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Abstract—Semantic segmentation in aerial images has become
an indispensable part in remote sensing image understanding for its
extensive application prospects. It is crucial to jointly reason the 2-D
appearance along with 3-D information and acquire discriminative
global context to achieve better segmentation. However, previous
approaches require accurate elevation data (e.g., nDSM and Digital
Surface Model (DSM)) as additional inputs to segment semantics,
which sorely limits their applications. On the other hand, due to
the various forms of objects in complex scenes, the global context is
generally dominated by features of salient patterns (e.g., large ob-
jects) and tends to smooth inconspicuous patterns (e.g., small stuff
and boundaries). In this article, a novel joint framework named
height-embedding context reassembly network (HECR-Net) is pro-
posed. First, considering the fact that the corresponding elevation
data is insufficient while we still want to exploit the serviceable
height information, to alleviate the above data constraint, our
method simultaneously predicts semantic labels and height maps
from single aerial images by distilling height-aware embeddings
implicitly. Second, we introduce a novel context-aware reorganiza-
tion module to generate a discriminative feature with global context
appropriately assigned to each local position. It benefits from both
the global context aggregation module for ambiguity eliminating
and local feature redistribution module for detailed refinement.
Third, we make full use of the learning height-aware embeddings
to promote the performance of semantic segmentation via introduc-
ing a modality-affinitive propagation block. Finally, without bells
and whistles, the segmentation results on ISPRS Vaihingen and
Potsdam data set illustrate that the proposed HECR-Net achieves
state-of-the-art performance.

Index Terms—Aerial imagery, context-aware reorganization,
height-aware embeddings, modality-affinitive, semantic
segmentation.
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I. INTRODUCTION

S EMANTIC segmentation is a significant constituent of
image interpretation, whose goal is to parse the whole image

and assign categories pixel by pixel. In recent years, semantic
labeling in aerial images has been introduced widespreadly in
many fields, such as disaster prediction, building extraction, and
resource exploration.

The tremendous success of convolutional neural networks
(CNNs) has born out of the formidable abilities of feature
extraction in computer vision tasks [1], such as image classifica-
tion [2], [3], object recognition and detection [4], [5], and scene
segmentation [6]–[8]. In particular, fully convolutional networks
(FCNs) [6] have shown prominent improvements when applying
them to dense prediction tasks like semantic segmentation and
height estimation. Inspired by the idea of FCN [6], an increasing
body of research [9]–[12] has been devoted to design FCN-based
frameworks for the semantic segmentation in the aerial images.
Nevertheless, there are still some technical limitations as a
result of the diversity of scenes in the remote sensing scene,
which cause mismatched relationships. As shown in Fig. 1,
there are three examples from aerial scenarios. The first row
reveals misclassifications concerning the inconspicuous classes,
where impervious surface is wrongly classified as low vege-
tation. Moreover, an issue of mismatched relationship where
the lawn on the roof is predicted as the low vegetation erro-
neously is shown in the second row. In the last row, the similar
2-D appearance between tree and low vegetation brings about
misclassifications, which makes semantic segmentation more
challenging. In short, we mainly consider two obstacles: the
diversity of object patterns (e.g., large or small) and the existence
of objects with similar spectral characteristics but belonging to
different categories (e.g., roads and roofs, trees and lawns).

For the first handicap, semantic segmentation is a pixel-level
dense prediction task, and, therefore, not only the dominated
salient stuff but also the unremarkable objects ought to be parsed
well. Since the traditional FCN extracts feature maps without
adequate context, several global context aggregation (GCA)
methods [13]–[21] have been proposed to increase the receptive
field of the FCN. Here we simply sort out two methods on cap-
turing global context dependencies. The first is multiscale (MS)
aggregation method. There are certain studies [13]–[15], [18] to
capture global dependencies by adopting global pooling or MS
aggregation modules. The other is attention-based aggregation
method. Inspired by the idea of nonlocal neural networks [22],
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Fig. 1. Example scenes about misclassification when using the present main-
stream methods. In the first row, there are several misclassifications concerning
the inconspicuous classes where impervious surface is wrongly classified as low
vegetation. The middle row indicates an issue of mismatched relationship where
the lawn on the roof is predicted as the low vegetation erroneously. In the last
row, the similar 2-D appearance between trees and low vegetation brings about
misclassifications, which makes semantic segmentation more challenging.

several methods [19], [20], [23]–[27] were proposed to se-
lectively aggregate heterogeneous context by learning spatial
attention, channel attention, and class attention. Compared with
the standard convolution layer gathering features in a small local
area, GCA methods utilize the above two methods over the whole
image to consistently improve the performance of the basic FCN.
Nevertheless, global contextual information often has smooth
representations, which are usually controlled by the patterns of
larger objects, while the representation of unobtrusive stuff will
be somewhat weakened or even ignored. In order to settle this
issue, the discriminative features in local position are desired.
Accordingly, we propose a compact and universal context-aware
reorganization (CAR) module to acquire global context informa-
tion over the entire feature map, and then adaptively assign it to
each local pixel in the light of the pattern size of each location.
The assignment procedure is allocated by a series of active mask
maps, which describe the spatial extents of each pattern after
local feature redistribution.

For the second handicap, in contrast to natural scene, very
high-resolution (VHR) aerial images have more complex spec-
tral properties, in which different categories of objects probably
have similar 2-D appearance. It is challenging to parse the
semantic regions with similar spectral properties only utilizing
optical images (e.g., IRRG). Therefore, some semantic segmen-
tation methods [28]–[33] based on multimodal data have been
proposed to leverage additional 3-D elevation data (e.g., DSM,
nDSM) to effectively settle ambiguities which are challenging to

Fig. 2. Fusion structures for semantic segmentation based on multimodal data.
The orange color and green color demonstrate IRRG branch and DSM branch,
respectively. The quadrilaterals represent encoders and decoders.

2-D appearance solely approaches. The conventional structures
of semantic segmentation based on multimodal datas can be
summarized as early, late, and multistage fusion, as shown in
Fig. 2. However, all of the above methods require the elevation
data (DSM here) as an additional input, which is not convenient
to be collected from the scene and to be aligned with the optical
images. We argue that it is possible to embed the geometric
information (height above ground) for semantic segmentation
with only monocular image as input. Inspired by [34]–[37],
we propose a joint reasoning framework composed of semantic
segmentation network and height estimation network to extract
2-D and 3-D features from single IRRG images. The biggest
difference between the framework and traditional methods is that
we take elevation data as the supervision information to extract
height-aware embeddings. Furthermore, we fuse the distilled
height-aware embeddings with the semantic features from 2-D
appearance via the proposed modality-affinitive propagation
(MAP) module, which utilizes the cross-task affinity patterns
to guide semantic segmentation. Through the joint training of
the above two tasks, the goal of our method is to improve seg-
mentation performance, while taking height-aware embedding
into consideration implicitly.

To summarize, the main contributions of this article are sum-
marized as follows.

1) We present a height-embedding context reassembly net-
work (HECR-Net), an end-to-end joint framework that
predicts semantic labels and distills height-aware em-
beddings implicitly, which effectively guides semantic
segmentation over the input aerial images.

2) To focus more on the inconspicuous objects, a CAR mod-
ule is proposed to generate a discriminative feature map.
In this procedure, the global context information can be
adaptively assigned to each local position.

3) The MAP is proposed to perform cross-modality learning
and fusion. A modality-affinitive adaptively combination
block is designed for the former while the propagation
block is used for the latter.
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The rest of this article is organized as follows. Section II
briefly introduces the related work on semantic segmentation
and height estimation. Next, Section III illustrates the details of
our proposed multitask joint reasoning method. In Section IV,
the experimental evaluations as well as the corresponding results
analysis are provided. Finally, Section V concludes this article.

II. RELATED WORKS

This section gives a brief introduction to several previous
work: semantic segmentation concerning contextual modeling
as well as multimodal fusion, and height estimation.

A. Semantic Segmentation

Compared with hyperspectral images [38], [39] and natural
images [15], [18], VHR aerial images bring challenges to the task
of semantic segmentation for complex spatial details. Conven-
tional segmentation methods on remote sensing semantic seg-
mentation methods [40], [41] mainly extracted useful low-level
and hand-crafted features from input images and then mapped
the features into label categories by adopting a supervised clas-
sifier. In light of the powerful feature learning and representation
abilities of deep learning methods, semantic segmentation has
made significant breakthrough. FCNs [6] first discard the full
connection layer from the ordinary classification network [2],
[42] and replace it with the corresponding convolution layer,
so as to achieve dense segmentation of the input image. Since
then, FCNs turn to be the most popular baselines for semantic
segmentation, and numerous model variants are proposed to
improve the segmentation performance. Here, we review only
the most related work in terms of handling contextual modeling
and multimodal fusion.

Contextual Modeling: In recent years, a large body of liter-
atures have explored contextual modeling, which is crucial to
semantic segmentation [13], [15]–[20], [25], [26], [43]. An in-
tuitive idea is to apply new layers to increase receptive field while
maintaining a larger spatial resolution. In PSPNet [18], multiple
pooling operations were employed to extract the features of
different regions to enrich context information at different scales.
The DeepLab series [13]–[15], [44] aggregated context informa-
tion at multiple scales by introducing an atrous spatial pyramid
pooling (ASPP). Based on [44], DenseASPP [45] combined
the advantages of parallel and cascade atrous convolution to
generate MS features in a larger range and acquire the service-
able context information. EncNet [20] and DFN [19] utilized
attention mechanism to expand the differences among feature
maps and obtain more context information from the perspective
of feature channel dimension. In addition, inspired by nonlo-
cal network [22], numerous advanced contextual approaches
made full use of the self-similarity manner to gather global
spatial information, which achieved the impressive results in
scene-understanding tasks. DANet [25] explored spatial and
channel relationships from all pixels by means of nonlocal
operator [22]. Compact generalized nonlocal [46] considered
the global relationships of channel dimensions based on the
nonlocal network [22]. CCNet [27] harvested the long-range
dependencies via cascading two criss-cross attention modules to

economize both memory and computation cost. Different from
previous work which focused on global context modeling, in this
article, a novel CAR module, which benefits from both global
and local information, is proposed to generate a discriminative
feature.

Multimodal Fusion: In the last decade, an increasing body
of Deep Convolutional Neural Network (DCNN)-based fusion
methods [47]–[49] focused on extracting and fusing comple-
mentary feature information from multiple modalities have
been proposed to enhance the robustness of feature representa-
tions. The existing fusion methods can be summarized as early,
late, and multistage fusion methods. Early fusion method [see
Fig. 2(a)], just as the name implies, is to concatenate multiple
modalities directly as a four- or six-channel input along the
channel dimension and then feed them into a conventional uni-
modal network [29]. However, such methods are not conducive
to extracting complementary features and capturing cross-modal
interdependencies well. A great deal of work has turned to the
dual-branch fusion framework with two separated encoders and
a single decoder. Late fusion methods [31], [32] [see Fig. 2(b)]
train two independent encoders and then combine the modality-
specific features in an integration manner (e.g., element-wise
summation or concatenation). These methods can distill multi-
modal features well by a parallel branch, but also bring a lot of
parameters and computation. Instead of fusing modality-specific
features at early and late stages, multistage fusion methods [50],
[51] [see Fig. 2(c)] fuse the features at multiple stages. Although
these approaches have got extensive achievements, they require
elevation data associated with the optical images as additional
inputs. Instead of directly taking elevation data as inputs, we
propose a novel height-aware embedding structure based on
multitask decoder to extract contextual and geometric features
jointly, which further conduces to better semantic segmentation
performance.

B. Height Estimation

The methods on height estimation in remote sensing scene are
closely involved in the work concerning the monocular depth
estimation in the field of scene reconstruction. There are plenty
of existing approaches for monocular depth estimation, which
can be approximately summarized into two types: CNN-based
approaches [34], [52]–[55] and some hybrid approaches incor-
porating CNNs with probabilistic graphic models [56]–[58].
A MS neural network was proposed to recurse the depth in [34],
which was composed of coarse-scale and fine-scale network.
The former was responsible for a coarse prediction of the global
depth, while the latter was based on the former for a fine
prediction of the depth in the local area. Eigen and Fergus [52]
designed a general MS network, which could be applied to the
task of semantic segmentation, surface normal estimation, and
depth estimation. By sharing the backbone network among the
multiple tasks, the structure simplified the implementation of
multitask system, which greatly reduced the network parameters
and improved the network efficiency. In the hybrid approaches,
Wang et al. [59] predicted the depth maps and segmentation
results jointly from a single image by proposing a joint frame-
work combined with a hierarchical Conditional Random Field
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Fig. 3. Overview of the proposed height-embedding context reassembly network (HECR-Net). It consists of a backbone, context-aware reorganization (CAR)
module, multitask decoder, and modality-affinitive propagation (MAP) block.

(CRF). The purpose of hierarchical CRF was to optimize the
final results.

The researches on height estimation in remote sensing is
relatively few. Early efforts employed the shadow shape to
estimate the height of the artificial satellite image with only
several control points [60] or a sparse Digital Terrain Model
(DTM) [61]. Following the CNN-based depth estimation meth-
ods, Mou and Zhu [36] predicted height map by introducing an
encoder–decoder network encompassing residual learning and a
skip connection. In addition, a unified framework for estimating
height and segmenting semantics from single aerial images was
proposed in [62]. The joint framework was optimized by a
multitask loss function. Through the method, the performance of
semantic segmentation can benefit from the geometric informa-
tion extracted from the task height estimation. Nevertheless, the
sharing and fusion of complementary information between dif-
ferent tasks (e.g., semantic segmentation and height estimation)
are not well explored.

III. METHODOLOGY

This part first briefly introduces our framework topology and
our main contributions inspired by our design criteria. Then,
CAR module is proposed to appropriately handle the out-off-
balance spread of context from salient and inconspicuous ob-
jects in global context aggregation (GCA) module. Then, we
introduce the details of height-aware embeddings via a multitask
model and modality-affinitive propagation module to introduce
the corresponding height information to assist semantic segmen-
tation. Finally, the proposed framework is trained jointly in an
end-to-end manner by employing a multitask loss function.

A. Overview

Contextual and geometric information are critical to semantic
segmentation in VHR aerial images, which are widely explored
in various methods [12], [31], [33]. In this section, we pro-
pose a unified network to learn both contextual and geometric
features, and fuse the complementary information to enable

height-embedding semantic labeling. As shown in Fig. 3, the
whole network framework follows the encoder–decoder design
principle of multitask outputs. And the whole network includes
four components: shared backbone, CAR module, multitask
decoder, and MAP block.

Concretely, given an image I ∈ R3×H×W , where 3, H, and
W indicate the IRRG or RGB channels, height, and width of
I, respectively, our network architecture first passes I through
a shared backbone ResNet-101 pretrained over the ImageNet
data set [63], following the majority of the previous works [18],
[25], [27]. It is worth mentioning that, we utilize atrous con-
volutions to maintain the spatial resolution of output feature
to 1/8 of the original image by removing the last two down-
sampling operations in stage-3 and stage-4. We employ a hard
parameter-sharing mechanism between the following two tasks.
In other words, we adopt a backbone network to embed the
feature representations of multiple tasks into the same semantic
space. In addition, CAR module aims to model the long-range
spatial relationship and then adaptively distribute the long-range
dependencies according to the pattern size of each pixel position,
which will be illustrated in Section III-B. Then in order to extract
both contextual and geometric information from I , we feed the
output features of CAR module to two task-specific decoders,
where the upper stream segments semantics while the lower
stream distills the height-embeddings by predicting height maps.
Then, MAP block first learns two affinity matrices to acquire the
pair-wise relationships in respective tasks and then reorganize
the matrix with the other affinity matrix adaptively to aggregate
the task-complementary information. After that, we transfer
the recombinant affinitive modalities back to the feature maps
via a propagation block so as to realize height-aware semantic
segmentation. Finally, we upscale the feature maps by means
of a upsampling block to predict the final results with higher
resolution. The whole network can be optimized in an end-to-end
manner by a joint objective function and the details of the CAR,
height-aware embedding, modality-affinitive propagation, and
multitask objective function will be illustrated in the following
sections.
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B. Context-Aware Reorganization

Fig. 3 illustrates the overall topology of CAR module, which
captures contextual information, especially in the long range
over the entire feature mapX ∈ RC×H×W learned from a shared
backbone network, and then adaptively distribute the long-range
dependencies to each pixel position of the output feature.

Global Context Aggregation: As discussed in Section II-A,
GCA module is of great importance for scene parsing [13], [15],
[17], [18], [20], [25], [26]. GCA intended for modeling long-
range dependencies over local feature representations can be
modeled as

Fgca =
1

C(X)

N∑
i

∑
∀j∈θ(i)

G(xi, xj)g(xj) (1)

where xi and is the feature response at pixel i of the input entire
feature map X, and ∀j ∈ θ(i) is the collection that enumerates
all possible pixels related to xi. G(xi, xj) can be any learned
parameters or pairwise function computing representing the
relationship between xi and all xj . For brevity, g is set to the
form of a unary linear embedding: g(xj) = Wjxj , where Wj

is a learnable weight matrix. Here we set normalization factor
as C(X) = N , in which N = H ×W indicates the number of
pixels in X.

It is worth mentioning that, any of the methods described
in Section II-A can be used as GCA module for discussion.
In this article, we utilize the compact generalized nonlocal
(CGNL) [46] module downsampled by a factor of 2 to model
long-range dependencies with lightweight computation and
memory. In particular, CGNL augments the nonlocal operation
in differentiating fine-grained object regions by taking different
channels information into account simultaneously, and then cal-
culates the global feature statistics to formFgca. We additionally
give a contrastive analysis among the state-of-the-art of GCA
module in Section IV-D.

Local Feature Redistribution: Despite the GCA modules can
capture contextual information more efficiently, they are easily
partial to features from large object regions containing more
sample pixels, for they collect global statistics of features in
large receptive fields. Therefore, the global context obtained by
each pixel position tends to smooth the object regions, which
contain small patterns. To tackle this problem, local feature re-
distribution (LFR) module, as a spatial operator, can recalculate
the spatial size of the object regions based on the feature map
Fgca[:, :, c] to adaptively distribute Fgca to each pixel position.
Next, we will elaborate the specific process of LFR.

Given an input feature Fgca ∈ RC×H×W , we first adopt a
set of 3× 3 convolution layers to shrink the spatial extent of
the feature to C × H

s × N
s , where s is the downsampled ratio

(supposing s is an integer). Inspired by [64], we propose a local
feature reorganization module that predicts learnable weights
for each pixel p according to its contextual information and
then reassembles the features in a predefined neighborhood to
generate a novel feature Flfr ∈ RC×H×W .

The entire reorganization block consists of channel compres-
sor, weight learning, and feature reorganization, as shown in
Fig. 4. Here, we suppose that the size of the learning weight

Fig. 4. Full pipeline of the proposed for local feature redistribution (LFR)
module, where reorganization block consists of three important parts, i.e.,
channel compressor, weight learning, as well as feature reorganization.

Algorithm 1: Local Feature Redistribution.
Input: The input feature:F; scale:s; the size of F :

(Hin,Win); the k × k subregion of F centered at the
source position (i, j): N(F(i, j), k); the weight prediction
function:Γ

Output: The reassembled feature:F′

1: Channel compressor for F
2: Calculate the size of

F′:Hout = Hin × s,Wout = Win × s
3: Predict normalized weights

W(i,′ j ′) = Γ(N(F(i, j), k))
4: Sub-pixel convolution for F, then reassembling feature
5: for each i′ ∈ [0, Hout] do
6: for each j ′ ∈ [0,Wout] do
7: Source position i = �i′/s�, j = �j ′/s�
8: Weight W(i,′ j ′) = Γ(N(F(i, j), k))
9: F′(i,′ j ′) = F(i, j) ·W(i,′ j ′)

10: end for
11: end for

is r × r, where the larger the weight, the larger the receptive
field and the larger the computation. If we want to use different
weights for each position of the output feature, we need to predict
the size of the weight to be H ×W × r × r.

The pseudocode of our algorithm can be shown in Algo-
rithm 1. We first compress the feature channels from C to
Cm by adopting a 1× 1 convolution layer, which can reduce
the parameters and computational cost without harming the
performance. Then, we utilize a k × k (5 by default) convolution
layer to capture the contextual information to predict normalized
weights, where the number of input channels is Cm while the
number of output channels is r2 × s2. After that, we expand the
predicted weights in the first step along the channel dimension
to obtain the weight with the size of H ×W × r × r by pixel
shuffling. Finally, we utilize softmax function to normalize the
weights. The weight-learning process Γ is formulated as

Wp′ = Γ(N(Fp, k)) (2)
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where W ′
p denotes the learnable weight for each target position

p′ = (i,′ j ′) in the output F′, and N(Fp, k) is the k × k subre-
gion of the input feature mapF centered at the source position p.
For each position p′ = (i,′ j ′), there is a corresponding location
p = (i, j), where i = �i′/s�, j = �j′/s� and s is the downsam-
pled ratio. The weight-learning process is in charge of generating
the weights in a way of local information perception. After that,
we use softmax function to normalize the weight.

For every position in the output F′, we feed it back to the
input F and take out the corresponding square region N(Fp, r)
centered at p = (i, j). Specifically, we use the input feature
through the subpixel convolution layer [65] to get the feature
map with the same dimension as the output feature. Then, the
final local eigenvalue is obtained by dot product of the region
N(Fp, r) and the predicted weight Wp′ . Note that the same
location in different channels shares the weights. The features
reorganization step can be generated as follows:

F′
p′ = Θ(N(Fp, r),Wp′) (3)

Flfr =
∑
p′

F′
p′ =

∑
p′

m∑
a=−m

m∑
b=−m

F(i+a,j+b)Wp′
(a,b)

(4)

where m = �r/2�, and the function Θ is a weighted sum oper-
ation. In this way, the position p′ is upsampled and reassembled
according to the context of each local position in the region of
N(Fp, r) rather than the distance of positions. Therefore, the
corresponding position information from the local region can
get more attention.

After that, we apply a sigmoid function σ to recalculate
the spatial extents of each pattern as an adaptive weight S.
Then, we utilize S to weight the global feature maps Fgca and
carry out an identity map operation to acquire the final feature
Fcar ∈ RC×H×W as follows:

Fcar = S⊗ Fgca + Fgca

= σ(Flfr)⊗ Fgca + Fgca (5)

where ⊗ is the Hadamard product, an element-wise multipli-
cation. From the view of Fgca, the introduction of the local
weight S encourages the global feature maps Fgca suffering
from coarse feature representations to distill more details from
Flfr. As a result, CAR module is able to distribute the global
information to each position conditionally, which could be re-
garded as an explicit contributing factor for modeling long-range
dependencies.

C. Height-Aware Embedding Via a Multitask Model

Over the past few years, some researchers [28], [29], [31],
[32] have proved that the introduction of geometry information
can further enhance the performance of semantic labeling by
designing multimodal convolutional neural network. However,
this framework explicitly requires aligned height annotation as
inputs, which impedes its usage in many practical applications
due to its vast GPU memory occupation and prohibitive com-
putational cost. Here, we design a multitask dense prediction
framework to distill the height-aware embedding and perform
semantic segmentation simultaneously from the single optical

Fig. 5. The details of Modality-Affinitive Adaptively Combination block and
Propagation block.

⊗
indicates the matrix multiplication.

⊕
indicates the

element-wise sum. (a) Modality-Affinitive Adaptively Combination block. Here
we adopt dot-product for computing similarities. (b) Propagation Block.

images to learn 2-D and 3-D information jointly. Particularly,
given an input image X ∈ R3×H×W , the traditional semantic
segmentation methods train a model Mθ that distills contextual
information from ground-truth S by minimizing the segmenta-
tion loss, formalized as a fully optimization problem:

min
�
E[�(Mθ(X),S)] (6)

where E[·] denotes statistical expectation and �(·) is a segmen-
tation loss function, such as cross-entropy loss. Inspired by the
formulation, the proposed multitask model M can be optimized
as follows:

min
�1,�2

E[�1(Mζ(X),H) + �2(Mη(X),S)] (7)

in which E[�1(·)] is the elevation estimation term. Here H is
the elevation data providing geometric information and �1(·)
is a regression loss to train height estimation network Mζ .
The second term E[�2(·)], similar to the above formulation, is
a semantic segmentation term intended for extracting the 2-D
semantic information, in which Mζ shares weights with Mη for
the shared encoder partially.

D. Modality-Affinitive Propagation

Here we elaborate the proposed MAP method aiming to lever-
age the complementarity of semantic information and geometric
information to improve semantic segmentation. First, in order
to represent the pairwise similarities for each task, we learn a
semantic affinity matrix and a geometric affinity matrix, respec-
tively, by two affinity layers, as shown in Fig. 5(a). Assume that
the output feature map of the last layer in multitask decoder
is F ∈ RC×H×W , so the pairwise similarities computation are
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done by matrix multiplication and then receive the affinity matrix
M = FFᵀ ∈ RHW×HW .

In addition, since the value of each row in the affinity matrix
M indicates the pairwise similarities between one position and
the other positions and in order to reduce the influence of scale,
a softmax operation is performed on each row of M to conduct
normalization. Note that there is not an additional auxiliary
loss to supervise M , because such supervision is difficult to
define for some tasks and can add extra memory overhead. After
that, we insert adaptively combination blocks into networks to
aggregate the cross-task relatively complemented information.
Assuming semantic segmentation and height estimation as T1,
T2, respectively, as well as the respective affinity matrices as
M1,M2, next we need to obtain two weighting factors γi (where
i = 1, 2; γ1 + γ2 = 1) to adaptively integrate the matrices as

M = γ1 ·M1 + γ2 ·M2 (8)

where the weighting factor γ1 is a trainable multidimensional
matrix, which can be bound to the model and becomes a
learnable parameter in the model. We obtain the factor γ1 by
converting a fixed untrainable tensor into a trainable parameter.
In this way, γ1 and γ2 constantly modify their values in the
process of learning to achieve the optimal effect. Finally, we
obtain the combined affinity matrixM by propagating cross-task
affinitive modalities and then we spread such matrix as guidance
to improve the accuracy of semantic labeling. As illustrated
in Fig. 5(b), the fusion process designed by some convolution
units is performed on the original semantic feature. We perform
propagation by multiplying the affinity matrixM by the original
feature. Moreover, similar to a residual connection [42], we add
the original semantic feature to the result in an element-wise
summation manner to maintain its initial behavior.

E. Multitask Objective Function

The proposed network is featured by dual-task loss functions,
i.e., the lassification loss and the regression loss. Nevertheless,
distribution of the class labels in the existing remote sensing
data sets, e.g., Vaihingen [66] and Potsdam [67], is extremely
imbalanced, because the pixels belonging to the different class
labels are different. As demonstrated in Fig. 6, the distribution
of the above two data sets is dramatically imbalanced, which
will bias the training process toward those dominant samples
and bring about low segmentation performance for the small
samples. In order to address the category imbalance issues, we
follow focal loss [68] to take the weighted cross-entropy loss
function as our segmentation optimization function

Ls = −
∑
i

∑
c

wi × �i × log(pi, c) (9)

in which i indexes the position andwi set by the inverse category
frequency indicates the balance factor for position i to address
the class imbalance. c ∈ [1, 2, . . ., C] indicates the category. �i
is the semantic label of position i and (pi, c) is the predicted
probability of position i belonging to category c.

Fig. 6. The statistical distribution of semantic categories on the training set of
Vaihingen (top) and Potsdam (bottom). Horizontal axis represents the semantic
categories, while vertical axis indicates the relative proportion of pixels.

For height estimation task, we utilize smooth L1 loss as height
supervision formulated as

Lh =

n∑
i

{
0.5(hi −Hi)

2, if |hi −Hi| ≤ 1

|hi −Hi| − 0.5 otherwise
(10)

where i indexes the position and n indicates the total number of
positions. Here hi and Hi represent the the final output height
and ground-truth height at position i separately.

Following PSPNet [18], we add an auxiliary supervision La

after the third stage of the ResNet-101 [42] to help optimize the
learning process. Finally, we define the joint objective function
as

L = Ls + λ1La + λ2Lh (11)

where λ1, λ2 are set 0.5, 1 by default to balance the objective
function. In Section IV-D, we perform the ablation studies for
the influence generated by the choice of super parameter λ1 and
λ2 on segmentation performance.

IV. EXPERIMENTS

In this part, we conduct sufficient experiments on Vaihingen
data set [66] and Potsdam data set [67] to evaluate the effective-
ness of our proposed framework for semantic segmentation.

A. Datatsets

Vaihingen: There are 33 images in the Vaihingen data set
in total, where the training set embodies 16 images and the
remaining 17 tiles are used to evaluate our proposed network
following the previous works [12], [29], [69]. Each aerial image
is provided with orthophoto images, semantic labels, and digital
surface models (DSM and nDSM). Each image has a ground
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sampling distance of 9 cm and three channels of near-infrared,
red, as well as green.

Potsdam: The Potsdam data set involves 38 image tiles in all,
where the training set contains 24 images and the remaining
14 tiles are used to evaluate our proposed network. Each aerial
image is composed of four channels (near-infrared, red, green,
and blue) and a spatial resolution of 5 cm/pixel.

B. Evaluation Metrics

We adopt overall accuracy (OA), mean IoU (intersection
over union), and F1 score as evaluation metrics to evaluate the
segmentation performance. OA and IoU are two widely used
metrics, which are calculated separately as

IoU =
NTP

NTP +NFP +NFN
(12)

OA =
NTP +NTN

NTP +NFP +NFN +NTN
(13)

in which NTP, NTN, NFP, and NFN are the number of true
positives, true negatives, false positives, and false negatives,
respectively. Note that we count the F1 score for all categories
except background as follows:

F1 =
2× precision × recall

precision + recall
(14)

where precision = NTP
NTP+NFP

, recall = NTP
NTP+NFN

.
Note that, in order to reduce the influence of boundary un-

certainty, the evaluation is performed by semantic labels with
eroded object boundaries. Moreover, the OA value is calculated
for all classes including clutter/background to make a synthetical
comparison.

C. Implementation Details

We adopt FCN [6] and ResNet-101 [42] as our baseline
separately for further comparison experiments. All our net-
work frameworks are implemented in PyTorch 1.2 and per-
formed over two Tesla P100 GPUs. Following the previous
works [27], [44], [70], we train our network by adopting a
poly-learning rate schedule in which the initial learning rate is
set to 0.01. After each iteration, the learning rate is multiplied by
1− ( iter

max _iter )
power, with power = 0.9. To synchronize the mean

and standard deviation of multiple branches, we adopt InPlace-
ABNSync [71] after each convolutional layer. Our model is
optimized with a stochastic gradient descent for 50 epoches.
And we utilize the momentum of 0.9 and the weight decay
of 0.0005, respectively. Limited to GPU memory, the training
images in both Vaihingen and Potsdam data sets are cropped
into 512× 512 by applying random cropping, random scaling,
and random horizontal flipping. In the test stage, we adopt MS
inputs to enhance the testing performance for MS issues in the
aerial images.

D. Experiments on Vaihingen Data Set

1) Comparisons With Baseline: In order to evaluate the per-
formance of each component in the proposed network, we carry

TABLE I
ABLATION STUDY OF THE PROPOSED MODULES WITH DIFFERENT BACKBONES

ON THE VAIHINGEN TEST SET. BASELINE-S INCLUDES SEMANTIC-ONLY

WITHOUT HEIGHT-AWARE EMBEDDING; CAR INDICATES CONTEXT-AWARE

REORGANIZATION MODULE; HE INDICATES HEIGHT-AWARE EMBEDDING;
MAP INDICATES MODALITY-AFFINITIVE PROPAGATION

out many experiments with different settings on the Vaihingen
data set, and the numerical results are reported in Table I. Note
that we take FCN (VGG-16 and ResNet-101, respectively) as our
Baseline-S, which includes semantic-only without height-aware
embedding.

As illustrated in Table I, compared with the baseline FCN
(VGG-16), employing CAR module achieves a result of 89.53%
in OA and 79.54% in mIoU, which brings 3.02% and 6.85%
improvement, respectively. Another discovery is that, introduc-
ing the geometric information from elevation data gains a larger
improvement, which reveals the significance of jointly reasoning
2-D contextual and 3-D geometric information. On the basis of
the above, introducing the height-aware embedding (HE) from
height estimation branch to the semantic segmentation branch
enables a boost over Baseline-S by 3.17%, 7.24% in OA and
mIoU, separately. Furthermore, employing the proposed MAP
method achieves the best performance, which outbalances the
Baseline-S by 3.53% in OA and 7.92% in mIoU, respectively.

We further explore the influence of different backbones to
our method. In comparison with the baseline, when we apply a
deeper framework (ResNet-101), the network with CAR mod-
ule, HE, and MAP together increases the OA and mIoU by 0.96%
and 3.27%, respectively. Results show that each component we
proposed can bring great benefits to scene segmentation.

2) Ablation Study for Context-Aware Reorganization
Module: In the proposed HECR-Net, CAR module composed
of GCA module and LFR module is employed to distribute
the global context to each position conditionally. Table II
first reports the results using only four GCA modules, i.e.,
ASPP [15], nonlocal block (NLB) in [22], pyramid pooling
module (PPM) [18], and CGNL in [46] to the Baseline-S. As
shown in Table II, all GCA methods show a better performance
compared with the Baseline-S. Meanwhile, we report the
related results by adding our proposed LFR module to the GCA
modules in Table III. Directly exploiting LFR module alone
outperforms the baseline by 90.21% in OA, which reveals that
features from the dilation backbone have the similar problem as
features from GCA modules. Comparing Tables II and III, we
can clearly see that the performance of our network is further
increased by incorporating LFR module in conjunction with
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TABLE II
COMPARISON OF DIFFERENT GLOBAL CONTEXT AGGREGATION (GCA)

MODULES USING RESNET-101 AS BACKBONE

The bold entities indicate the model with best performance.

TABLE III
ABLATION STUDY FOR LOCAL FEATURE REDISTRIBUTION (LFR) MODULE

APPLIED ON DIFFERENT GCA MODULES USING RESNET-101 AS BACKBONE

Δα indicates the results difference comparing with Baseline-S, and Δβ

means the results difference between using CAR module (GCA module
+ LFR module) and the corresponding GCA module.

TABLE IV
ABLATION STUDY FOR DIFFERENT INTEGRATION MANNERS OF GCA AND LFR

ADOPTING RESNET-101 AS BACKBONE

different GCA modules, which further proves the effectiveness
of the proposed LFR module. Another interesting observation
is that LFR module greatly improves the performance of
the attention-based aggregation methods, but less for MS
aggregation methods, which is mainly attributed to the methods
of modeling long-range dependences between them. As shown
in Table III, comparing with baseline, “+ CGNL + LFR”
achieves the result of 90.77% in OA. Note that, we only select
CGNL as our GCA module in the follow-up experiments.

Considering LFR module can also promote the performance
of the baseline, this work further studies the impact of different
arrangements methods of the GCA module and LFR module.
Table IV shows the performance comparisons of the baseline
and three different integration manners, where “+ Parallel”
denotes concatenating the output features of GCA as well as
LFR module and “+ LFR-GCA” indicates performing LFR
before performing GCA. As shown in Table IV, “+ GCA-LFR”
attains the result, i.e., 90.77% in OA and 82.47% in mIoU,
while “+ Parallel” and “+ LFR-GCA” achieve 90.43% and

TABLE V
COMPARISON WITH ELEVATION INCORPORATION METHODS ON THE VAIHINGEN

TEST SET. “SUP” INDICATES SUPERVISION; “D” INDICATES DSM; AND “GT”
INDICATES GROUND-TRUTH OF SEMANTIC SEGMENTATION

90.56% in OA and 81.35% and 81.86% in mIoU, respectively.
The result shows that concatenating integration patterns and per-
forming LFR before performing GCA lead to an unsatisfactory
result. The reason may be that LFR module has not extracted
global features yet and the features extracted from LFR module
are not insensitive to the regions inside large objects.

3) Effect of Height-Aware Embedding: In this part, we
mainly investigate the influence of incorporating height infor-
mation in three different manners on semantic segmentation
performance. First, Baseline-SD indicates an image-level fusion
method, which directly concatenates the IRRG images and
elevation data from the channel dimension. Then, Baseline-S-D
is the conventional feature-level fusion method, which feeds the
IRRG images and elevation data to two different backbones, sep-
arately. The proposed Baseline-S+HE leverages the geometry
information for semantic segmentation by learning height-aware
embedding without explicitly requiring elevation data as inputs.

The results in Table V show that there is no guarantee of
the improvement by introducing additional geographic elevation
data. On the contrary, the performance of Baseline-SD is inferior
to the performance of Baseline-S. The possible reason is that the
pretraining weight is usually based on three-channel data and is
not suitable for four-channel data to train. And this simple and
direct image-level fusion is not only detrimental to extracting
features by backbone, but brings redundant features. By contrast,
Baseline-S-D and Baseline-S+HE reveal the effectiveness of
inferring 2-D contextual and 3-D geometric information jointly.
Especially, Baseline-S+HE yields a considerable amplification
of 0.74% and 2.79% in the OA and mIoU, respectively. In
summary, the aforementioned experimental results show that
the proposed height-aware embedding can effectively distill the
geographic information as the auxiliary information and the
performance of semantic segmentation is further improved.

We further compare the proposed Baseline-S+HE with
Baseline-S, Baseline-SD, and Baseline-S-D in terms of effi-
ciency, including parameters, computation cost (MACs), and
execution time. For a fair comparison, we compare the ef-
ficiency of the above methods under the same setting, i.e.,
output_stride = 8. As shown in Table VI, compared with
the Baseline-S and Baseline-SD, the proposed Baseline-S+HE
increases less computation, memory, and execution time, which
can be still tolerable in real scenes. Meanwhile, Baseline-S-D
almost doubles the parameters, computation, and execution time
with less performance improvement. It is obvious that we have
more efficient parameter utilization in the Baseline-S+HE. Fig. 7
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TABLE VI
EFFICIENCY COMPARISON WITH ELEVATION INCORPORATION METHODS ON

THE VAIHINGEN TEST SET DURING INFERENCE STAGE

Execution time refers to the time of inferring an image of size [512× 512].

Fig. 7. Feature maps of Ground-truth, Baseline-S, Baseline-SD, Baseline-S-
D and Baseline-S+HE. The larger the pixel value, the stronger the response.
(a) Predictions for all categories. (b) Impervious surfaces. (c) Building. (d) Low
vegetation. (e) Tree. (f) Car. (g) Clutter/background. Greater values of pixels
indicate stronger responses.

TABLE VII
COMPARISON WITH DIFFERENT FUSION STRATEGIES ON THE

VAIHINGEN TEST SET

“SF” indicates element-wise summation for feature fusion.

qualitatively shows the advantages of the proposed Baseline-
S+HE.

4) Effect of MAP Module: In this part, we qualitatively an-
alyze the effect of utilizing the proposed MAP module on the
fusion of semantic and geometrical features. As shown in Table
VII, we conduct three groups of experiments with different
fusion strategies and compare them with the Baseline-S+HE.
The results show that all strategies can improve the segmentation
performance, where MAP is better than other methods in OA and
mIoU especially. This is because that, after obtaining semantic
affinity and geometric affinity, our MAP module can effectively
integrate the cross-task information to improve segmentation
performance.

As shown in Fig. 8, we provide qualitative comparisons be-
tween different fusion strategies. First, Baseline-S+HE without

Fig. 8. Qualitative comparisons between different fusion strategies. (a) IRRG
images. (b) Without feature fusion. (c) Element-wise summation. (d) GAC.
(e) MAP. (f) Ground-truth.

feature fusion is easy to lead to incorrect classification between
different categories, such as low vegetation and tree, buildings,
and impervious surfaces. The three methods with feature fusion
can successfully make corrections between the above similar
categories in appearance by introducing the geometric informa-
tion from height estimation branches. In contrast, our proposed
MAP module achieves better segmentation performance than the
other two fusion methods in the classification of low vegetation
and trees categories.

5) Ablation Study for Multitask Objective Function: In this
part, we conduce a large number of experiments to verify the
effect of the proposed auxiliary loss functions and height esti-
mation module.

Effect of Auxiliary Loss: We explore the optimal value of
λ1, which denotes the weight parameter of the auxiliary loss
functions. Concretely, we set the weight parameter of height
supervisory loss function (i.e., λ2) as 1, and the results for the
choice of λ1 are reported in Table IX, which shows that the
choice of λ1 = 0.5 achieves the best performance. In addition,
five experiments are carried out for each parameter value, and
the average value was taken as the final result to avoid the effect
of the errors in the process of experimental training.

Effect of Height Supervision: This work further analyzes the
effect of the height supervisory with different configurations
(i.e., λ2). It is worth noting that none of the models include the
MAP module in this section. The results in Table X show that,
by incorporating the proposed height-aware embedding branch
for the network training, semantic segmentation performance
is improved significantly and the model is not particularly
sensitive to parameter selection. Particularly, when λ2 = 0, the
model denotes the baseline network without height estimation
and achieves a result of 90.77% in OA and 82.47% in mIoU.
Meanwhile, the proposed model with height estimation gets the
best performance and outperforms the baseline by in OA and in
mIoU, when λ2 equals 1.

6) Comparison With State-of-the-Art: Following [25], [26],
[70], some common strategies are adopted to improve the per-
formance. We first apply random left–right flipping and random
scaling for data augmentation (DA). In addition, we average
the segmentation results of five scales {1.5, 1.25, 1.0, 0.75, 0.5}
for MS inference. Meanwhile, we employ a hybrid dilated
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TABLE VIII
EXPERIMENTAL RESULTS ON VAIHINGEN TEST SET

Fig. 9. Visualization results of HECR-Net on Vaihingen test set. Impervious surfaces: white; buildings: blue; low vegetation: cyan; trees: green; cars: yellow.

TABLE IX
COMPARISONS OF DIFFERENT WEIGHT PARAMETERS λ1

convolution bottleneck with multigrid (MG) structure. As shown
in Table XII, all the above strategies improve the performance
significantly. When we adopt all the strategies, the proposed
HECR-Net improves the segmentation performance by almost
0.51% in OA and 0.67% in mIoU.

We compare our model with the current methods on Vaihingen
test set, and the numerical results are reported in Table VIII,

TABLE X
EXPERIMENTAL RESULTS OF DIFFERENT WEIGHT PARAMETERS λ2

where our approach still maintains the highest mean F1, OA,
and mIoU. In addition, we also report the segmentation results
on each category in Table VIII. It is obvious that our method is
superior to other methods in most classes, which confirms the
effectiveness of our proposed modules again.

7) Visualization Results: Fig. 9 showcases several qualitative
results of our model and baseline on the ISPRS Vaihingen data
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TABLE XI
EXPERIMENTAL RESULTS ON POTSDAM TEST SET

Fig. 10. Visualization results of HECR-Net on Potsdam test set. Impervious surfaces: white; buildings: blue; low vegetation: cyan; trees: green; cars: yellow.

sets for semantic segmentation. In order to show the results of
segmentation more clearly, we choose 512 × 512 patches. The
results show that the segmentation result is obviously better than
that of baseline network in the regions with similar color or
shadows marked with red solid box. The proposed HECR-Net
predicts more accurate segmentation maps, which commendably

demonstrates the effectiveness of inferring 2-D contextual and
3-D geometric information jointly.

E. Experiments on Potsdam Data Set

In order to evaluate the effectiveness of HECR-Net, we also
carry out experiments on the large-scale ISPRS Potsdam data
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Fig. 11. Visualization results of height estimation on ISPRS Vaihingen data set.

TABLE XII
COMPARISONS AMONG DATA AUGMENTATION (DA), MULTISCALE (MS), AND

MULTIGRID (MG)

set. We adopt the same experimental setup as on Vaihingen data
set. The results compared with state-of-the-arts are reported
in Table XI. Note that the compared methods may vary from
Table VIII to Table XI. Remarkably, the proposed HECR-Net
(ResNet-101) achieves 91.84% in OA and 87.08% in mIoU.
The experimental results on Potsdam data set again verify the
effectiveness of HECR-Net, with better performance than the
compared methods. Notably, there are some low-quality DSMs
in Potsdam data set as a result of the capture device, which
probably influences the auxiliary effect from the height-aware
embeddings.

In addition, Fig. 10 demonstrates some qualitative classifi-
cation results of our HERC-Net and Baseline-S on Potsdam
test set. As shown in Fig. 10, HECR-Net produces desirable
segmentation results on distinguishing the objects with similar
2-D appearance (e.g., roads and roofs, trees and low vegetations).

F. Height Estimation Performance

In this article, we focus on jointly extracting 2-D contextual
and 3-D geometric features from a single optical image, and
fusing the above features to solve the challenges in semantic
segmentation. Here we qualitatively analyze the ability of the
proposed network to distill 3-D height features.

Fig. 11 shows the qualitative height estimation results of the
proposed HECR-Net to demonstrate the capability of learning
3-D geometrical features on the ISPRS Vaihingen test set.

We choose DSM as the supervision for height estimation to
get height-aware embeddings. Note that, we utilize a sigmoid
function to normalize the predicted values of height maps to
[0, 1]. In addition, because the aerial images must be cropped
into smaller images for memory constraints, our HECR-Net
produces a surface with gap after integrating the estimated height
images.

V. CONCLUSION

In this article, we present a joint reasoning network for dense
prediction tasks in the complex scenes, namely HECR-Net. The
biggest innovation of the proposed HECR-Net is to decouple
the single prediction task into semantic segmentation and height
estimation. Furthermore, we introduce a CAR module embedded
with a GCA module and a local feature redistribution module.
This CAR module is specifically responsible for generating a
discriminative feature with global information appropriately as-
signed to each local position. Additionally, to extract 3-D height
information, a multitask decoder is trained under the supervision
of semantic labels and elevation data (e.g., DSM and nDSM).
What is more, modality-affinitive propagation block fuses the
distilled 3-D height features and 2-D contextual features to
improve the performance of semantic segmentation. A large
number of experiments on ISPRS Vaihingen and Potsdam data
set certify that the proposed HECR-Net achieves remarkable
performance. In the future work, we will study the optimization
of multitask joint training and further study the effectiveness of
the CAR module in the task of height estimation, where both
global and local information are important.
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