude of the center point
of a certain tile is D ◦ M’S” and the collecting time is
YMDH, Sn represents the spatial grid range at level n,
and Tn represents the time range at level n. The coding
calculation formulas for longitude, latitude, and time are
provided by the following equations:

CodeLon

=

⎧⎪⎪⎨
⎪⎪⎩

LonD
Sn

1 ≤ n ≤ 9

LonD ∗ 64 + LonM
Sn

9 < n ≤ 15

LonD ∗ 64 ∗ 64 + LonM ∗ 64+LonS
Sn

15 < n ≤ 21

(1)

CodeLat

=

⎧⎪⎪⎨
⎪⎪⎩

LatD
Sn

1 ≤ n ≤ 9

LatD ∗ 64 + LatM
Sn

9 < n ≤ 15

LatD ∗ 64 ∗ 64 + LatM ∗ 64+LatS
Sn

15 < n ≤ 21

(2)

CodeTime

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y
Tn

1 ≤ n ≤ 6

Y ∗ 16 + M
Tn

6 < n ≤ 10

Y ∗ 16 ∗ 32 + M ∗ 32 + D
Tn

10 < n ≤ 15

Y ∗ 16 ∗ 32 ∗ 32 + M
∗ 32 ∗ 32 + D ∗ 32 + H

Tn
15 < n ≤ 21

.

(3)

In (1), CodeLon represents the code of the longitude of the
center point of the tile, LonD represents the integer degrees
part of the longitude value, LonM represents the integer
minutes part of the longitude value, and LonS represents
the integer seconds part of the longitude value. Similarly,
in (2), CodeLat represents the code of the latitude of the
center point of the tile, LatD represents the integer degrees
part of the latitude value, LonM represents the integer
minute part of the latitude value, and LonS represents the
integer seconds part of the latitude value. In (3), CodeTime

represents the code of the collection time of the tile, Y
represents the year value, M represents the month value,
D represents the day value, and H represents the integer
hours value.

3) Combine the latitude, longitude, and time codes into
Morton code and convert every three digits into an octal
code. The GeoSOT-ST code calculated in this way can
then represent a range of time and space, which will be
seen as the unified spatio-temporal identification of each
segmented tile.

C. GeoSOT-ST-Based Asymmetrical Spatiotemporal Index
Construction in HBase

1) GeoSOT-ST-Based HBase Table Schema Construction:
After the unified spatio-temporal identification of a remote-
sensing tile is constructed, it can be used as the RowKey of
an HBase table to achieve key access. That is, the RowKey is
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composed of the GeoSOT-ST code, satellite and sensor code,
and tile ID, with each field connected by a hyphen (“-”). This
can be represented as follows:

RowKey = GeoSOT − ST + Satellite and Sensor Code

+ tileID

The GeoSOT-ST coding is calculated from the space-time
information of the remote-sensing tiles according to the cal-
culation method of GeoSOT-ST. The satellite and sensor code
is obtained by combining the binary coding of the respective
satellites and sensors. For example, the satellite and sensor code
for the Landsat1 satellite and MSS sensor is 000000. The tileID
is the unique identifier of the remote-sensing tile.

As for the time stamp of each row record, it is composed
of the long code of the collection time of the remote-sensing
image, including year, month, day, hour, minute, and second. In
the metadata query process, the collection-time query condition
can be filtered according to the timestamp.

2) GeoSOT-ST-Based HBase Asymmetrical Spatiotemporal
Index Construction: While building the HBase table, the table
will be prepartitioned into a number of regions at the same time.
The partition rules of an HBase region are based on the prefix of
the GeoSOT-ST code. When the GeoSOT-ST encoding prefix is
0, 1, or 2, the number of regions is set as 1, 9, and 65, respectively.
Too many HBase regions will affect the performance of the
system, and the number of partitions is related to the amount
of data actually stored.

In addition, the partition of the HBase region is equivalent to
the balanced division of the spatial regions. In other words, the
GeoSOT-ST-based HBase region partition realizes the balanced
storage and indexing of the metadata with a nonuniform
temporal and spatial distribution. For example, if the HBase
region is divided according to the spatial section level 1,
then the number of divided regions is 81 + 1. If the startKey
of the HBase table is set to m, and the endKey is set to M,
the range of the divided region partitions are, respectively,
< m, 0 >,< 0, 1 >,< 1, 2 >,< 2, 3 >,< 3, 4 >,< 4, 5 >,
< 5, 6 >,< 6, 7 >, and < 7,M >. When data are inserted, the
RowKey starting with 01 will hit the region < 0, 1 >.

However, by default, HBase arranges RowKeys in lexico-
graphic order to form a large table and splits them into mul-
tiple regions in turn according to the number of rows. Due to
the asymmetrical temporal and spatial distribution of remote-
sensing data, the tile metadata associated with temporal and
spatial logic will be scattered and stored in multiple regions
if the HBase default partitioning mode is followed directly. The
spatiotemporal query process involves the traversal of multiple
regions, which greatly reduces the query efficiency. Therefore,
on the premise of prepartitioning, the HBase coprocessor is used
to further partition those regions that are still asymmetrically
distributed on the server side. If the amount of data in a region is
too small or not available, the region will be merged with other
partitions; if the data volume of a certain region is too large,
it will be counted first and will be further divided into many
regions if it exceeds a certain threshold. After a series of splitting
and merging operations, the index of remote-sensing tiles can be

evenly distributed in different regions, and each region will form
an ordered index tree. The specific process is shown in Fig. 3.

After the construction of the HBase table schema and asym-
metrical index is completed, the massive remote-sensing tile
metadata can be directly stored in the database. This study uses
BulkLoad to write the data directly into the HFile file; its data
writing method improves the efficiency of this operation. In
this way, a large amount of multisource heterogeneous remote-
sensing tile metadata can be successfully inserted into the HBase
table. The data in the table will show a balanced distribution, and
hot spots and data skew will not occur when accessing the same
region or a small number of regions.

D. Distributed Storage Optimization of Remote-Sensing
Tiles Based on Consistent Hash Coding of
Spatiotemporal Information

Single-scene remote-sensing images are often large in vol-
ume. When HDFS is used for storage, large images will be
automatically divided into multiple blocks and then randomly
stored on different nodes.

However, the HDFS default storage strategy does not consider
the spatio-temporal logical correlation characteristics of remote-
sensing tiles. Remote-sensing tiles from the same or adjacent
areas or time range may be allocated to different data nodes,
thereby reducing the access performance of the associated data.

In order to effectively improve the access efficiency of massive
tiles, this study optimizes the default HDFS storage strategy
and proposes a distributed storage optimization strategy for
remote-sensing data based on a consistent hash coding of spa-
tiotemporal information. The basic idea of this strategy is to
construct a consistent hash [45] code based on the unified time
and space identification of remote-sensing tiles and establish a
mapping relationship with distributed storage nodes based on
the space-time hash code. In this way, the tiles that are logically
related in time and space are stored in the same or adjacent cloud
storage nodes to achieve the distributed and optimized storage
of massive tiles, thereby improving the efficiency of distributed
data access.

It should be noted that in view of the default three-replica stor-
age mechanism of HDFS, this research needs to take into account
the temporal and spatial characteristics of the remote-sensing
data. The three factors of data access proximity, time relevance,
and spatial relevance should be considered while formulating a
three-replica storage strategy.

The specific three-replica storage strategy is as follows.
1) For the first replica, the default consideration is to store

the data node nearby to where the write request is located.
If the data node cannot be stored nearby, an available data
node is arbitrarily selected on the same rack for storage.

2) The second replica storage considers time proximity; a
consistent hash value based on the time code of the tile is
constructed. It is mapped with the hash value of the data
node, and it is stored nearby in a clockwise direction.

3) The third replica storage considers spatial proximity; a
consistent hash value according to the spatial coding of
the tile is constructed. It is mapped with the hash value
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Fig. 3. HBase asymmetrical spatiotemporal index construction.

Fig. 4. Replica placement based on the consistent hash coding of the temporal and spatial information.

of the data node, and it is stored in the nearest available
space in a clockwise direction.

What needs to be added is that the unique identification of
each data node in the Hadoop cluster is a combination code of
the host name and port, and the hash value of the data node is
the consistent hash code of the identification.

The consistent hash mapping of each replica and data node is
shown in Fig. 4.

IV. EXPERIMENTS

In order to verify the effectiveness of the large-scale and
long-term remote-sensing data organization strategy in a cloud-
computing environment proposed in this study, relevant experi-
ments on the massive remote-sensing metadata asymmetrical in-
dex under the HBase architecture and remote-sensing tile access
under the HDFS architecture were carried out. The experimental
environment was a Hadoop service cluster with five nodes. Each
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TABLE III
REMOTE-SENSING IMAGE DATA DETAILS

Fig. 5. Distribution map of the Landsat-series satellite data.

node had 64 GB of memory, 2 TB of disk, and a CentOS 7.5
operating system. The Hadoop version was 2.7.3, and the HBase
version was 1.4.0.

A. GeoSOT-ST-Based Asymmetrical Spatiotemporal Index
Experiments in HBase

1) Experimental Data: The GeoSOT-ST-based asymmetri-
cal spatiotemporal index experiments in HBase used 8 236 624
Landsat remote-sensing metadata records provided by the U.S.
Geological Survey as the experimental data (see Table III).
According to the longitude and latitude of the center point of
each image (see Fig. 5), it can be seen that the data have obvious
asymmetrical temporal and spatial distribution characteristics.

2) HBase-Based Asymmetrical Spatio-Temporal Index Ex-
periments: In order to test the efficiency of the remote-sensing
metadata retrieval, a series of spatial range query experiments
were carried out on the remote-sensing metadata stored in the
HBase table. The query conditions of the satellite and sensor
were set to Landsat5 and TM. The time range query was set

to the entire range; that is, the filtering conditions were from
January 1, 1970 to December 31, 2020. In terms of spatial query
conditions, they were created by randomly selecting points in
the center of the world map and then constructing a query area
of 1/2, 1/4, 1/8, 1/16, and 1/32 of the global space (GS). In
summary, Landsat5, TM, and 1970/01/01 to 2020/12/31 were
used as the fixed satellite, sensor, and time query conditions,
and the spatial query conditions were changed to GS/2, GS/4,
GS/8, GS/16, and GS/32. Five experiments were carried out to
evaluate the effectiveness of the proposed model in terms of the
time for a query to produce results, defined here as the time
consumption. It should be added that in this experiment, due to
the large amount of metadata, the prepartition level of the HBase
region was set to level 2. Therefore, we named our solution for
this experiment GeoSOT-ST2.

In addition, in order to compare and verify the effective-
ness of the GeoSOT-ST2 method proposed in this study, com-
parison experiments were carried out with a traditional “lati-
tude + longitude + time” query, “GeoSOT + time” query, and
the GeoSOT-ST query. What needs further explanation is that
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Fig. 6. Time consumption of the four data organization methods under different spatial query conditions.

the GeoSOT-ST experimental program only used the GeoSOT-
ST grid code to generate the HBase RowKey, and the preparti-
tioning of the HBase region was not performed during the table
creation process.

The time consumption of the four data organization methods
under different spatial query conditions is shown in Fig. 6.

It can be seen from Fig. 6 that under the same query conditions,
the GeoSOT-ST2 data organization model, in which the prepar-
tition level of the HBase region is set to level 2, had the highest
data retrieval efficiency; when the spatial query range is less
than GS/4, the query efficiency of the GeoSOT-Time solution
is always better than that of the GeoSOT-ST data organization
method without HBase region prepartitioning; however, when
the spatial query range is greater than GS/4, the query efficiency
of the GeoSOT-Time solution drops sharply, while the query
efficiency of the GeoSOT-ST method does not drop much;
and when the spatial query range is close to GS/2, the query
efficiency of the GeoSOT-Time method is already lower than that
of the GeoSOT-ST; and the worst was the traditional “Latitude +
Longitude + Time” data organization method.

The possible reasons are as follows.
1) The “Latitude + Longitude + Time” method required three

conditions to filter, and, thus, the query efficiency was low.
2) For the GeoSOT-Time method, the data retrieval process

is mainly realized by the RowKey and time field filtering
joint retrieval. The RowKey is constructed by GeoSOT
coding, with shorter length. When the spatial query range
is relatively small, the GeoSOT-Time method will first use
the RowKey constructed by GeoSOT encoding to lock a
smaller range of rows, and then only needs to perform
time field filtering on the selected rows, which can greatly
improve the retrieval efficiency.

3) For the GeoSOT-ST method, the data retrieval pro-
cess is mainly realized by the RowKey constructed by

GeoSOT-ST coding. The composition sequence of the
RowKey coding is “GeoSOT-based spatial coding + time
coding + satellite and sensor coding + tileID,” with longer
length. Since the time query range is the entire time range,
even when the query space range is small, the GeoSOT-ST
method still needs to traverse all RowKeys in lexico-
graphic order, so the GeoSOT-ST query efficiency is lower
than the GeoSOT-Time method. With the increase of the
query space range, the number of rows that GeoSOT-Time
needs to filter twice increases, and the number of RowKeys
traversed by the GeoSOT-ST method is not much different,
so the query efficiency will be higher than that of the
GeoSOT-Time method.

4) Due to the prepartition level of the HBase region is set
to level 2, the GeoSOT-ST2 data organization model ef-
fectively realized the uniform distribution of the massive
remote-sensing metadata in the HBase region. During data
retrieval, the asymmetrical spatiotemporal distribution of
remote-sensing metadata will not cause hotspot access
problems, so the data query efficiency of the GeoSOT-ST2
method is higher than that of GeoSOT-ST, in which the
HBase region prepartition is not performed.

B. Remote-Sensing Tile Storage Optimization Experiment

In the remote-sensing tile storage optimization experiment,
MODIS data were selected from 2000 to 2010, and the original
storage format was HDF. The DataCube data ingest API was
called for the physical segmentation to ensure that the size of
each slice was less than 128 MB and that the storage in the HDFS
was not diced, so as not to affect the time and space correlation
of the tiles.

1) Spatiotemporal Relevance Analysis of the Tiles in HDFS:
The segmented tiles were uploaded to the HDFS and were
distributed to multiple data nodes in an HDFS cluster. By
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Fig. 7. Correlation degree of the tiles in HDFS varied with the volume of the file.

reading the tile metadata of each data node and calculating
the time and space information of all the tiles in the node,
the spatiotemporal correlation degree of all the tiles in the
node could be calculated. If the temporal and spatial correlation
degree of tiles stored in a data node was higher, the probability of
them being accessed at the same time would be greater, thereby
avoiding a large number of disk searches and greatly improving
the efficiency of a data query. Measuring the temporal and spatial
correlation of the storage tiles of each data node can effectively
verify the effectiveness of the data organization scheme
based on GeoSOT-ST spatiotemporal grid coding proposed in
this study.

Assuming that the spatiotemporal association rate is
STAssociationRate, the number of spatiotemporal weak-association
data is wr, the total number of files is F, the number of replicas
is N, and the number of data nodes is C, then the calculation
formula for the spatiotemporal association rate is as follows:

STAssociation Rate =

(
1− wr × C

F ×N

)
× 100%. (4)

What needs to be added is that calculating the number wr of
files with weak spatiotemporal associations on a node mainly
depends on the spatiotemporal identification of each tile. If the
number of spatiotemporal identifiers with the same code is less,
the degree of spatiotemporal correlation is considered to be
weaker. In this experiment, if the spatiotemporal identification
codes of the two tiles are not the same in 4 or more bits, the two
tiles will be considered to be weak spatiotemporal associations.
In this article, the calculated spatiotemporal association rate
STAssociationRate will be used as an evaluation index to measure the
spatio-temporal correlation of the tiles in the HDFS. A total of
50 GB was cut from the MODIS data, and it was then uploaded

to the HDFS; this was repeated five times. After each upload,
the HDFS data volume was 1 GB, 5 GB, 10 GB, 25 GB, and
50 GB, respectively, and the spatiotemporal correlation of all the
HDFS tiles was calculated. In order to effectively illustrate the
effectiveness of the GeoSOT-ST-based tile distributed-storage
optimization scheme proposed in this study, it was compared
with the traditional HDFS default replica placement scheme.
The results of comparing the spatio-temporal logic correlations
are shown in Fig. 7. The GeoSOT-ST-based replica placement
strategy proposed in this article is an improvement to the native
HDFS system, so the solution proposed in this study was named
HDFS_Imp and the native HDFS replica placement scheme was
named HDFS_Org.

It can be seen from Fig. 7 that the improved HDFS replica
placement strategy always made the spatiotemporal corre-
lation of files higher than the original HDFS. When the
data volume was small, the file association rate of the im-
proved HDFS replica placement strategy was much higher than
that of the original HDFS; when the data volume gradually
increased, the file association rate of the two strategies
gradually approached each other. This may be due to the fact
that the experimental HDFS cluster had too few nodes. When the
amount of tiles is too large, the temporal and spatial correlation
between the tiles will increase. If the number of cluster nodes of
the server increases, the data will be evenly distributed to mul-
tiple nodes, and the improved HDFS replica placement strategy
will be greatly improved than that of the original strategy.

2) Tile Reading and Writing Experiments: The image tile
reading and writing experiments were performed on the im-
proved HDFS system, and its efficiency was compared that of
the native HDFS system. For the data-writing experiment, 1 GB,
5 GB, 10 GB, 25 GB, and 50 GB data upload trials were carried
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Fig. 8. Comparison chart of file-writing efficiency in HDFS.

Fig. 9. Comparison chart of file-reading efficiency in HDFS.

out on both the improved HDFS system and the native HDFS
system, and their respective upload times were recorded. The
final experimental results are shown in Fig. 8.

As can be seen from Fig. 8, when writing files, the efficiency
of HDFS_Imp was not much different from that of HDFS_Org,
and even its writing efficiency was slightly lower than that of
HDFS_Org. The reason is that the replica storage strategy based
on the consistent hashing algorithm proposed in this article needs
to calculate the hash value of the time and space information
when selecting the data replica. It also needs to extract the
attribute information from all the data nodes, and, finally, hash

value mapping is needed to complete the copy placement. All of
this processing is very time-consuming. Therefore, the strategy
proposed in this article was lower than the default HDFS copy
storage strategy in terms of data storage efficiency. However,
given the “write once, read many” operating mode of the big
data framework, a slight write performance degradation can be
tolerated.

For the data-reading experiment, 1 GB, 5 GB, 10 GB, 25 GB,
and 50 GB of data uploaded to the HDFS system was read, and
the time taken was recorded. The final experimental results are
shown in Fig. 9.
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As can be seen from Fig. 9, the file-read efficiency of
HDFS_Imp was always higher than that of HDFS_Org. When
the amount of data was small, the file reading efficiency of the
two methods was not much different. However, when the amount
of data was large, the improved HDFS strategy proposed in
this article greatly improved the efficiency of the data reading.
Specifically, compared with the original HDFS storage strategy,
the improved HDFS strategy in this article improved the data
access efficiency by about 40%. With the gradual increase in the
amount of access data, the efficiency improvement was increas-
ingly obvious, which strongly demonstrates the superiority of the
replica placement strategy based on the GeoSOT-ST space-time
hash-coding proposed in this research.

V. CONCLUSION

The high-efficiency organization model of large-scale and
long-term remote-sensing data in a cloud-computing environ-
ment proposed in this study eliminates the metadata differences
between different satellite sensors by constructing a unified
metadata field, eliminates the differences in the spatial reference
and storage format of multisource remote-sensing data through
DataCube physical segmentation and format conversion, con-
structs a GeoSOT-ST-based asymmetrical spatio-temporal index
to optimize the metadata storage strategy in HBase, and realize
a distributed storage optimization of the remote-sensing tiles
based on a consistent hash coding of the spatiotemporal infor-
mation. Through the massive metadata retrieval experiment in
HBase and the remote-sensing tile reading and writing exper-
iments in HDFS, it was demonstrated that the proposed data
organization method can effectively improve the retrieval and
access efficiency of large-scale and long-term remote-sensing
data.

However, in order to maintain the consistency of the block
size in HDFS, this study uniformly divided the multisource
remote-sensing data into 128 MB tiles. However, as the types of
multisource remote-sensing data gradually increase, the spatial
resolution between different types of remote-sensing data will
be quite different. For example, the spatial resolution of MODIS
is 1 km, while the spatial resolution of the GaoFen-series satel-
lite data is 1 m or even sub-meter. In this way, the 128 MB
tile segmentation mode was uniformly adopted, and the space
covered by the segmented tiles will vary greatly. Using the
space-time coding information of the center point proposed
in this study to construct the tile identification will cause the
reduction of data query accuracy. Therefore, how to set an
appropriate slice size according to the difference in the spatial
resolution of the remote-sensing data or how to establish an orga-
nization strategy for remote-sensing data with different spatial
resolutions will be the focus of future work. In addition, this
study is mainly designed for the efficient organization of long
time-series remote sensing data under the Hadoop ecosystem,
and it slightly reduces the writing efficiency in order to obtain
efficient data acquisition. If you want to use it for the organi-
zation and management of vector data, such as trajectory data,
road network data, etc., or apply the design to other distributed
file system or distributed database, such as Ceph, Canssandra,

etc., or greatly improve the efficiency of data reading and
writing at the same time, still needs further improvement and
optimization.
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