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Automatic Detection and Segmentation of Barchan
Dunes on Mars and Earth Using a Convolutional

Neural Network
Lior Rubanenko , Sebastian Pérez-López, Joseph Schull, and Mathieu G. A. Lapôtre

Abstract—The morphology of isolated barchan dunes on Mars
and Earth may shed light on the dynamic conditions that form
them, their migration direction and the physical properties of the
sediments composing them. Prior to this study, dune fields have
been largely analyzed manually from aerial and satellite imagery, as
automatic detection techniques are often not sufficiently accurate in
outlining dunes. Here, we employ an instance segmentation neural
network to detect and outline isolated barchan dunes on Mars and
Earth. We train and test the model on martian targets using Mars
reconnaissance orbiter (MRO) context camera (CTX) images, and
find it sufficiently accurate (mAP=77% on the test dataset) to
characterize dune field dynamics. Using our trained model, we
detect and map the global distribution of barchan dunes relative
to previously mapped dune fields, and find that barchan dunes are
more abundant in the northern hemisphere than in the southern
hemisphere. These contrasting abundances of barchans may reflect
latitudinally dependent wind regimes, sediment supply, or sediment
availability.

Index Terms—Machine learning, neural networks, planets:
Mars, geology.

I. INTRODUCTION

SAND seas on Mars and Earth are riddled with dunes created
by accumulating sand particles carried by the wind. These

and other windblown features have been thoroughly studied in
situ by rovers [1]–[3], which allow investigation of individual
landforms, and remotely by orbiters [4]–[7], which provide
a view of their dynamics at dune-field to global scales. In
conditions of limited sand availability and approximately uni-
directional wind, windblown landforms tend to take the shape
of isolated and crescentic barchan dunes. Barchan dunes are
characterized by horns pointing downwind, and a steep, angle
of repose slipface in their lee. As the dip directions of slip-faces
of barchan dunes are typically oriented in the dominant wind
direction, the morphology of barchan dunes is routinely used
to infer wind conditions on Mars and Earth through manual
analysis of aerial or satellite imagery [6], [8]–[13]. However,
performing such analyses at a global scale remained challeng-
ing and impractical until recently. To date, automatic detection

Manuscript received August 20, 2021; accepted August 26, 2021. Date of
publication September 3, 2021; date of current version September 27, 2021.
(Corresponding author: Lior Rubanenko.)

The authors are with the Department of Geological Sciences, Stan-
ford University, Stanford, CA 94305, California (e-mail: liorr@stanford.edu;
sebpl01@stanford.edu; jschull@berkeley.edu; mlapotre@stanford.edu).

Digital Object Identifier 10.1109/JSTARS.2021.3109900

techniques based on traditional computer vision algorithms have
been largely ineffective at identifying the outlines of dunes from
images, due to the difficulty of separating the features of interest
from the background (see Fig. 1). Digital elevation models may
assist the detection process but are often not available at the
required resolution. In the past decade, the advent of machine
learning (ML) and deep learning (DL) has vastly improved
object detection and classification from images. For example,
algorithms based on support vector machines or R-Vine clas-
sifiers were reported to yield classification accuracy exceeding
80% for various types of dunes on Mars [14]–[16]. However,
these techniques, which excel at detection and classification,
are not sufficiently accurate for segmenting individual dunes
and extracting their outlines, which is critical to determine their
migration directions. Here, we employ Mask regional convolu-
tional neural network (R-CNN), [17], a state-of-the-art instance
segmentation neural network, to automatically detect and outline
barchan dunes on Mars and Earth.

ML and DL techniques have great potential in the field of
planetary science and planetary geomorphology in particular,
as those fields often rely on analysis of remote-sensing data.
The goal of this work is to demonstrate the efficacy of DL
techniques in harvesting and analyzing planetary data, assess its
accuracy by validating it with manually mapped dune fields on
Mars and Earth, investigate the global distribution of barchan
dunes on Mars relative to other landforms and discuss how
transfer learning can be used to expand the applicability of an
already trained model to remote sensing data on Earth and other
terrestrial planetary bodies.

II. AUTOMATIC OBJECT DETECTION IN IMAGES

A. Traditional Object Detection Techniques

Traditional computer vision object detection techniques rely
on sharp image gradients for edge detection [19]. As a result,
these methods tend to be inaccurate when the objects have
soft, less pronounced borders, and are prone to identifying false
positives. In many cases, the visual similarity between dunes
and their substrate make them blend in with their environment
in aerial and satellite images, reducing the effectiveness of tradi-
tional edge detection techniques. To illustrate the performance
of traditional non-ML computer vision algorithms in detecting
dunes on Mars, we applied the Canny operator [18], a popular
non-ML edge-detection algorithm, to a Mars Reconnaissance
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Fig. 1. Automatic detection of dunes on Mars in CTX images using traditional and ML methods. (a) A field of barchan dunes near 44.58◦E,−41.45◦N.
(b) Dunes detected using the traditional, non-ML, Canny edge detection computer vision algorithm [18] with gmin = 50 and gmax = 150. Using different threshold
values affects detection sensitivity and thus true- and false-detection statistics. (c) Dunes detected by the Mask R-CNN CNN. Throughout the figure, true positive
and false positive detections are indicated in white and red, respectively.

Orbiter (MRO) Context Camera (CTX) [20] image that contains
several dunes (see Fig. 1).

The Canny operator detects the edges of objects in an image
by thresholding its gradient. The algorithm discards gradient
values smaller than gmin, and keeps gradient values greater than
gmax. Values between gmin and gmax are preserved only if they are
connected to pixels whose gradient values are greater than gmax.
Consequently, the Canny operator is sensitive to the selection of
these thresholds, which typically need to be manually optimised
for each image. Although some techniques [21] may help in
automating this thresholding process, reliably detecting faint
objects in images without using ML remains challenging as even
with optimized parameters, non-ML methods under-perform
ML methods [22].

B. ML-Based Object Detection

In the past decade, artificial neural networks have revolution-
ized object detection in images. This family of deep supervised
ML techniques achieves abstraction comparable to that of hu-
mans by stacking layers of parameters provided as inputs to
nonlinear activation functions [23]. Each layer in the network
extracts higher-level features from the previous layer: the first
layers usually learn simple features such as edges or corners, and
deeper layers can identify more abstract features such as faces,
animals, or letters and numbers. Here, we employ Matterport’s
implementation of Mask R-CNN [17], [24], an instance seg-
mentation neural network, to detect and outline barchan dunes
on Mars and Earth. Supervised artificial neural networks are a
type of ML algorithms that map problems (input) to solutions
(output) by learning from labeled examples. Here, we briefly
review how these models operate and refer interested readers to
more detailed texts, such as [23].

Artificial neural networks are built from mathematical func-
tions called artificial neurons, which are modeled after biolog-
ical neurons. An artificial neuron takes one or more inputs and
multiplies them by weights before feeding the outcome through
a nonlinear activation function. In a neural network, neurons

are aggregated into layers organized such that the output of each
layer is passed as input to the next layer. When analyzing images,
it is useful to add convolutional and pooling layers to the model,
which subsample or apply filters to the images and enhance
the model’s ability to identify localized features. In this type of
CNN, each layer in the model extracts higher-level features from
the previous layer.

Artificial neural networks excel at supervised learning tasks,
such as finding the weights that, given a vector of inputs, best
reproduce a vector of expected outcomes. To this end, the
output of the last layer of a neural network is passed to a loss
function that calculates the deviation of the model output from
the expected output. Then, in an iterative optimization process
called training, the loss function is minimized with respect to
the weights employing methods such as back-propagation and
gradient descent [23], [25]. The weight matrix that minimizes
the model loss is then used to make predictions on inputs
that the model has not seen as part of the training process.
Neural networks which learn to recognize specific features in
images are complex and may require hundreds of billions of
parameters in some cases [26]. Due to their complexity, DL
models typically employ techniques such as L2 regularization,
normalization layers, or dropout [23], to mitigate overfitting
or gradient saturation, which affects learning efficiency. For
example, in L2 regularization (or weight decay), the L2 norm
of the weights matrix multiplied by a regularization parameter,
ω, is added to the loss function to penalize it. As the goal of the
training process is to minimize the model loss, regularization
acts to decrease the magnitude of the model weights, which
reduces the complexity of the model. Similarly, in the process
of dropout neurons are randomly omitted from the network to
reduce the number of degrees of freedom of the model [23].

III. METHODS

Mask R-CNN is an instance segmentation neural network
that detects the locations of objects in images and the pixels
contained within their outlines (masks). Building on several
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Fig. 2. A simplified description of the architecture of Mask R-CNN, the neural
network employed in this study. Input images are fed through a backbone neural
network, chosen here to be ResNet 101 [29], which outputs a feature map that
highlights objects. The feature map is passed to a RPN, trained to separate
the background from objects and propose ROIs. ROIs, along with the feature
map, are passed through an algorithm called ROI align, whose role is to fix
inaccuracies due to roundoff errors. Finally, the information is passed through
additional layers to different loss functions that are optimized to classify, find
the bounding box, and segment detected objects.

antecedent techniques [27], [28], Mask R-CNN operates in three
stages. First, a CNN called backbone extracts a feature map from
an input image, typically employing well-studied architectures
such as ResNet [29]. The number of layers in the backbone
affects the model’s complexity and needs to be manually selected
to avoid overfitting or underfitting. In the second stage, a region
proposal network (RPN) scans the feature map and proposes pos-
itive and negative anchors—parts of the image that are likely to
contain objects or background, respectively. The boundaries of
positive anchors are determined by minimizing the ratio between
the intersection and the union of the predicted bounding box with
the manually labeled bounding box (also called intersection over
union, or IoU). Then, positive anchors are joined and filtered
employing nonmaximum suppression [30] to form regions of
interest (ROIs). In the third and last stage, these ROIs are
examined by a feature pyramid network [31] to determine their
classification and their binary pixel mask employing several loss
functions. Fig. 2 shows a schematic of the model architecture.
When using the model to predict and segment objects in images,
it returns a list of objects’ binary masks, along with labels and
detection confidence. Compared with non-ML techniques such
as the Canny operator, Mask R-CNN demonstrably performs
better in identifying and outlining individual barchan dunes, as
empirically shown in Fig. 1. A more quantitative comparison
of traditional and DL based object detection techniques can be
found in [22] and references therein.

1) Training Mask R-CNN to Detect Barchan Dunes: Our
study focuses on the detection of isolated barchan dunes. To
compose a training dataset, we extracted images of dune fields
from the CTX global mosaic (5m/pixel, [32]). Poleward of
latitude ±70◦, where dune fields are more abundant [7], we
extracted all images from the global mosaic. Between latitudes
±70◦, we focused our efforts on areas previously marked as
dune fields in the Mars Global Digital Dune Database [7]. A
total of 137 111 images were extracted, cylindrically projected
to preserve distances, standardized, and cropped to a resolution
of 832× 832 pixels for memory considerations. Finally, because
the input to Mask R-CNN is a three-channel (RGB) image, we
replicate the single-channel CTX image three times following
the procedure of [33].

TABLE I
THREE EXAMPLE SETS OF MODEL CONFIGURATIONS AND THEIR COMPUTED

MEAN AVERAGE PRECISION (MAP) VALUES

The performance of our optimized model can be evaluated by its corresponding mAP
score, which takes into account both false negatives and false positives. higher mAP
indicated better agreement between the detected bounding boxes and the labeled
bounding boxes. mAPval and mAPtest refer to the mAP score evaluated for the
validation (n = 200) and test (n = 50) datasets.

We prepared a training database consisting of 1076 images
that were randomly selected from the extracted CTX images.
To ensure the training images were as uniformly distributed
as possible across Mars, we binned the surface in equal-area
bins and sampled 10− 50 images from each bin (depending on
the local density of dunes) to create a geographically balanced
dataset. In addition to an imagery dataset, training Mask R-CNN
requires a list of binary masks that outline the objects of interest
in each training image. Using Labelbox’s online instance seg-
mentation platform [34], we outlined 9543 instances of barchan
dunes in the images, opting to ignore connected, barchanoidal
ridges, linear, and other complex dune types. Next, we divided
the labeled data into two subsets: a training dataset (80% of
the images) and a validation dataset (20% of the images) to be
used to evaluate the hyperparameters of the model. We trained
the model for 120 training epochs (see Appendix A for detailed
training information) and used the ResNet101 backbone. At the
end of the training process, the model weights were saved and
used to detect dunes in extracted unlabeled images.

2) Model Accuracy: Model accuracy in classification tasks
can be evaluated by dividing the number of correctly classified
features by the total number of features. In detection, where
the location of the object is as important as its classification,
accuracy is typically estimated through methods such as the
mean Average Precision (mAP) that consider true positives (TP),
false positives (FP) and false negatives (FN). To calculatemAPt,
a threshold IoU t is selected (typically, t = 0.5) such that objects
with IoU > t are considered true positives. For a given t, the
average precision (AP) for a given image is computed as the
definite integral of the precision, given by TP/(TP + FP ),
with respect to the recall, given by TP/(TP + FN) from
0 to 1. The mAP is the mean of the AP for all the images
in the dataset. As the model hyperparameters were tuned on
the validation dataset, the mAP computed using it may be
overestimated. To address that, we annotated an additional test
dataset consisting of 50 randomly selected images, and compute
its mAP value. In Table I , we show the mAP values for the
validation dataset in addition to the test dataset.

3) Model Initialization, Hyperparameters, and Image Aug-
mentation: Two algorithms were tested to optimize model
weights: stochastic gradient descent (SGD, [23]) and adaptive
gradient descent (Adam, [35]). We find that, as also noted in
previous studies [17], SGD empirically outperforms the adaptive
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TABLE II
A LIST OF HYPERPARAMETERS USED THROUGHOUT THIS WORK FOR THREE

EXAMPLE MODEL CONFIGURATIONS

For relevant mAP values, please see Table I.

methods, which tend to overshoot (miss) Mask R-CNN’s loss
minima.

Weights of ML models can either be initialized with random
values or with values that were previously optimized for a
different dataset. The latter method, referred to as transfer learn-
ing [23], [36], [37], accelerates model convergence but may lead
to inaccuracies if the original model is under- or overfitted. We
tested both random weight initialization and transfer learning,
using weights from the common objects in Context (COCO)
dataset [38] and weights derived from a crater detection model
that was trained using digital terrain model (DTM) data [33].
As expected, transfer learning outperformed random weight
initialization but no significant differences were found between
the COCO initialization and the crater model initialization. We
eventually elected to use COCO, as it yielded a slightly higher
model mAP (see Table I). We note that the small difference
between the crater weights [33] and COCO initializations may
result from the fact that [33] also trained their model on the
COCO dataset, and their additional training on DTM does not
significantly contribute to the convergence of our model.

In contrast to model weights, which are optimized during
training, model hyperparameters, which control the training
process, are prescribed at the onset. Mask R-CNN has a wide
range of hyperparameters that can be adjusted to improve model
optimization. For example, the user may tune the depth (number
of layers) of the backbone, the typical scale of anchors used by
the RPN, or adjust parameters related to the training itself such
as the learning rate and learning momentum, which affect model
convergence rate and accuracy [17]. The model we adopted
for dune detection achieved an mAP50 of 0.77 on the test
dataset, which we found to be sufficient to gather representative
morphometric statistics from dune outlines (see Table I).

Our training strategy was to first overfit the model, and then
gradually add L2 regularization and image augmentation [39]
to reduce validation loss. Several popular image augmentation
techniques were tested. Through an iterative process, we found
that rotating the image by a random angle effectively reduced
false identification of impact craters as dunes due to the circular
shape of craters. Additionally, varying the image contrast helped
improve detection of dunes in CTX with very low contrast. The
choice of the regularization parameter, ω, and the probability
of augmenting an image during training, Paug, are also hyperpa-
rameters of our model. We tested a wide range ofω andPaug, and
empirically found a relatively small ω and high Paug performed
best (see Table I).

The total loss outputted by Mask R-CNN is the weighted
sum of the individual loss functions of the RPN and the clas-
sifier. By adjusting the weights of this sum (not the model
weights optimized during training), the user can tune different
aspects of model performance, such as the losses associated
with detecting objects and their bounding boxes, and the loss
associated with classifying detected objects and their masks.
Consequently, these loss weights are important hyperparame-
ters. We empirically found that doubling the loss weight con-
trolling the performance of the RPN in distinguishing objects
from background (RPN classification loss) improved the model
mAP by approximately 10%. Adjusting other loss weights did
not have a measurable effect on model loss and accuracy.

IV. RESULTS

A. Detection of Barchan Dunes on Mars

Of the 137 111 images in our dataset, 55 674 were found by
the model to contain objects suspected to be barchan dunes.
Because barchan dunes rarely appear as solitary landforms but
tend to occur in fields of isolated dunes, all downselected images
containing less than two objects were discarded to avoid the
inclusion of spurious detections and therefore, increase the ro-
bustness of our results. Our final compilation contains 1 005 701
objects, distributed across 36 656 images. Fig. 3 illustrates the
global distribution of detected barchan dunes, displayed as the
number density of detected objects per 100 km2. Our model
was not optimized to detect all instances of barchan dunes
(see Table I, which lists models mAP values). However, since
accuracy is not expected to vary systematically across the surface
of Mars, Fig. 3 provides a reliable estimate of the relative spatial
number density of martian barchan dunes on Mars.

To characterize the latitudinal distribution of barchan dunes on
Mars, we calculate the ratio between the surface area of barchan
dune fields and the surface area of all dune fields between
latitudes ±70◦N [Fig. 3(b)]. First, we compute the surface area
of a barchan dune field contained within a single CTX image
as the area of the convex hull defined by the centers of mass of
dunes found within the image, as illustrated in Fig. 3(c). Then,
we bin and sum the areas of these convex hulls in bins of 10◦

latitude. To calculate the ratio between the area of barchan dune
fields and all other types of dune fields, we similarly bin and sum
the area of all types of dune fields as reported by [7]. Although
many dunes are located in high latitudes, we choose to focus
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Fig. 3. (a) The global number density of barchan dunes on Mars drawn over the MRO CTX global mosaic [32]. White contours are dune fields of all types, as
previously mapped by [6], [40], [41], and [7]. In the northern polar region, the majority of the dune fields on Mars are barchan dunes, in contrast to the southern polar
region. In some cases, the barchan dune density in the north polar region exceeds 1000 dunes / 100 km2. (b) The area fraction of barchan dune fields normalized
by the area fraction of all dune fields for a given latitude, plotted in bins of 10◦ latitude. (c)–(e) Three examples of objects identified as barchan dunes by the neural
network. (c) A true positive detection of barchan dunes near the north pole (−47.7◦E, 75.3◦N). Many of the isolated barchan dunes in the northern polar region
have an atypical extended horn or a second slip-face, which may be caused by bimodal-wind regime or collisions between dunes [8]. The black outlines indicate
the boundaries of the convex hull used to estimate the surface area coverage of the dune field in the image. (d) Objects classified as barchan dunes in a CTX image
(right) were discovered to potentially be a likely false positive in a higher resolution HiRISE image (−167.4◦E,−76.2◦N). (e) A true negative example of dunes
in South Crater (24.1◦E,−76.5◦N).

this analysis to ±70◦N to avoid complications linked to sus-
pected noneolian features [such as those illustrated in Fig. 3(d)].
In the northern hemisphere, we find barchan dunes constitute
∼ 40− 80% of the dune fields in areal extent. In the southern
hemisphere, this ratio is significantly lower, ∼ 0− 45%. This
difference may reflect latitudinally dependent wind regimes or
differences in sediment supply and availability. Notably, several
studies reported evidence for the presence of near-surface ice
poleward of latitude −45◦N [42], [43], The relative paucity of
barchan dunes south of −45◦N could thus reflect a decreased
sand availability due to stabilization by near-surface volatiles.

In the north-polar region (> 70◦N), we find ∼ 92% overlap
between dunes previously mapped by [6] and the dunes detected
by our model, which indicates that the majority of dune fields
near the north pole consist of isolated barchan dunes. The overlap
is computed as the surface area of dunes in our dataset divided
by the surface area of both datasets. In some cases, as shown
in Fig. 3(c), isolated barchan dunes are asymmetric, with an
elongated horn or a second slip-face, which may form as a

result of wind bimodality or collisions between dunes [8], [9].
In the south polar region (< −70◦N), the average areal overlap
between our dataset and [6] is ∼ 14%, reflecting the propensity
of south-polar dunes to occur as connected rather than as isolated
dunes [40], which could reflect a greater availability of loose
sand at high southern latitudes [44]. Potentially contributing to
this discrepancy is the abundance of dark, possibly sublimation-
driven features, which at CTX resolution have a similar appear-
ance to some of the fainter dunes in our training set [see Fig. 3
(d)]. The noneolian nature of these features only becomes more
evident upon inspection of higher-resolution imagery from the
high resolution imaging science experiment (HiRISE).

B. Detecting Terrestrial Barchan Dunes Employing Our
Model Trained on Mars

The weights produced by the neural network are not only
suitable for detecting barchan dunes on Mars, but may also
be used to detect barchan dunes on other planetary bodies.



RUBANENKO et al.: AUTOMATIC DETECTION AND SEGMENTATION OF BARCHAN DUNES ON MARS AND EARTH 9369

Fig. 4. Detecting terrestrial barchan dunes using a model that was trained on
martian barchan dunes. (a) Dunes in the northern Sahara, (−12.98◦E, 27.69◦N;
source: Google Earth, CNES/Airbus). (b) Barchan dunes in the Bodélé Depres-
sion, Chad (17.79◦E, 16.68◦N; source: Google Earth, Maxar Technologies).

Here, we present a preliminary analysis, which demonstrates
the performance of our model, trained only using satellite im-
agery of the martian surface, when applied directly to terrestrial
dune fields without any further training. Fig. 4 illustrates the
model’s performance on two terrestrial barchan dune fields.
The dunes in the first site we studied, located in the northern
Sahara, are composed of beach sand and migrate toward the
south-southwest. The second dune field is located in the Bodélé
Depression, a∼ 133500 km2 paleolake in Chad [45]. The dunes
in the depression are composed of low-density diatomite sand,
mobilized by strong winds coming from the northeast. Unlike
most barchan dunes on Mars, which are composed of basaltic
sand [46]–[48] and appear darker than their substrate, dunes in
the Bodélé Depression are lighter than the surface over which
they migrate due to the light-toned source material [45].

We find that even without further tuning of the model weights
using terrestrial examples, it produces useful results, detecting
∼ 50− 70% of all barchan dunes in the scenes we reviewed not-
ing that a more comprehensive survey is warranted to accurately
determine the performance the model in analyzing terrestrial
images. In some cases, such as in the Bodélé depression, Chad,
the dune-background contrast is opposite to that of typical mar-
tian examples. This caused the model to initially underperform
and detect only a small fraction of the dunes in the field. We
significantly improved the model performance up to a ∼ 70%
detection rate by inverting image colors, to better mimic mar-
tian dune-substrate contrasts. Therefore, we recommend users

interested in employing our model weights to detect terrestrial
barchans to preprocess the images by enhancing their contrast
or inverting their color, where the dunes are brighter than their
substrate. To further increase the model’s accuracy, our weights
could be further optimized using labeled terrestrial examples in
a process of transfer learning [36].

V. CONCLUSION

Research in Earth and planetary sciences increasingly relies
on global, high-resolution remote sensing data acquired by orbit-
ing satellites. Performing systematic analyses of surface features
at these scales, whether manually or even automatically through
non-ML techniques, has remained a challenge. In this work, we
employ an instance segmentation neural network, Mask R-CNN,
to detect and outline barchan dunes on Mars and Earth. We
trained the model on 9543 isolated barchan dunes, achieving
a mAP score of 77%, which we found sufficient to investigate
morphological trends in barchan dune fields.

Using the trained model weights we detected and outlined
over106 features, demonstrating the efficacy of DL techniques in
harvesting planetary remote sensing imagery data. We compare
the global surface area coverage of barchan dune fields detected
by our model to that of previously mapped dune fields, and find
a latitudinal trend in the relative abundance of barchan dunes. In
the northern hemisphere, on average ∼ 60% of the total area
covered by dune fields is covered by barchan dunes—much
higher than the relative area fraction of barchan dune fields in
the southern hemisphere, which is on average ∼ 30%. Poleward
of latitude −45◦N, we find that much fewer dune fields contain
barchan dunes.

The results presented in this study could be used to further
explore barchan dunes on Mars and Earth. As demonstrated
above, our trained model weights could be used to detect barchan
dunes on Earth with an accuracy of ∼ 50− 70%. If a higher
accuracy is desired, our trained weights could be used for transfer
learning of a separated terrestrial instance segmentation DL
model by adding a small number of terrestrial examples. Finally,
the global catalog of barchan dunes we compiled in this study
could be used to infer the migration direction of barchan dunes
globally on Mars, which could prove useful for studying surface
winds and constraining global climate models.

APPENDIX A
COMPLETE LIST OF THE MODEL HYPERPARAMETERS

For the purpose of reproducing our results, we list be-
low the hyperparameters of the three models discussed in the
manuscript. Hyperparameters not appearing in Table II were set
to their default values in the Matterport implementation of Mask
R-CNN. The model was trained on an NVIDIA GeForce RTX
3090, with 24 GB VRAM for 120 epoches. The walltime of each
trainning session was approximately 24 h.
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