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Identifying Oil Spill Types Based on Remotely
Sensed Reflectance Spectra and Multiple

Machine Learning Algorithms
Ying Li, Qinglai Yu, Ming Xie , Zhenduo Zhang, Zhanjun Ma, and Kai Cao

Abstract—An accurate identification of oil spill types is the basis
of determining the source of leakage, evaluating the potential dam-
age, and deciding a plan of responses for an oil spill event. Despite
sufficient studies that interpreted and analyzed hyperspectral data
of oil spills, these studies that identify or classify oil spill types is
rather limited. Aiming at identifying different types of oil spills,
this article analyses the reflectance spectra obtained from high-
resolution hyperspectral sensors using multiple machine learning
methods. Four types of machine learning models are applied in
this article: random forest; support vector machine (SVM); and
deep neural network (DNN); and DNN with differential pooling
(DP-DNN). The training and testing data are collected by field
experiments under different environmental condition in order to
verify the robustness of the machine learning models. The charac-
teristics of reflectance is briefly described, and the results conform
with results from previous studies. The performances of the ma-
chine learning models are evaluated and compared in terms of both
accuracy of prediction and computational complexity. The results
indicate that the two DNN models are able to achieve the most accu-
rate prediction among the four machine learning models at the cost
of more computation. The SVM model, or the proposed DP-DNN
model may be a favorable choice when training time is limited.

Index Terms—Hyperspectral remote sensing, machine learning,
oil spill, oil type identification.

I. INTRODUCTION

O IL leakage from various sources results in different types
of oil spills [1]. For examples, natural leakage or leakage

from ports or platforms is dominated by crude oil, while that
caused by the emission or collision of ships is more likely to
be fuel or engine oil. Therefore, an accurate identification of oil
spill types can help determine the source of leakage, potential
damage, and decide a plan of response [2].

Despite sufficient studies in the area of petroleum hydrocar-
bons (PHCs) spill monitoring [3], the studies that identify or
classify the oil spill types is rather limited. Chemical methods,
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such as chromatographic or mass spectroscopic analysis on
oil samples, can provide accurate inferences on oil spill types
[4], [5]. Some studies also suggested that oil types could be
recognized through laser induced fluorometric spectra [6], [7].
However, these methods usually require in situ sampling, and
could be costly or time-consuming.

Owing to its advantage of high efficiency, remote sensing
technology has been applied in the area of PHCs spill moni-
toring to obtain and interpret information about PHC pollutants.
Specifically, the potential of hyperspectral sensor, which records
a continuous spectrum of high dimensionality and resolution, is
highly considered [8]–[10]. The spectral response of oil slick
has been measured and analyzed in sufficient previous studies.
Clark et al. [11] developed an imaging spectroscopy system
called “Tetracorder” for material identification and mapping.
Their team measured and analyzed reflectance spectra of alkanes
[12], and developed a method for mapping oil spill thickness
using imaging spectroscopy [13]. Lu et al. studied the reflectance
spectra of offshore oil slick and observed an absorption peak at
around 750 nm and a reflection peak at around 820 nm [14].
This result also conformed with the measurements by other
researchers [1], [15], [16].

Analyzing hyperspectral imagery (HSI) using machine learn-
ing algorithms has become a trend in recent studies. As a power-
ful tool of recognizing spatial patterns in images, convolutional
neural network (CNN) has been applied to the field of object
classification in hyperspectral remote sensing [17], [18]. In
term of oil spill detection, researchers have developed various
models using CNN to extract the oil spill zone in HSI [19],
[20], and estimate oil spill thickness [21]–[23]. Nevertheless,
the study that addresses the identification of oil types using
passive hyperspectral remote sensing method is still insufficient.
Oil-type identification is a fine-grained classification problem
that tries to distinguish between different types of oil, which
show very similar pattern in reflectance spectra and are usually
classified as one category in the traditional HSI classification
method. Like other fine-grained classification problem [24], oil
type identification also encounters the difficulty of classifying
foreign bodies with identical spectra. A recent study by Yang
et al. [1] analyzed the characteristics of reflectance spectra for
different types of oil, and tried to classify their types using
support vector machine (SVM).

This article aims at the identification of oil types by rec-
ognizing the intrinsic pattern in the reflectance spectra using
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Fig. 1. Experiment set-up for hyperspectral measurements.

high-resolution hyperspectral sensor and advanced machine
learning algorithm. Four types of machine learning methods
are adopted to complete this objective. As a test to identify oil
spill types through hyperspectral remote sensing, this article also
evaluates the performances of some commonly-used machine
learning models, and provides suggestions on the choices of
methods for the analysis on the reflectance spectra of oil spill.

II. METHODOLOGY

A. Bidirectional Reflectance Distribution Function (BRDF)
Model of Oil Slicks

The measurement and processing of oil slick reflectances is
built on the theoretical basis of the BRDF, which is defined
by Nicodemus [25] as the ratio of reflected light radiance per
spherical angle over the incident light irradiance

BRDF(θi, ϕi, θr, ϕr, λ) =
dLr(θr, ϕr, λ)

dEi(θi, ϕi, λ)
(1)

where Lr is the measured radiance of target and E is the irradi-
ance; θ is zenith angle and ϕ is azimuth angle; index i means
the incident and r means reflected; and λ is the wavelength of
incident light. From the microscopic point of view, BRDF is
the ratio between the number of photons reflected in a small
solid angle and that of the total incident photons. This con-
cept is corresponding to the remote sensing reflectance, which
is calculated as the ratio between water-leaving radiance and
incident irradiance. Otremba and his team conducted a series of
simulations and measurements on the BRDF characteristics of
oil slick. They found that the radiance reflectances distribute
symmetrically along the 0° azimuth plane, and are strongly
affected by incident zenith angle [26]–[29].

In order to simulate the measurement from airborne or
satellite-based remote sensing techniques, the reflectance of oil
slick is measured with a hyperspectral sensor facing vertically
down to the oil slick in this article (see Fig. 1). According the
BRDF model discussed above, the obtained spectrum is the
BRDF at 0 reflected zenith angle, while the illumination angle
depends on the sunlight incident zenith angle at the time of the
experiment.

A Lambertian body standard white plate is applied along
with the hyperspectral sensor to measure and calculate spectral
radiance and incident irradiance. The sensor is calibrated with
standard plate before each measurement of spectral radiance
of oil samples. The incident irradiance is calculated using the
following equation:

Ei(θi, ϕi, λ) =
Ls(θr, ϕr, λ)π

ρ(θr, ϕr, λ)
(2)

where Ls is the measured radiance of standard plate, and ρ is
the reflectivity of standard plate. The standard plate which is co
25% in this article.

B. Material Preparation and Experimental Scheme

The training and testing data for the machine learning models
are collected through field experiments. Four types of oil that
are likely to be witnessed in the oil spill events are selected as
the object of identification and classification in this article.

1) Crude oil of black appearance and moderate viscosity. The
physical property and chemical composition could vary for the
crude oil produced in different places. The crude oil used in
this article is produced in Saudi Arabia and collected from the
Singaporean oil tanker LUSHAN.

2) #0 diesel, which is a commonly-used light ship fuel while
sailing in river and nearshore area. Diesel has yellow appearance
and is lighter in density compared with crude oil.

3) Lubricant (sometimes also referred as marine engine oil),
which is usually applied to ship engine in order to resist the
corrosion in engine part and extend the engine life. Lubricant
also has yellow appearance and is lighter in density compared
with crude oil. The lubricant used in this article is collected from
the YUKUN ship.

4) Heavy diesel, which is a commonly-used heavy ship fuel
while ocean-going. Heavy diesel has black appearance and high
viscosity. Generally, crude oil and heavy diesel are two types of
heavy oil, while diesel and lubricant are two types of light oil.
Fig. 2 shows the appearances of these four types of oil samples.

In the experiments, oil samples are placed separately on
freshly collected sea water in the beakers. The bottom and side
of the beakers are painted as black in order to simulate the
absorption of sea water. A hyperspectral sensor is mounted on
a frame and faces vertically down to the oil sample. Previous
studies indicated that the incident zenith angle, oil thickness, and
wind condition would all affect the reflectance [27]–[30]. Thus,
in order to test the robustness of machine learning models, the
hyperspectral data is collected at different time (under different
incident zenith angle) for nine sets of oil thickness (10.23 μm,
30.69μm, 306.9μm, 511.5μm, 716.1μm, 920.7μm, 1.535 mm,
1.739 mm, and 1.944 mm) under both calm condition and
artificial wind. The oil sample is dripped onto water surface
using a dropper with scale, so the thickness of the oil sample is
calculated based on the ratio of the oil volume and the surface
area of the beaker. It is usually difficult to drip all the oil sample
in the dropper due to its viscosity. Therefore, the oil volume is
measured through the reduced volume in the dropper using the
scale on the dropper. Considering the oil sample stuck on the
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Fig. 2. Photograph of the oil samples. (a) Crude oil. (b) Diesel. (c) Lubricant.
(d) Heavy diesel.

dropper wall, beakers with relatively large diameter (diameter:
129 mm; height: 468 mm; volume: 4000 ml) were used in
the experiments in order to reduce the error in oil thickness
calculation.

The beakers are painted as black in order to simulate the
absorption of sea water, and then filled with 3600 ml freshly
collected sea water (about 420 mm in depth, water temperature
ranges from 21°C to 24°C). Oil samples are dripped onto the wa-
ter surface and the irradiance measurements are not conducted
until a stable oil film is formed. It usually takes about 1–3 min
for the light oil to form a stable oil film, while heavy oil need
to be warmed with hot water (about 70 °C) before using. The
artificial wind is generated with an electric fan.

The hyperspectral sensor applied in this article is assembled
based on Teledyne Lumenera Lt365R pushbroom camera, which
takes a slit of 1456 pixels in each frame. The spectrum range of
the camera is 392.00–1162.67 nm, with 1936 bands. The silicon
response range of the camera lens is 200–1200 nm, which fully
covers the spectral range used for classification in this article.
In the experiment, the oil samples are placed in the center of
the camera’s vision field. Therefore, only the spectra in the
center pixels are extracted for spectral analysis. The camera
takes about 20 s of shoots at 10 ms exposure time (about 2000
slits) in each measurement and generates an HSI cube based
on the measured slits. It should be noted that camera is placed
statically on the oil sample. Therefore, the three dimensions of
the generated HSI cubes are within spatial domain (1456 pixels
in the direction of slit), temporal domain (about 2000 slits during
each measurement), and spectral domain (1936 bands).

TABLE I
DATE AND TIME OF EXPERIMENTS, AS WELL AS CORRESPONDING SUN

ELEVATION AND AZIMUTH ANGLES

The experiments are conducted in outfield environment under
sunlight during cloudless weather. The location of the experi-
ment is at 38°52’18.4“ N and 121°31’36.5” E. The date and time
of the experiments and corresponding sun elevation/azimuth
angles are given in Table I. Although the incident zenith angle,
oil thickness, and wind condition are collected in the exper-
iments for spectral analysis, they are not fed to the machine
learning models in order to test whether the models are able to
identify different types of oil without pre-knowledge about these
conditions.

C. Machine Learning Algorithms and Implementation Details

Four types of machine learning algorithms are applied to the
spectra data for oil types identification: random forest (RF);
SVM; deep neural network (DNN); and (4) DNN with differen-
tial pooling (DP-DNN). The training and testing data for the
machine learning models are obtained from the experiments
described above. Specifically, a total of 190 frames of spectra
are randomly chosen from the data collected for each type of oil
(four in total) with each set of thickness (ninr in total) under
each kind of wind condition (two in total). Thus, there are
13 680 frames of spectra in the dataset. 80% of the data are
used for training, and 20% of the data are used for testing. The
whole spectrum that consists of 1936 bands is considered as the
input data, which are classified into four categories represents
for the four types of oil. The machine learning models are
constructed using statistical and machine learning Toolbox in
MATLAB R2019a, and trained using 2.5 GHz Intel i5-7300 HQ
CPU with 8.0 GB of RAM running on a 64-bit Windows 10
operating system. The codes of all the models used in this
article is available at https://github.com/349898680/oil-type-
identification-models. Model structure and detail implementa-
tions for the four machine learning algorithms are discussed in
following sections.

1) Random Forest: As a classical method of machine learn-
ing, RF is a type of supervised-learning that consists of a number
of tree-like classifiers and a majority vote [31]. In bagged RF,
each classifier makes prediction based on its own decision tree.
The votes from all classifiers are collected and the prediction
with highest number of votes are considered as the final output
[32]. RF is able to handle high data dimensionality and has
been applied to the classification based on hyperspectral remote
sensing data [33]. In this article, the RF model consists of 200
tree-like classifiers. The working flow of RF applied in this
article is shown as Fig. 3(a).

https://github.com/349898680/oil-type-identification-models
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Fig. 3. Workflow of the four machine learning models. (a) Random forest.
(b) Support vector machine. (c) Deep neural network. (d) DNN with differential
pooling.

2) Support Vector Machine: Proposed by Cortes and Vapnik
[34], SVM has proved to be a powerful classification tool and
received fast development in the last two decades. The mecha-
nism of SVM is to project the data points into a higher-dimension
space through kernel function, and then separate the data points
into two parts using a hyper-plane [35]. In this article, the radial
basis function is adopted as the kernel function.

Although SVM is able to robustly handle the non-linear
classification with relatively small number of calculations, it
is intrinsically a binary classification [34]. In order to solve
the multi-class classification methods, multiple classifiers need
to be trained as One-versus-All (OVA, classifiers distinguish
each class from the rest of the classes) or All-versus-All (AVA,
classifiers distinguish two classes for each of the combinations).
In this article, OVA is adopted in this article since it is able to
provide reasonable classification results with less calculations
[36]. Specifically, three classifiers are trained to complete the
classification: the first classifier distinguishes heavy diesel from
the rest types of oils; the second classifier distinguishes crude
oil from the rest types of oils; the third classifier distinguishes

between light diesel and lubricant. The workflow of SVM model
applied in this article is shown as Fig. 3(b). It should be noted
that the structure of the model is built according the number
of classes. It may not be favorable for the classification tasks
involving a greater number of classes.

3) Deep Neural Network: The appearance of DNN signifi-
cantly propelled the development of artificial intelligence tech-
nology in the last decades. As shown in Fig. 3(c), the DNN model
applied in this article is built based on a series of fully-connected
layers, which include an input layer, three hidden layers, and
an output layer. The sizes of input and output layer are 1936
and 4, representing the 1936 bands in the input spectrum and
4 types of oil, respectively. Each of the hidden layers includes
512 neurons. The activation function between hidden layers is
Rectified linear unit [37], and that of output layer is a sigmoid
function. The initial learning rate is set at 0.001, and reduces
at a factor of 10 after 200 iterations. The maximum number of
iterations is set at 1000.

4) DNN With Differential Pooling: The hyperspectral sensor
applied in the experiment obtains reflectance spectra with high
spectral resolution. Like other hyperspectral remote sensing
approach, the collected data include redundant bands, which
increase computational complexity of the DNN model, and
potentially cause the problem of collinearity during regression
analysis. In order to reduce dimensionality of the hyperspectral
data without losing necessary information, an additional dif-
ferential pooling layer is applied to input spectra before DNN.
This differential pooling layer integrates data pooling method
with feature selection, and applies different pooling size based
on the distribution of characteristic bands.

According to the report by Yang et al. [1] and the observations
in the experiments of this article, blue-light bands from about
435 nm to about 580 nm have two strong reflection peaks and
an absorption peak in between, which makes it a characteristic
range for distinguishing oil types. Therefore, the size of pooling
layer is relatively small in this range at 2 pixels, while that in the
rest part of the spectra is relatively large at 10 pixels. The size
of input spectrum is reduced to 262 bands after the differential
pooling. The optimized input spectra are then fed to a DNN with
same number of hidden layers and neurons, but reduced number
of input size. The working flow of RF applied in this article is
shown as Fig. 3(d).

III. RESULTS AND DISCUSSION

A. Interpreting Reflectance Spectra of Oil Slick

The reflectance spectra collected for different types of oil
under different thicknesses and wind conditions are shown in
Fig. 4, and the reflectance spectra under different sunlight ele-
vation angle (using 10.23μm crude oil under no wind condition)
is shown in Fig. 5. An absorption peak at around 745 nm and a
reflection peak at 830 nm are observed in all the results, which
generally conforms with the measurements by Lu et al. [14].
The results also show that the measured reflectance spectra are
affected by slick thickness, wind condition, and incident angle.
Generally speaking, the reflectances decrease with the increase
of slick thickness, incident light angle, and additional wind
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Fig. 4. Reflectance spectra collected under different slick thickness and wind
conditions for four types of oil. (a) Crude oil. (b) Diesel. (c) Lubricant. (d) Heavy
diesel.

Fig. 5. Reflectance spectra collected for 1.944 mm crude oil under different
sunlight elevation angle.

condition. It is difficult to detect the patterns in the reflectance
spectra directly through human eyes.

As shown in Fig. 4, wind condition has significant influence
on the reflectance spectra. Compared with calm condition, wind
increases the roughness of oil slick surface. According to the
microplane theory of BRDF, the incident photons are reflected
more evenly to other directions with the increase of surface
roughness [38]. As a result, the reflectances decrease with the
increase of wind condition. This result generally confirms with
the simulations and experiments by Otremba and Piskozub [27].

Oil thickness also has a negative correlation with the re-
flectance. Considering the movement of photons in the air-oil-
water three-layer model, the thinner the oil slick is, the easier it

Fig. 6. Confusion matrix of test results for the four machine learning models.
(a) Random forest. (b) Support vector machine. (c) Deep neural network. (4)
DNN with differential pooling.

TABLE II
USERS’, PRODUCERS’, AND OVERALL ACCURACIES OF IDENTIFICATION

RESULTS FOR FOUR MACHINE LEARNING MODELS

is for the photons to be reflected from the oil-water boundary,
transmit through oil-air boundary, and finally reach the sensor.
As a result, the reflectances decrease with the increase of oil
thickness. This result generally confirms with the simulations
and experiments by Ren et al. [30]. These results follow the
theoretical basis of optical reflectance and conform with the
measurements in previous study. Thus, they indicate the relia-
bility of the collected data.

B. Comparisons Between Machine Learning Models

The accuracy of machine learning models is evaluated through
producers’ accuracies (PA), users’ accuracies (UA), and overall
accuracies (OAs), as well as the standard performance measure-
ments: true positive rate (TPR); true negative rate (TNR); false
positive rate (FPR); and false negative rate (FNR). The confusion
matrixes of the classification results using different machine
learning models are shown in Fig. 6. Based on the confusion
matrix, PA, UA, and OA for each type of oil are given in Table II,
and the corresponding performance measurements are given in
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TABLE III
PERFORMANCE MEASUREMENT OF IDENTIFICATION RESULTS FOR FOUR

MACHINE LEARNING MODELS

TABLE IV
NUMBER OF CALCULATIONS AND RUNNING TIME DURING THE TRAINING

PROCESSES OF THE FOUR MACHINE LEARNING MODELS

Table III. It should be noted that only TPR and TNR are shown
in the table, since TPR+FPR = 1 and TNR+FNR = 1.

The performances of the four machine learning models are
compared in terms of both accuracy and computational com-
plexity. In term of the accuracy, all the four models are able
to identify the two types of heavy oil. According to Fig. 6(a),
however, RF model is not able to distinguish between the two
types of light oil very well. The SVM model is able to achieve
more accurate classification for the two types of light oil than the
RF model. The DNN model and that with differential pooling
provide classification results with similar accuracies, which are
also more accurate than those of RF and SVM models. They
are able to distinguish the two types of light oil more accurately
than the other two machine learning models.

The number of the calculations and running time for the
model training process is given in Table IV. The difference
in the computational complexity between RF and SVM is not
significant. The two DNN models, however, is much more
complicated than RF and SVM. The number of calculations and
training time for the DNN model and the other two models are at
different orders of magnitude. In other words, the DNN models
achieve more accurate identification results at the cost of higher
computational complexity. Compared between the two DNN
models, the one designed in this article with differential pooling
involved smaller numbers of calculation because it reduces the
number of parameters in input layer through dimensionality
reduction. In other words, DP-DNN is able to achieve highly
accurate prediction with less running time.

IV. CONCLUSION AND FUTURE STUDY

This article verifies and compares the ability of oil-type recog-
nition using different machine learning models. The results show
that all the four machine learning models are able to identify oil
types based on high-resolution reflectance spectra under sunny
weather and appropriate range of sunlight elevation angle. The
regular DNN model is able to achieve accurate classification

at the cost of more calculations and longer training time. Ad-
ditionally, a DP-DNN, which includes a biased dimensionality
reduction based on the characteristics of oil surface reflectance,
is designed and implemented in this article. The results shown
that the proposed model is able to classify oil types as accurately
as the regular DNN model, but with smaller number of calcula-
tions. Therefore, the two DNN models would be the ideal choice
for oil-types identification when the training time is sufficient.
The SVM model, or the DNN model with differential pooling,
which are able to achieve reasonable identification result with
smaller number of calculations, may be a favorable choice to
classify oil spill types using spectral data when training time is
limited.

Since the different types of oil samples are put separately in
beakers, the studies on the spectral response of mixed oil sam-
ples would be an interesting topic in our future study. Spectral
unmixing method [40] may be adopted to solve this problem.
For example, an unmixing model may be developed to simulate
relation between the reflectance spectra of different types of oil
and those of the mixture.

It should also be noted that the hyperspectral sensor used
in this article has a much higher spectral resolution than any
existing satellite-based (usually less than 20 bands) or airborne
(usually less than 300 bands) hyperspectral sensor, and obtains
accurate spectral radiance in relatively small vision field with mi-
nor distortion caused by center wavelength shift or band-to-band
misregistration (“smile” and “keystone” properties), which are
commonly witnessed in unprocessed satellite-based HSI [39].
Examining the models’ performances using the data with coarser
spectral resolution, and further verifying their prediction with
existing satellite-based or airborne hyperspectral data would also
be a topic of our near future study.

A potential method of improving the classification model and
applying it with coarser hyperspectral data would be a remote
sensing data fusion approach that combines reflectance spectra
with polarization imaging. Since the polarization characteristics
of oil surface are able to reveal more information about the
roughness and texture than using reflectance spectra along [41],
they have been applied to the field of oil spill detection [42]–[44].
Therefore, we envision a fusion approach which may be able
to distinguish between different types of oil that have similar
reflectance spectra, and achieve accurate classification using
hyperspectral data with coarser bands.
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