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Progressive Data Augmentation Method for Remote
Sensing Ship Image Classification Based on Imaging

Simulation System and Neural Style Transfer
Qi Xiao , Bo Liu, Zengyi Li, Wei Ni, Zhen Yang, and Ligang Li

Abstract—Deep learning has shown great power in processing
remote sensing data, especially for fine-grained remote sensing
ship image classification. However, the lack of a large amount of
effective training data greatly limits the performance of neural
networks. Based on current data augmentation methods, images
of ships on the sea generated for remote sensing have the problem
of distortion, blurring, and poor diversity. To tackle this problem,
we propose a novel progressive remote sensing ship image data
augmentation method that combines ship simulation samples and
a neural style transfer (NST) based network to generate a large
amount of transferred remote sensing ship images. Our method
consists of two stages. The first stage uses a visible light imaging
simulation system to generate ship simulation samples through
three-dimensional models of real images. This stage can signifi-
cantly increase the diversity of the training dataset. For the second
stage, to eliminate the domain gap between real ship images and
ship simulation samples, a few real images and a newly designed
NST-based network called Sim2RealNet are employed to realize
style transfer from simulation samples to real images. The pro-
posed method was applied to a variety of ship targets to verify
its effectiveness compared to other data augmentation methods on
remote sensing image classification tasks. The experimental results
demonstrate the effectiveness of the proposed method.

Index Terms—Domain gap, image classification, neural style
transfer (NST), remote sensing, ship simulation samples.

I. INTRODUCTION

W ITH the rapid improvement of computer technology
and GPU computing power, given sufficient data, deep

learning has shown a strong dominance in the field of computer
vision, such as image classification [1]–[3], object detection
[4]–[6], and semantic segmentation [7], [8]. Following the suc-
cess of deep learning and the increasing availability of remote
sensing data, deep learning has been playing an increasingly
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important role in the field of remote sensing. With sufficient
remote sensing data for training, researchers have focused on
designing convolutional neural networks (CNNs) to perform
feature selection [9]–[12], extraction [13], [14], and coding [15]
on high-resolution remote sensing images, thereby improving
network performance. Meanwhile, remote sensing data also
bring unprecedented challenges to deep learning. For example,
many application domains do not have access to big data, such
as images of targeted ships, which are difficult to capture. At
the same time, the labeling of remote sensing images requires
considerable human and material resources. A lack of sufficient
data will lead to the CNN overfitting problem.

On the one hand, from the model’s architecture itself, many
standard techniques have been proposed to alleviate the over-
fitting problem in the case of insufficient data. Nitish et al.
[17] proposed the dropout method, which is a regularization
technique that allows the network to learn more robust features
by randomly zeroing some of the neuron values during the
CNN training process. Another regularization technique is batch
normalization [18], which normalizes the activation value of
each layer into a vector with mean 0 and variance 1 to improve the
stability and training speed of the neural network. This technique
has now become a standard data preprocessing method for
neural networks. Transfer learning [19], [20], pretraining [21],
and one-shot [22] and zero-shot [23] learning algorithms can
also effectively relieve the overfitting problem of deep neural
networks.

On the other hand, in terms of training data to solve the
overfitting problem, researchers have proposed the concept of
data augmentation, a data-space solution to the problem of
limited data that aims to intelligently augment the quality and
quantity of the original small amount of data through a suite
of techniques to improve deep neural network performance.
Data augmentation can generate the most possible effective
data from any amount of available data. Currently, the data
augmentation methods most commonly used and considered
most effective include traditional transformation, deep-learning-
based, and imaging simulation system based methods. The first
type mainly generates new samples by, e.g., rotating, cropping,
and adding random noise to the original images [24].

The second type mainly encodes and decodes the input images
to generate new images using neural networks, such as genera-
tive adversarial networks (GANs), which were first introduced
by [25]. The third type uses imaging simulation systems to
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Fig. 1. Framework of our data augmentation method.

generate a large number of simulation samples and combine
these samples with real images via CNNs [26]–[28].

In this article, we propose a novel progressive data augmen-
tation method (Fig. 1) consisting of two stages. First, for a small
number of real images of the targeted ship, we use a visible
light imaging simulation system (VLISS) to generate m ship
simulation samples using a 3-D model from an original dataset
containing n ship images. Next, to eliminate the domain gap
between the simulated samples and real images, which mainly
manifests in the background of the two domains, we make each
real image a style image and each ship simulation sample a con-
tent image, and we input them into Sim2RealNet to obtain m × n
transferred samples. We select the k highest-quality transferred
images using the structural similarity index measure (SSIM)
algorithm and add them to the original dataset to constitute a
mixed dataset. The mixed dataset is then used to train the CNN
for image classification. We conducted extensive experimental
verifications of the proposed method on remote sensing image
classification tasks. The main contributions of this article can be
summarized as follows.

1) We built a VLISS and utilized the system to generate a
large number of simulation samples of a targeted ship for
style transfer, and we designed Sim2RealNet to realize
style transfer from the simulation samples to real images.

2) We introduced the SSIM [30] into our framework to
achieve high-quality transferred image selection and
Sim2RealNet model optimization.

3) We applied the proposed method to a variety of ship targets
and conducted extensive experiments to demonstrate that
our proposed method can achieve excellent performance
and efficiency on fine-grained remote sensing ship image
classification tasks.

II. RELATED WORKS

A. Data Augmentation Methods

Currently, there are three main categories of image augmenta-
tion methods. The first category consists of traditional white-box
methods based on space and color manipulations, which can
be divided into single-image and mixed-image methods. The
second consists of black-box methods based on deep learning
proposed in recent years, which include variational autoencoders

(VAEs) [31] and GANs. The third has emerged over the past
few years and consists of imaging simulation systems to gen-
erate simulation samples for data augmentation. This section
describes each of these three categories in detail.

1) Traditional White-Box Data Augmentation Methods:
Single-image augmentation methods perform all manipulations
around a single image itself, which mainly includes geometric
and color transformations, such as zooming in/out, flipping,
cropping, rotation, noise injection, and grayscale. These meth-
ods are very easy to implement compared to other methods and
were originally mainly applied on ImageNet [32] to increase the
number of images for training the CNN.

In contrast, mixed-image augmentation refers to the simulta-
neous use of multiple images to generate one image. The syn-
thetic minority oversampling technique [33] uses interpolation
to generate new samples by sampling a small number of samples
in the feature space of their neighboring samples to deal with the
problem of sample imbalance, thereby improving classifier per-
formance. However, mixed-image augmentation has problems
such as marginalization and blindness when selecting neighbors.

Mixup [34] is a data augmentation method based on the
principle of neighborhood risk minimization proposed by the
Facebook Artificial Intelligence Research Institute and MIT in
the article “Beyond Empirical Risk Minimization.” It uses linear
interpolation to obtain new sample data. Lusa et al. [35] proved
that for high-dimensional data, the above two data augmentation
algorithms have difficulty playing an effective role. Ioune et
al. [36] proposed a method called sample pairing to realize
data augmentation, which randomly selects two images and
calculates the value of each pixel on each RGB channel of the
two images as the pixel value of the new image. This method
reduced the error rate from 8.22% to 6.93% on the CIFAR-10
dataset [37].

2) Deep Learning Black-Box Data Augmentation Methods:
Among the data augmentation methods based on deep learning,
the CNN has demonstrated a powerful feature extraction ability.
A VAE maps an input image to a low-dimensional space through
an encoder, learns the inherent encoding method of the image,
and simultaneously uses a decoder to recover the image to the
original size. Through the encoder and decoder, a VAE can
generate new samples. The traditional VAE has a problem in
that the generated images are relatively fuzzy. Although many
studies have continued to improve its structure regarding this
problem [38], because the VAE focuses on minimizing the
interpolation between image pixels, there is still a lack of vivid
image performance.

In 2014, Goodfellow [25] proposed GANs. By building
GANs, the features of the original data can be flexibly supple-
mented, modified, and reconstructed to form a new feature vector
with attributes similar to the original sample and generate a new
sample. GANs are a two-player game between two networks
called the discriminator and generator. The generator generates
fake images from the given noise, and the discriminator effec-
tively distinguishes whether the image is a real image or one
generated by the generator. Owing to the constant competition
between the discriminator and generator, the images gener-
ated by GANs constantly approach the real image. Finally, the
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discriminator can no longer distinguish whether an image comes
from the real data or the generator. In deep convolutional GANs
[39], both the discriminator and generator use a CNN to replace
the multilayer perceptron in the traditional GANs. At the same
time, to make the entire network differentiable, the pooling layer
in the CNN is removed, and the fully connected layer is replaced
with a global pooling layer to reduce the amount of calculation.
Karras et al. [40] proposed progressive growing GANs to gener-
ate high-resolution images of size 1024×1024 for the first time.
This method uses a progressive approach to generate images.
First, a 4×4 image is generated. When the network is trained
to a certain level, the resolution is gradually increased to 8×8,
16×16, and finally up to 1024×1024. In the field of remote
sensing image generation, Lin et al. [41] designed multiple-layer
feature-matching GANs to generate images containing simple
objects, but the images were still blurred and distorted.

3) Imaging Simulation Data Augmentation Methods: With
the development of imaging simulation systems and virtual
engines, some attempts have been made in recent years to use
simulation or virtual samples to train network models instead of
real scene samples.

Li et al. [42] released a virtual image dataset. They used
CityEngine and Unity3-D to construct a large-scale urban street
scene to apply the virtual images to traffic vision research. Using
transfer learning, Wang et al. [43] applied the simulation samples
in an infrared band to the object detection task, which effectively
improved the performance of the detector under the condition of
extreme scarcity of real scene samples. In semantic segmentation
research, Richter et al. [44] presented a method for building
virtual datasets via modern video games and obtained the corre-
sponding annotations using outside graphics hardware without
access to the source code of the game. The above works applied
virtual images directly as the training set to increase the feature
diversity. However, ignoring the domain gap between simulation
images and real scene images, when the number of simulation
images is much larger than those of real images, the network will
appear over-fitted to the simulated features. Nowadays, GANs
are widely used to produce photorealistic synthetic images [45];
however, these images lack the corresponding annotations.

All of the above data augmentation methods have many
limitations for a small number of remote sensing ship images.
The traditional data augmentation methods can only increase the
quantities of the dataset, and the increased data will easily cause
the neural network to fall into overfitting. For deep learning
data augmentation methods, the training of GANs relies on
a large amount of data, and the generated images will have
poor diversity and blurring problems. For imaging simulation
data augmentation methods, the generated simulation samples
and real images will often have large domain gaps, so the
improvement of neural network performance is very limited. At
the same time, the addition of simulation samples will reduce
the accuracy of other types of target recognition. The proposed
progressive data augmentation method can effectively solve
these abovementioned problems as follows. In its first stage, the
VLISS can generate a large number of ship simulation grayscale
samples from different angles and under different environmental
conditions through several 3-D models of real images. The
structures and sizes of the simulated samples of these ships are

strictly consistent with the real samples. At this stage, the simula-
tion system can generate a large number of new simulation sam-
ples with diversity, which solves the problems of poor diversity,
blurring, and distortion in current data augmentation methods. In
the second stage, because there is a huge domain gap between the
simulated samples and real images in their backgrounds, colors,
and textures, the designed Sim2RealNet is employed to align
the style-level features between the simulation samples and real
images to realize style transfer from the simulation domain to
the real domain, thereby improving the generalization ability of
the network. We use style-aligned images to train the network
and increase its robustness.

B. Neural Style Transfer

Due to the powerful feature extraction capabilities of the
CNN, a style transfer network uses a CNN to render the content
of an image into images of different styles. Style transfer net-
works have a wide range of applications, such as the generation
of famous paintings and the migration of starry sky backgrounds.
A style transfer network has two inputs: content image and style
image. A style transfer network extracts the features of the style
image at its shallow level as the style representation and extracts
the features of the content image at its deep level as the content
representation. Through the training of the neural network, the
generated image is close to the style image in style and content
image in content.

It is not appropriate to directly add the simulation samples
generated by VLISS to the original dataset to train the neural net-
work because the simulation samples and real images have two
different domains. From the perspective of computer graphics,
the information of an image can be divided into style and content
information. The style information mainly includes the texture,
background, and color of the image, and the content information
includes the shapes, structures, and positions of the objects in
the image. The shape, structure, and position of the targeted ship
in a simulation sample and real image remain highly similar, so
the content information of the two is essentially the same. How-
ever, for style information, the simulation samples generated by
VLISS are single-channel grayscale images, which lack the rich
style information of real remote sensing images. Therefore, the
domain gap between the simulation samples and real images is
mainly due to the large difference in style information. Inspired
by the neural style transfer (NST) network, we use a CNN to
extract the content features of the simulation samples and the
style features of the real images and use a style transfer network
to complete the style transfer from the simulated samples to the
real images.

We made two improvements to this method. First, we used
DenseNet-121 to replace VGG-19 [2] in the original method as
the backbone. Second, we added SSIM loss to improve the loss
function. We will introduce our designed Sim2RealNet in detail
in Section III-B.

C. Structural Similarity Index Measure

The simplest and most widely used quality metrics are the
mean squared error (MSE), computed by averaging the squared
intensity differences of distorted and reference image pixels, and
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the related quantity, peak signal-to-noise ratio (PSNR). These
metrics are appealing because they are simple to calculate, have
clear physical meanings, and are mathematically convenient in
the context of optimization. However, they are not very well
matched with perceived visual quality. In the last three decades,
a great deal of effort has gone into the development of quality as-
sessment methods that take advantage of known characteristics
of the human visual system. Most proposed perceptual quality
assessment models have followed a strategy of modifying the
MSE metric so that errors are penalized in accordance with their
visibility. Image quality evaluation plays a very important role
in remote sensing image processing. For remote sensing images
captured by satellites, image quality evaluation can be used to
measure the performance of the camera. Moreover, it can be used
to evaluate the performance of the image processing module
carried by the satellite.

SSIM is an evaluation metric used to measure the similarity
between two images. It was first proposed by the Laboratory
for Image and Video Engineering of the University of Texas at
Austin in 2004 [30]. The SSIM algorithm evaluates the similarity
of two images according to the following equation:

SSIM(x,y) =
(2μxμy + c1) (2σxy + c2)(

μ2
x + μ2

y + c1
) (

σ2
x + σ2

y + c2
) (1)

where x and y are input images, μx and μy are the mean values
of x and y, δ2x and δ2y are variances of x and y, respectively, and
δxy is the covariance of x and y. SSIM (x, y) takes values in the
range of −1 to 1. When images x and y are highly similar, SSIM
(x, y) = 1; otherwise, SSIM (x, y) = −1.

SSIM measures the similarity between two images in terms
of image brightness, contrast, and covariance. Therefore, using
SSIM to measure the similarity between the image Gen gen-
erated by the style transfer network and the input simulation
sample Sim is very effective. We use the SSIM value to achieve
both high-quality generated sample selection and loss function
improvement of Sim2RealNet.

III. METHODS

A. VLISS

Based on the analysis of the visible light imaging radiation
process and the mechanism of radiation transmission, we ar-
range the parameters that affect the characteristics of radiation
transmission, including spatial scale, observation orientation,
and atmospheric conditions, in order of importance.

These parameters are organized into a discrete observation
space as the input of the imaging simulation framework. At the
same time, combined with the simulation principle of visible
light imaging, the simulation of samples is conducted via the
following steps (Fig. 2). We performed imaging simulations of
six types of ships. The number of real images of these ships
was very low. Fig. 3 shows several of the simulation results of
the visible light band under the conditions of 15° solar altitude,
mid-latitude summer atmospheric model, and marine aerosol
type. The squint distance is the distance between the camera
and the ship target. The observation angle is determined by
the observation altitude and azimuth angles. The observation

Fig. 2. Framework of VLISS. We organized imaging parameters (e.g., spatial
size, 3-D geometric model, observation orientation, atmospheric conditions,
etc.) into a discrete observation space (left). These imaging parameters are used
as the input of the VLISS. The imaging simulation module (middle) contains
the main steps to complete the full link simulation modeling and generates a
large number of high-quality simulation images (right).

Fig. 3. Some simulation results for six target ships using our VLISS. From
top left to bottom right: AS, KI, KU, LZ, MU, and SA.

altitude angle is the angle between the optical axis of the starting
camera and the vertical axis at sea level. The observation azimuth
angle is the angle between the projection at sea level and the
direction of the bow (positive in the clockwise direction and
negative in the anticlockwise direction). Table I lists the detailed
simulation parameters of all the simulation samples shown in
Fig. 3.

B. Sim2RealNet

This section describes the architecture of the proposed net-
work in detail. The design of Sim2RealNet strongly follows the
rules of NST and borrows insights from [46].

In the following, we compare each step of our network to those
of another NST network. The full architecture of Sim2RealNet
is illustrated in Fig. 4. To easily understand our work, we briefly
summarize the NST algorithm by [46]. Given style image S and
content image C, the NST network produces an output image
O, which appears as S in style and C in content. The algorithm
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TABLE I
DETAILED SIMULATION PARAMETERS CORRESPONDING TO FIG. 3

There are four simulation samples for each type of ship: 1 (top left), 2 (top right),
3 (bottom left), and 4 (bottom right).

minimizes the objective function

Ltotal =
L∑

l=1

αlLl
content + K

L∑

l = 1

βlLl
style (2a)

with

Ll
content =

1

2NlDl

∑

ij

(Fl [O]− Fl [C])2ij (2b)

Ll
style =

1

2N2
l

∑

ij

(Gl [O]−Gl [S])
2
ij (2c)

where L represents the number of convolutional layers used to
extract image features and l represents the lth convolutional
layer. Nl is the number of filters in each convolutional layer
and Dl represents the size of the feature map in each layer. The
Gram matrix Gl[.] = Fl[.]Fl[.]T is defined as the inner product
of the feature maps. αl and βl are the weights of each layer
to configure the layer preferences. K is a weight that balances
content loss (2b) and style loss (2c).

Fig. 4. Architecture of Sim2RealNet. Istyle represent a real image, Icontent
represents a simulation sample, and Igen represents a transferred image gener-
ated by Sim2RealNet. listyle represents the style loss of the ith layer and licontent
represents the content loss of the ith layer.

Fig. 5. Comparison of DenseNet against VGG-19 as our feature extractor.
(a) Content image. (b) Style image. (c) VCG-19. (d) Ours: DenseNet-121.

Network architecture: Among the previous NST networks,
most of them [47]–[50] continue to employ the pretrained VGG-
19 network [2] proposed in 2014 as the feature extractor, whereas
we employ the pretrained DenseNet-121 [29] proposed in 2018
to replace VGG-19 in the original method as our backbone
network. DenseNet is a CNN with dense connections. In this
network, there is a direct connection between any two layers;
that is, the input of each layer of the network is the union of the
outputs of all previous layers, and the feature map learned by
this layer will also be directly passed to all the following layers
as input. In Fig. 5, the results show that employing DenseNet as
our feature extractor can achieve better style transfer than using
VGG-19.

DenseNet-121 consists of 121 layers, including four dense
blocks. We refer the reader to [26] for more details on DenseNet-
121; this article does not describe it in detail. As shown in Fig. 4,
we selected the output features of five layers in DenseNet to
build the feature extractor, which is the output after the first
convolutional layer L1 and the output of the four dense blocks
L2, L3, L4, and L5.
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Fig. 6. Using different layers to build content representation and style repre-
sentation. In each row, from left to right, we use (L4), (L5), and (L4, L5) to build
the content representation. In each column, from top to bottom, we use (L1, L2,
L3), (L1, L2, L3, L4), and (L1, L2, L3, L4, L5) to build style representation. The
highest average SSIM(O,G) of the transferred images marked with a red box
is equal to 0.909.

Loss Function: In Sim2RealNet, for the network to realize
style transfer from a simulation sample to a real image faster,
the output image O is initialized to content image C, which is
the simulation sample. At the same time, we also introduced a
new ssim loss as follows:

Lssim = SSIM (O,C) . (3)

Because O is initialized to C, at the beginning of the net-
work, we have SSIM(O,C)≈1, and we must assign the net-
work a larger penalty loss. With the training of the network,
SSIM(O,C) decreases alongside Lssim when O gradually
appears to be an image I in style, which is in line with our
expectations.

We formulate the Sim2RealNet objective function by combin-
ing all three components as follows:

Ltotal =

L∑

l=1

αlLl
c + K

L∑

l = 1

βlLl
s +WLssim (4)

where W is a weight that balances ssim loss.
Implementation details: We now describe the implementation

details of Sim2RealNet. We employed pretrained DenseNet-121
as the feature extractor. As mentioned above, we selected the
output of five layers (L1–L5) in DenseNet-121 for content and
style feature representations. The effects of using different layers
to build the content and style representations are illustrated in
Fig. 6. We chose the highest SSIM(O,G) value, which was L4
as the content representation (αl = 1 for this layer and αl =
0 for other layers) and L1, L2, L3, L4, and L5 as the style
representations (βl = 1 for these layers and βl = 0 for other
layers). Another important parameter is W; the effect of W is
illustrated in Fig. 7. We chose the best result, W = 25, which has
the highest SSIM(O,G) value. The other parameter K = 1000
for all the results. Our article is based on the implementation of
[46]. Our code is available at.1

1[Online]. Available: https://github.com/xiaoqi25478/Progressive-Data-
Augmentation-Method

Fig. 7. Effect of using different W values. We set ten groups of W parameters,
from 0 to 45 in increments of 5 from left to right and top to bottom. The highest
SSIM(O,G) of the transferred images marked with a red box is equal to 0.942.

Fig. 8. Our original dataset consisting of 12 types of ships, of which six types
(AS, LZ, KU, SA, KI, and MU) are scarce, and the remaining six types have an
appropriate number.

IV. EXPERIMENTS

In this section, we report our extensive experiments conducted
to verify the effectiveness of our method compared with tra-
ditional and imaging simulation data augmentation methods
on remote sensing ship image classification tasks. We used
three datasets, each containing 12 types of ships: Asagri (AS),
Lzumo (LZ), Kuznetsov (KU), Sacramento (SA), Kittyhawk (KI),
Murasame (MU), ArleighBruke (AR), Nimitz (NI), Wasp (WA),
Whitby (WH), Midway (MI), and Independence (IN).

A. Datasets

1) Real Image Dataset: To evaluate our method, we used
FGSCR-42 [51], which is a public dataset for fine-grained
ship classification in remote sensing images. The entire dataset
contains approximately 9320 images, which are divided into
42 categories. The number of ships in each category varies
significantly. To fully examine the performance of the proposed
method, we selected six types of ships that are rare in number
and applied our proposed data augmentation method to them.
Considering the distribution of the numbers of each ship in the

https://github.com/xiaoqi25478/Progressive-Data-Augmentation-Method
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TABLE II
SETTINGS OF THE ORIGINAL DATASET

TABLE III
SETTINGS OF THE SIMULATION SAMPLE DATASET

TABLE IV
SETTINGS OF THE TRANSFERRED SAMPLE DATASET

Fig. 9. Some transferred results for six target ships obtained by Sim2RealNet.
From top left to bottom right: AS, LZ, KU, SA, KI, and MU.

TABLE V
FULL LISTING OF ALL EXPERIMENTS

real dataset, we also selected six types of ship targets with a
larger number in the FGSCR-42 dataset. For these six types of
ship targets, we did not apply any data augmentation methods.
Overall, the 12 types of ships made up the original dataset for
our experiments, as shown in Fig. 8.

As shown in Table II, we split the original dataset into a
training set and test set with scientific proportions.

2) Simulation Sample Dataset: To compare our method with
the data augmentation method based on imaging simulation, we
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TABLE VI
RESULTS OF INDEPENDENT EXPERIMENT (ID 0 TO 29)

used VLISS to obtain simulation samples of six types of ships:
AS, LZ, KU, SA, KI, and MU. The number of simulation samples
for each ship was 10 times its number in the training set of the
original dataset, as listed in Table III.

3) Transferred Sample Dataset: Similarly, for our progres-
sive data augmentation method, we strictly took the following
steps to generate transferred samples. First, for each of the
six types of ships that require data augmentation, we used all
the simulation samples in the simulation sample dataset and
real images in the original dataset to perform one-to-one style
transfer. Second, we used the SSIM (sim, transferred) value to
measure the quality of each transferred sample. The larger the
SSIM value, the better the transfer effect of the transferred
sample is. Finally, we selected a certain number of transferred
samples for each ship in the order of SSIM (sim, transferred) from
high to low, and the number of transferred samples for each ship
was ten times that in the training set of the original dataset, as
listed in Table IV Fig. 9 shows some of the transferred samples
for each ship obtained using Sim2RealNet.

B. Experimental Settings

To fully test the performance of our proposed method, we
conducted 46 sets of experiments, divided into two types: in-
dependent and mutual experiments. In the independent exper-
iments, we only used one data augmentation method for each
experiment and compared it with other methods to illustrate the
excellent performance of our method (IDs 0 to 29).

In the mutual experiments, each experiment used other data
augmentation methods and our method at the same time to verify
the compatibility of our method in cooperating with other data
augmentation methods for CNN (IDs 30 to 45). As listed in
Table V, for traditional data augmentation methods (Trad Augs),
we used a variety of augmentation methods that are currently
commonly used. These included random crop, random hori-
zontal flip, cutout, random erasing, dual cutout, mix up, ricap,
cutmix, and label smoothing. We set up a series of trapezoidal
experiments using imaging simulation methods (Sim Augs) and
our method (Ours). In the table, 1×mix means adding double
the number of images, and so on, which are simulation samples
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TABLE VII
RESULTS OF MUTUAL EXPERIMENT (ID 30 TO 45)

(generated using the imaging simulation method) or transferred
samples (generated using our method) to the training set in the
original dataset. Note that only AS, LZ, KU, SA, KI, and MU have
simulation samples and transferred samples, and the number of
each type of ship in the test set was constant throughout.

C. Implementation Details

We conducted all experiments using PyTorch 1.7.0, CUDA
11.1, and Python 3.8.7, and we used an NVIDIA RTX 3090
GPU for training and testing. We used the average precision of
each ship to measure the performances of all methods in this
article.

For remote sensing ship image classification tasks, we used
ResNet-34 [52] as our classification network, where we set the
input image size to 256×256, learning rate to 0.003, and batch
size to 16. Moreover, we adopted a mini-batch SGD optimizer
[53] with a momentum of 0.9. We used the regularization
method, and the weight decay was set to 1e-4. Each network
was trained for 100 epochs.

For Sim2RealNet, we set the input image size to 256×256,
learning rate to 0.01 and batch size to 64, and adopted the
Adam optimizer [54] with a momentum of 0.3. We also used
the regularization method, and the weight decay was set to 1e-3.

For traditional data augmentation, we used the following
methods. The random crop method crops the training image
randomly using a ratio of 0.6 to 1.0. Random horizontal flip is a
type of image data augmentation that horizontally flips a given
image with a given probability; we set its probability to 0.5. The
cutout method randomly selects a fixed-size square area in the
training image and then fills it with all zeros. Of course, to avoid
the impact of zero-filled regions on training, the data should be
centered and normalized. The size of the square we chose is 60
× 60. The random erasing method randomly selects a fixed-size
square area in the training image and then replaces it with the

average pixel value. We again chose a square size of 60× 60. The
principle of the dual cutout method is similar to that of cutout,
but it simultaneously performs two random cutouts from the
same image and then stitches them together. The mixup method
mixes different images to expand the training dataset. The ricap
method crops one part out of four images and recombines these
parts into a new image. The cutmix method cuts off a part of the
image but instead of filling the cut pixels with zeros, it randomly
fills them with pixel values from other data in the training set
such that the classification results are distributed according to
a certain proportion. Finally, label smoothing narrows the gap
between the minimum and maximum values in the label, which
can counter the problem of neural network overfitting.

D. Experimental Results

We used mean average precision (mAP) as the evaluation
method for all data augmentation methods in our experiments.
The reason for this is that in the field of computer vision, mAP
is a general evaluation method for computer vision tasks.

Table VI lists the results of the independent experiments. The
experimental groups with ID 7, 12, and 16 represent the best
results of the traditional methods, imaging simulation methods,
and our method, respectively. Traditional data augmentation
methods improve the mAP value of the remote sensing ship
classification tasks by almost 6.5%. However, the traditional
data augmentation methods can simply increase the quantity of
data in the dataset, and the increased data can often cause the
neural network to fall into overfitting. The imaging simulation
data augmentation methods improve the mAP value by almost
6.6%. As shown in Table VI, as more simulation samples are
added to the training set, the accuracy of the model begins to
decrease. This indicates that the huge domain difference between
the simulated sample and the real image will degrade the model’s
performance. Our proposed data augmentation method improves
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the mAP value by almost 10.1%, addressing the problems of
the above two methods. The first stage, the imaging simula-
tion system significantly increases the diversity of the training
dataset. The second stage, which is the style transfer network
to eliminate the domain gap between real ship images and ship
simulation samples, Sim2RealNet, is employed to transfer the
style from simulation samples to real images. The experimental
results show that our method exhibits excellent performance as
an independent data augmentation method.

Table VII lists the results of the mutual experiments. From the
two adjacent rows of experimental results, it can be concluded
that when used with other methods, our method can improve
the accuracy of the model by 3%–7%. Our method substantially
improves the performance of the CNN when compared with the
improvements obtained by other data augmentation methods.
However, it can also be seen that as the number of transferred
samples gradually increases, it also causes a decrease in network
performance. This shows that the transferred sample does not
completely eliminate the domain gap between the simulated and
real samples.

V. CONCLUSION

In this article, we proposed a progressive data augmentation
method that combines simulation samples and NST for remote
sensing ship image classification. Compared to other data aug-
mentation methods, our method can effectively solve the prob-
lems of distortion, blurring, and poor diversity of the generated
images. Extensive experimental results prove that, despite the
scarcity of real images, our method can still effectively improve
the accuracy of remote sensing ship classification tasks without
reducing the recognition accuracy for other types of ships.
We further expanded the application prospects of simulated
images in the field of deep learning.

However, our method still has many disadvantages: the gen-
erated image resolution is too low, the time cost of style transfer
is large, and the amount of augmented data generated still
inevitably leads to the CNN overfitting problem. In future article,
we will focus on solving these problems and aim to apply this
method to remote sensing image target detection tasks.
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