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A Multiscale Attention Network for Remote Sensing
Scene Images Classification
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Abstract—The remote sensing scene images classification has
been of great value to civil and military fields. Deep learning
models, especially the convolutional neural network (CNN), have
achieved great success in this task, however, they may suffer from
two challenges: first, the sizes of the category objects are usually
different, but the conventional CNN extracts the features with fixed
convolution extractor, which could cause the failure in learning the
multiscale features; second, some image regions may not be useful
during the feature learning process, therefore, how to guide the
network to select and focus on the most relevant regions is crucially
vital for remote sensing scene image classification. To address
these two challenges, we propose a multiscale attention network
(MSA-Network), which integrates a multiscale (MS) module and
a channel and position attention (CPA) module to boost the per-
formance of the remote sensing scene classification. The proposed
MS module learns multiscale features by adopting various sizes of
sliding windows from different depths’ layers and receptive fields.
The CPA module is composed of two parts: the channel attention
(CA) module and the position attention (PA) one. The CA module
learns the global attention features from channel-level, and the PA
module extracts the local attention features from pixel-level. Thus,
fusing both of those two attention features, the network is apt to
focus on the more critical and salient regions automatically. Exten-
sive experiments on UC Merced, AID, NWPU-RESISC45 datasets
demonstrate that the proposed MSA-Network outperforms several
state-of-the-art methods.

Index Terms—Remote sensing scene, multi-scale, attention,
feature fusion.
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I. INTRODUCTION

THE explosion of high-resolution remote sensing imaging
technology has unleashed a veritable data deluge in in-

vestigating the land-use and land-cover scenes [9], [16], [18],
[19]. Especially, the recognition and classification of the remote
sensing scene images have been of great value to civil and mili-
tary fields, due to its plentiful spatial and semantic information.
Specifically, in this classification task, it uses pixel-based [3] or
different levels of features to identify and label the images based
on the image contents. However, the remote sensing scene image
usually contains complicated ground objects with different spa-
tial distributions, such as roads, buildings, and rivers, and that
makes it difficult to classify the specific category of the whole
scene image.

To tackle this challenge, during the past years, many works
have been proposed for scene classification. The early attempts
for this task mainly focused on the hand-crafted features such
as texture, shape, color, and spatial representations, which are
combined and fed into a classifier for prediction. For example,
Yang et al. [65] designed a category of image descriptors based
on saliency for remote sensing scene images classification. Luo
et al. [40] proposed to extract the radiometric, Gaussian wavelet,
Gabor, and Gray level co-occurrence matrix features with dif-
ferent spatial resolutions for indexing of remote sensing scene
images. To extract more spatial features, the work in [77] devel-
oped an effective approach by fusing the local and global spatial
features with multiscale feature learning mode. Meanwhile,
Huang et al. [24] utilized the patch-based multiscale local binary
pattern features and a Fisher vector for remote sensing scene
images classification. Some other previous works also used the
color features [31], [49], [51], [57], histogram of oriented gradi-
ents features [6], [7], [41], and bag-of-visual-words [12], [52],
[74] for classification. However, the above methods based on
the hand-crafted features may yield unsatisfactory performance
since they require subjective and empirical feature definition and
selection. Furthermore, these features are usually low-level and
mid-level, which may become limited and inadequate for the
complex remote sensing scene image feature learning.

Since the remarkable performance of the convolutional neural
network (CNN) in many computer vision fields [5], [17], [22],
[25], [45], [61], [73], [76], many researchers also used CNN
to extract high-level features from the remote sensing scene
images[15], [20]. Compared with the hand-crafted based feature
learning, CNN could extract more semantic features by deep
network layers in an end-to-end learning manner. Especially,
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Fig. 1. Size of the target category airplane in scene image (a) is quite different from that of the target category tennis court in scene image (b). In the image
(c) and (d), the red “.” denotes the target category key regions, and the red “×” represents the useless regions of other objects, it is obvious that not all the image
regions are useful during the feature leaning process.

the feature representations from the deeper layers could pro-
vide more abstract and semantic information, which are more
applicable to the remote sensing scene image classification task.
There are many baseline CNN models such as AlexNet [26],
VggNet [54], GoogleNet [56], ResNet [13], which have achieved
impressive performance for the natural image classification on
ImageNet dataset [27]. Inspired by these works, many works
tried to explore the huge power of CNN for remote sensing
scene image classification. For example, Han et al. [11] used
the AlexNet as the backbone architecture and incorporated the
spatial pyramid pooling layer to learn the multiscale informa-
tion of the remote sensing scene image. Castelluccio et al. [3]
explored the CaffeNet [28] and GoogleNet [56] with widely
different network settings for this classification task, in [43]
and [50], the deeper network architecture such as the ResNet
was used to learn more semantic features. Meanwhile, some
other hand-crafted features such as the texture, color, and local
binary patterns (LBP) [1] were combined with the deep features
to further improve the classification performance. The previous
works in [4], [23], [39], [58], [69] proposed different feature
fusion strategies with various network structures to explore the
effectiveness of different fusion modes. To alleviate the influence
of limited remote sensing scene images, transfer learning, or
pretrained methods [3], [4], [10], [21], [23], [32], [34], [44],
[58], which pretrain the network on large amounts of datasets
such as the ImageNet had been used for the improvement of the
classification performance.

Although these works have achieved promising performance
for remote sensing scene classification, they may encounter two
main challenges. First, the category objects of remote sensing
scene images usually have different sizes as shown in Fig. 1(a)
and (b), in which the size of the target category airplane in
scene image (a) is quite different from that of the tennis court
in (b). However, the conventional CNN extracts the features
with a fixed convolution extractor, which could be a handicap
to learn the multiscale features; second, as shown in Fig. 1(c)
and (d), the red “.” denotes the target category key regions, and
the red “×” represents the useless regions of other objects, it
is obvious that not all the image regions are useful during the
feature leaning process. Therefore, how to guide the network
to select and focus on the most relevant regions is crucially
vital for remote sensing scene image classification. To address
these two challenges, in this article, we propose a multiscale

attention network (MSA-Network) to achieve remote sensing
scene images classification tasks. The proposed MSA-Network
uses ResNet [13] as the backbone network and integrates a
multi-scale (MS) module and a channel and position attention
(CPA) module to further boost the classification performance.
Inspired by the previous work [56], the designed MS module
extracts multiscale features from different receptive fields with
various sizes of sliding windows. Besides, since different depths
of layers may contain pyramidal scale features, we add the MS
module behind each stage’s last residual block to extract the
multiscale features hierarchically. The CPA modules consist of
two parts, i.e., the channel attention (CA) module, and position
attention (PA) module, respectively. During the feature learning
process, the CA module extracts the attention features from
channel-level globally, while the PA module learns the atten-
tion features from pixel-level locally. By integrating those two
attention features, it could guide the network to focus on more
informative and critical regions globally and locally. The main
contributions of this article can be summarized as follows:

1) A novel MS module has been proposed to improve the
network ability to capturing multiscale features during the
feature learning process.

2) We design a CPA module, which guides the network
to focus on the informative critical regions globally and
locally.

3) Extensive experiments on three (UC Merced, AID,
NWPU-RESISC45) datasets demonstrate our proposed
MSA-Network has achieved competitive results over other
state-of-the-art methods.

The rest of this article is organized as follows. Section II intro-
duces the proposed MSA-Network. The extensive experiments
and results are presented in Section III. In Section IV, we conduct
a qualitative analysis of our designed model. Finally, Section V,
concludes this article.

II. PROPOSED MSA-NETWORK

In this section, we give a detailed description of the designed
model. As illustrated in Fig. 2, the main backbone of our model
is based on ResNet, which has achieved great success in many
computer visions tasks. Meanwhile, for better extracting more
multiscale and discriminative features, we propose an MS
module and a CPA module. Specifically, we add the MS module
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Fig. 2. Overview of the proposed architecture for remote sensing scene images classification. The main backbone of our network is based on ResNet, and we
integrate the MS module and the CPA module with the network. The MS module is added behind each stage’s last residual block to extract the multiscale features
hierarchically. The CPA module is added behind the last MS module to guide the feature learning process to focus on more informative and critical regions. For
different depth of ResNet backbones, we list detailed parameters and network settings in Table I.

TABLE I
PARAMETERS SETTING OF THE NETWORK

after each residual block to extract the multiscale features
hierarchically. Since the deeper layer contains more high-level
and semantic features, we integrate the CPA module after the
last MS module to focus on more informative and critical
regions. For different depths of ResNet backbones, we list the
parameters and network settings in Table I. The more detailed
introductions of the proposed modules will be discussed in the
following sections.

A. Multiscale Feature Learning

The remote sensing scene images usually compose of com-
plex and diverse objects in the real world, and the main category
of remote sensing scene object is often with various sizes.
However, the conventional ResNet usually uses the fixed size

convolutional layers to extract local features, which could be
a handicap for the network to learn multiscale features. Thus,
inspired by the previous work in [56], we use an MS feature
learning module as a basic unit of the network to enhance
the multiscale feature learning. The detailed structure of the
proposed MS module is illustrated in Fig. 3. Denote the Fi−1

as the input feature from the previous layer, and Fi as the
output feature from the designed module. Instead of directly
passing Fi−1 into the next layer, we first apply multiscale fea-
ture learning with different convolution kernel sizes. Here, we
use {1× 1, 3× 3, 6× 6, 9× 9} as the basic units to generate
four scale-level features. Next, an interlaced feature learning
strategy is adopted for aggregating more contextual multiscale
information from the input features. Specifically, for the sizes
of 1× 1 and 3× 3 kernels, they aim to learn more precise
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Fig. 3. Detailed structure of the MS module, Fi−1 and Fi are the input and output feature maps of the ith layer, respectively.

and subtle information. While for the sizes of 6× 6 and 9× 9
kernels, they are more likely to extract global and large-scale
representations. The different sizes of convolution operations
fs can be formulated as follows:

fs =
∑

s∈S
(ks ∗ Fi−1 + bs) (1)

where ks is the kernel for the scale of s ∈ {1, 3, 6, 9}, and bs is
the bias for fs. After the interlaced feature learning, two 1×1
convolution layers are utilized to aggregate the global and local
features and then input to another 1×1 convolution layer to gain
the squeezed feature Fc. Subsequently, we perform an element-
wise sum Fc with Fi−1 by residual learning to further improve
the convergence ability of the network, and the output feature
maps Fr can be given as follows:

Fr = Fc + Fi−1. (2)

After that, the final Fi is gained by applying a 1× 1 convolution
operation on Fr. Notably, inspired by the fact that different
depths of layers could contain pyramidal scale features [33],
for our MAS-Network, we insert our MS module behind the last
residual block of each stage to learn the scale-relevant feature
pyramidally, and the detailed inserted position of this module is
illustrated in Table I.

B. CPA Modules

Since the remote sensing scene images are captured from
an overhead view, they usually contain complex and diverse

objects. Thus, many objects are not useful for the image classifi-
cation task. To handle this problem, we use the attention mech-
anism to guide the feature learning process to focus on more
informative and critical regions. Conventionally, the attention
mechanism has two categories: one is the hard attention, which
restricts the regions to 0 or 1, the other one is the soft attention,
which calculates the weight of the specific region. In this article,
we use the soft attention mechanism with two attention mod-
ules to select and learn more global and local representations.
Denote the output feature map from the last residual block as
F ∈ RC×H×W , where C, H , W are the channel, height, and
width of the output feature, separately. FC is the CA feature
map, andFP is the PA feature map. In the following sections, we
will give a detailed introduction to these two attention modules.

1) CA Module: Our CA module is inspired by the previous
work squeeze and channel excitation block [29] and the spatial
pyramid pooling [14]. The feature map of each channel contains
different global and semantic responses, which is essential for
remote sensing scene images understanding. Thus, in order to
improve the ability to learn discriminative features from the
channel level, we design a CA module to encode a wider of
contextual and global representations from the channel level.
The detailed structure of the proposed CA module is illustrated
in Fig. 4. For the input feature map F ∈ RH×W×C , we first
perform three max-pooling operations with sizes of {2× 2,
4× 4, 8× 8} to learn the contextual and global information,
and it could be formulated as {Fsp, p ∈ {2, 4, 8}}. Then, a SE
Block is utilized on Fsp to enable the network to focus on the
most salient representations globally from the channel-level.
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Fig. 4. Structure of our CA module, F denotes the input feature map with dimension of C ×H ×W , and FC is the final output from the CA module.

Fig. 5. Structure of PA module, F denotes the input feature maps with the dimension of C ×H ×W , FP is the final output from PA module.

Here, we denote each single F j
sp as the jth channel feature map

of Fsp where j ∈ [1, C]. In SE Block, a global-average pooling
over F j

sp is used to generate the global weight aj of the jth
channel. And the operation of the global-average pooling for
the jth channel can be formulated as follows :

aj =
1

H ×W

H∑

x

W∑

y

F j
sp(x, y). (3)

For better improving the generalization of the module, a fully
connected (FC) layer is applied to the weight vector a (a =
{a1, a2, ..., aj , ..., aC}) with a ReLU operator δ. Then, another
FC layer with sigmoid activation σ is used to normalize outputs
of the previous layer. These two FCs operations are defined as
follows:

AW = σ(W2δ(W1a)) (4)

whereW1 ∈ RC×C
r andW2 ∈ R

C
r ×C are the respective weights

of the two FCs, and the gained value of AW represents the im-
portance weight of channel feature map from the global-average
level. Additionally, the variable of r is the bottleneck of the
channel excitation, and we set it four empirically. Next, the CA
output of F̂sp is gained by applying an muplication between AW

and Fsp, which could be formulated as follows:

F̂sp = AW · Fsp. (5)

After that, we concatenate those three CA outputs and apply a
convolution layer with a size of 1× 1 to squeeze the channel
value to C. Therefore, the final output of CA module F̂ is
calculated as follows:

FC = Conv(Concat(F̂s2, F̂s4, F̂s8)). (6)

With the designed CA module, it could guide the network to
focus on the globally crucial representations, which further
improve the classification performance.

2) PA Module: Different from the CA module, the goal of
our PA module is to extract more subtle features from the pixel
level. The detailed structure of the PA module is illustrated in
Fig. 5. In order to learn the importance of each feature pixel
position, we first apply two position operations τM (.) and τA(.),
which are utilized to calculate the max-value and average-value
of each feature pixel position of the whole feature channels.
After that, two sigmoid activations are employed to those two
obtained features and gained the position weighted feature map
FM and FA, respectively. Then, we multiply the input feature
F with FM and FA to gain the position enhanced feature F ′

M

and F ′
A, separately. And it could be formulated as follows:

F ′
M = F · FM , F ′

A = F · FM . (7)

Finally, the output feature map of the PA module is obtained
by concatenating the F ′

M and F ′
A, and then applying a (1× 1)
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Fig. 6. Example images of UC Merced/AID/NWPU-RESISC45 dataset.

convolution layer to aggregate those two features, and the ag-
gregation process can be defined as follows:

FP = Conv(Concat(F ′
M , F ′

A)). (8)

3) Channel and Local Feature Fusion: In our designed
model, the CA module could generate more global representa-
tions over the whole feature map, while the PA module extracts
the location attention feature from the pixel level. To incorpo-
rate more discriminative features from those two modules, we
explore three combination methods to boost the remote sensing
scene classification performance.

1) Concatenation: The concatenation operation is to con-
catenate two features at the same location x, y along the
specific channel direction d into a vector

yx,y,dconcat = concat(F x,y,d
C , F x,y,d

P ) (9)

where d ∈ {0, 1, 2}, and 1 ≤ x ≤ H , 1 ≤ y ≤ W . yx,y,dconcat
is the output feature by concatenation operation. Although
the concatenation operation increases the complexity with
stacking more channels, there is no information loss during
the fusion process.

2) Addition: The addition operation is to compute the sum
of two input features at the same location. The addition
operation is formulated as follows:

yx,y,cadd = F x,y,c
C + F x,y,c

P (10)

where 1 ≤ x ≤ H , 1 ≤ y ≤ W , 1 ≤ c ≤ C, and yx,y,cadd is
the output feature by addition operation.

3) Nonlinear Fusion: The strategy of nonlinear fusion is
similar to the concatenation fusion, except that we apply
an FC layer with the nonlinear activation function to each
input feature before the concatenation operation:

yx,y,dnonlinear = concat(WC(F
x,y,d
C ),WP (F

x,y,d
P )). (11)

Here, 1 ≤ x ≤ H , 1 ≤ y ≤ W , and d ∈ {0, 1, 2} is the spe-
cific channel direction,WC andWP is the corresponding weight
of the FC layer, yx,y,cnonlinear is the output feature by nonlinear fusion
operation.

III. EXPERIMENTS AND RESULTS

In this section, we evaluate the proposed MSA-Network
model on three different aerial scene public datasets. We first
give a brief description of all datasets, then the detailed exper-
imental setting of the model is introduced. Finally, we conduct
extensive experiments to further validate the performance of the
proposed MSA-Network model.

A. Introduction of all Datasets

1) UC Merced Dataset: The UC Merced dataset, which was
extracted from the USGS National Map Urban Area Imagery
collection, consists of 21 land-use scene classes, as shown in
Fig. 6. There are 100 images for each class, and each image has
a one-foot spatial resolution, measuring 256× 256 pixels.

2) AID Dataset: The AID dataset is a new large-scale image
dataset that contains sample images collected from Google Earth
imagery. There are 10 000 images within 30 classes, as shown
in Fig. 6. Each image of the AID dataset has a spatial resolution
ranging from 8 m to half a meter, and there are about 220–400
samples measuring600× 600pixels in each class. For each class
of the AID dataset, all the images are selected from different
countries and regions around the world. As a consequence, the
dataset has high intraclasses diversities.

3) NWPU-RESISC45 Dataset: The NWPU-RESISC45
dataset, created by Northwestern Polytechnical University
(NWPU), contains 31 500 images for remote sensing image
scene classification. The dataset consists of 45 scene classes,
and there are 700 images measuring 256× 256 pixels in each
class. The 45 classes are shown in Fig. 6.

From Fig. 6, we can see that the sizes of the categories are var-
ious with different distributions, which could be a challenge for
the conventional neural network to learn the semantic features.

B. Implementation Details

In this article, we use Tensorflow as the basic framework
to implement the proposed MSA-Network model. The main
backbone of our network is based on the ResNet [13]. Following
the experimental setting of [47], [59], [71], for the UC Merced
dataset, we use 80% and 50% as the training sample ratios,
respectively. For the AID dataset, we use 50% and 20% as the
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Fig. 7. Comparison results with different network depths.

training sample ratios, respectively. For the NWPU-RESISC45
dataset, we use 20% and 10% training sample ratios, respec-
tively. During the training process, we use Adam optimization
[30] to make the network convergent. The initial learning rate
is set as 1.0× 10−4, and then we reduce it by 0.1 factor after
the val-loss not improved 10 epochs. The batch-size of the
proposed MSA-Network is 32, and we use real-time data aug-
mentation on the training dataset such as the random rotation,
flip, and cropping. We pretrain our model on the ImageNet
dataset, and dropout is adopted to avoid the network being
overfitting. We conduct our experiments on Ubuntu 14.04 oper-
ating system with 64 GB memory, and an NVIDIA GTX 1080
graphics processing unit has been used to accelerate the training
process.

C. Evaluation Protocol

The overall accuracy (OA) and confusion matrix are se-
lected as the criterion to evaluate the performance of the MSA-
Network. The value of OA is calculated by the ratio between
the correct numbers of classified images and the total number
of images. It is one of the basic evaluation metrics for the
classification task, and the higher value of OA denotes the more
accurate classification performance. The confusion matrix is
a table layout that describes the errors and confusion of each
class. Each row of the table denotes the predicted category
instance, and the column represents the actual category instance.
In addition, the diagonal of the table are the numbers of all
the classes correctly classified. The final confusion matrix is
calculated by the best classification result of all the training ratios
for each dataset.

D. Performance of Different Network Depths

Different depths of networks could extract various represen-
tations. For a deeper network, it is liable to learn more semantic
and high-level features, for a shallower network, it would extract
tinier and more detailed information. Thus, in this section, we
first explore the performance of four network depths (18-layer,
34-layer, 50-layer, 101-layer) on the three datasets with our
designed architecture. The depth of the network is deepened by
adding the convolution and residual blocks as previous work
[13]. The results are reported in Fig. 7. We use the 80%,

Fig. 8. Comparison results with different fusion methods.

50%, and 20% of training data for the UC Merced dataset,
AID dataset, and NWPU-RESISC45 dataset, respectively. On
the UC Merced dataset, the proposed MSA-Network achieves
(97.73± 0.45%), (97.82± 0.38%), (98.59± 0.42%), and
(98.96± 0.21%) classification accuracy for 18-layers, 34-
layers, 50-layers, and 101-layers, separately. On the AID
dataset, the results are (94.86± 0.51%), (95.32± 0.21%),
(95.89± 0.33%), and (96.01± 0.43%) for 18-layers, 34-
layers, 50-layers, and 101-layers, respectively. The performance
of 18-layers, 34-layers, 50-layers, and 101-layers on NWPU-
RESISC45 dataset is (90.31± 0.42%), (90.78± 0.51%),
(91.67± 0.43%), and (92.52± 0.23%). The experimental
results demonstrate that the deeper network layers could
achieve better performance compared with shallower network
layers. The best result on three datasets is by using the
101-layers.

E. Effectiveness of Different Modules

In this article, we propose an MS module and two attention
modules (CA module and PA module) to extract the multiscale,
global, and local representations more effectively. In order to
evaluate the effectiveness of different modules, we conduct
relevant experiments on those three datasets. The detailed com-
parison result is shown in Table II. From the experimental results,
we can observe that adding one of the MS, CA, and PA module
could efficiently improve the classification performance of the
network on different datasets, that further proves the effective-
ness of our proposed modules. Overall, the best performance is
achieved by using the MS module, CA module, and PA module
simultaneously, and it further proves that the multiscale, CA,
and PA features are crucially important in the remote sensing
images classification task.

F. Compared With Different Fusion Methods

The designed CA module generates the features from the
channel level, and the PA module generates the features from
pixel level. Thus, fusing both of the two features could enrich
the discrimination of the feature learning model. In this section,
we explore the effectiveness of three fusion methods (addition,
concatenation, nonlinear fusion) on all datasets. The detailed
results are shown in Fig. 8. On the UC Merced dataset, the OA
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TABLE II
EFFECTIVENESS OF DIFFERENT MODULES ON THE UC MERCED, AID AND NWPU-RESISC45 DATASET

is (98.37± 0.39%), (98.96± 0.21%), and (97.25± 0.64%)
for addition, concatenation, and nonlinear fusion methods,
respectively. Meanwhile, the OA on the AID dataset is
(95.77± 0.51%), (96.01± 0.43%), and (95.32± 0.37%).
On NWPU-RESISC45 dataset, it achieves (92.01± 0.46%),
(92.52± 0.23%), and (91.79± 0.56%) with the three fusion
methods, respectively. The performance on these three datasets
demonstrates that the concatenation fusion method performs
best compared with the other two fusion ones. Furthermore,
the addition method is slightly better than the nonlinear
fusion method, and it could be the reason that some spatial
correspondences between the two generated attention features
are decreased at the FC layers. Since the concatenation fusion
method performs best, we use it as the final fusion method of
our model.

G. Classification of the UC Merced Dataset

In order to evaluate the effectiveness of the proposed MSA-
Network, we compare it with other state-of-the-art methods on
the UC Merced dataset. The detailed results are presented in

Table III. In [3], [4], [10], [21], [23], [32], [34], [44], [58],
researchers used pretrained CNNs to boost the performance
of the models. In [23], [47], [64], [74], bag-of-visual-words
(BoVW) was applied to land-use classification. In [58] and
[68], the extreme learning machine classifier was applied for
final classification with fused features. In [34] and [66], they
constructed a pyramid image to characterize both the photo-
metric and geometric aspects of an image. In [1], [23], [60],
images with the LBP based texture, local, and global information
was employed to convey the comprehensive message to the
models. From this table, we can see that the proposed MSA-
Network has gained (98.96± 0.21%) and (97.80± 0.33%)
classification accuracy for 80% and 50% training ratios, sep-
arately. It is noteworthy that the OA of 80% training ratio is
better than the 50% training data ratio, it can be explained
that with more training data samples, the network could learn
more high-level and abstract features, which further enhance
the classification performance. Overall, the experimental re-
sults demonstrate that our MSA-Network could gain state-of-
the-art classification performance on the UC Merced dataset.
The detailed confusion matrix with the training ratio of 80%
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TABLE III
COMPARISONS OF OA (%) ON THE UC MERCED DATASET

is illustrated in Fig. 9. The confusion matrix result shows
that most of the categories have achieved 100% classification
accuracy.

H. Classification of the AID Dataset

Table IV shows the results with other state-of-the-art methods
on the AID dataset. The FACNN in [39] combined the feature
learning, feature aggregation, and classifier for joint training. In
[67], they utilized a multilevel fusion method, which can make
a judgment by incorporating different levels’ information. In
[4], combined with the SIFT feature, the deep learning feature

can get a discriminative image presentation which overcoming
the scale and rotation variability. The result in Table IV shows
that our model has achieved (93.53± 0.21%) classification
accuracy with 20% training data, and (96.01± 0.43%) clas-
sification accuracy with 50% training data, which is the best
performance compared with all competing methods. Overall,
the result demonstrates that our MSA-Network could achieve
state-of-the-art classification performance on the AID dataset.
The detailed confusion matrix with a fixing training ratio of
50% is illustrated in Fig. 10. The result shows that most of the
categories have gained high classification accuracy, which is
above 90%.
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Fig. 9. Confusion matrix on UC Merced dataset with training data of 80%.

TABLE IV
COMPARISONS OF OA (%) ON THE AID DATASET
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Fig. 10. Confusion matrix on AID dataset with training data of 50%.

I. Classification of the NWPU-RESISC45 Dataset

For the NWPU-RESISC45 dataset, the result over other state-
of-the-art methods is shown in Table V. In [36], the lecture
focused on the four new loss functions to achieve better per-
formance. Based on a residual network and dense convolutional
networks in [42], it achieved a competitive result. Using a metric
learning regularization term, the Siamese CNN proposed in [35]
was also very robust and effective. it notes that the proposed ar-
chitecture in [35] replaces the final FC layer with a convolutional
layer to predict the corresponding label of each class. The result
demonstrates that our method achieves the highest classification
accuracy compared with other state-of-the-art methods. For the
20% training data, our model achieves (93.52± 0.21%) classi-
fication accuracy, and for the 10% training data, it has gained the
classification accuracy of (90.38± 0.17%). Especially, com-
pared with the other state-of-the-art network architectures (e.g.,
AlexNet, GoogLeNet, VGG-16), the proposed MSA-Network
could gain better performance. It could be explained from two

folds: first, our designed network is based on ResNet, which
has a deeper network architecture to learn more high-level
and semantic features; second, with our designed MS module
and CPA module, the model is apt to extract more multiscale
and salient features, which further improve the classification
performance of the model. The confusion matrix of 20% training
data is illustrated in Fig. 11, indicating that our model achieves
competitive classification results in most of the categories.

IV. QUALITATIVE ANALYSIS

A. Multiscale Feature Map Visualization

In this section, we visualize some examples of the MS module
feature maps on different datasets in Fig. 12. Since different
depths of layers could contain various semantic features, we
select the feature maps from the four depth layers of our de-
signed architecture. Here, we denote the “MS_module layer_1,”
“MS_module layer_2,” “MS_module layer_3,” nd “MS_module
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TABLE V
COMPARISONS OF OA (%) ON THE NPWU-RESISC45 DATASET

Fig. 11. Confusion matrix on NPWU-RESISC45 dataset with training data of 20%.
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Fig. 12. Some examples of the MS module feature maps on different datasets, the images on the top two rows are samples from the UC Merced dataset, the
images on the middle two rows are samples from the NPWU-RESISC45 dataset, and the images on the bottom two rows are the samples from AID dataset. The
“MS_module layer_1,” “MS_module layer_2,” “MS_module layer_3,” and “MS_module layer_4” as the layers from the first, second, third, and fourth of the MS
module layer, respectively.

layer_4” as the layers from the first, second, third, and fourth
of the MS module layer, respectively. From the visualization
results, we can see that the MS module could extract diverse
features through different sizes of filters, and the shallower depth
layer tends to extract more edge and subtle representations, while

the deeper depth layer is liable to learn more high-level and
abstract features. Overall, with the designed MS module, the
designed network could encode more discriminative features
from different levels, which further improve the classification
performance of the model.
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Fig. 13. Some examples of the attention maps on different datasets, the images on the top two rows are samples from the UC Merced dataset, the images on the
middle two rows are samples from the NPWU-RESISC45 dataset, and the images on the bottom two rows are the samples from the AID dataset.

B. Visualization of the Attention Map

In this section, we show some examples of attention maps on
different datasets. For better comparison, we compare our model
with the ResNet architecture (depth with 101). The detailed
visualization results are illustrated in Fig. 13. Compared with
the ResNet visualization results, it is obvious that our designed
model can attend to the more crucial regions, especially on the
category relevant regions. Meanwhile, the designed model could
provide more diverse and detailed region features, which could
further enhance the final classification performance. We suggest
that adding the CA module, could guide the model to focus on
more global regions while adding the PA module, tends to guide
the model to focus on more subtle regions, thus, fusing both the
CA module and PA module could efficiently improve the model
ability to learn more crucial and salient features.

V. CONCLUSION

In this article, we propose an MSA-Network to handle the re-
mote sensing scene image classification task, in which the MSA-
Network uses the ResNet and incorporates an MS module and
CPA module to further improve the performance of the

designed architecture. The proposed MS module extracts multi-
scale features from different receptive fields with various sizes
of sliding windows. Moreover, we add the MS module behind
each stage’s last residual block to extract the multiscale features
hierarchically. The CPA module consists of two parts: the CA
module and the PA module. The CA module aims to extract
the attention features from channel-level globally, while the PA
module learns the attention features from pixel-level locally.
With those two attention modules, the proposed MSA-Network
could focus on more informative and critical regions glob-
ally and locally. Experimental results on UC Merced, NWPU-
RESISC45, and AID datasets demonstrate that the proposed
MSA-Network could achieve better performance over several
state-of-the-arts on the overall classification accuracy. Further-
more, we also conduct relevant experiments on our designed
modules to further analyze the effectiveness of each module. In
future work, we will try to explore the designed MS module and
CPA module with deeper network architecture such as DenseNet
to validate the effectiveness of our modules. Meanwhile, some
other techniques such as ensemble more models with early
fusion or late fusion may further improve the classification
accuracy.
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