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Scattering-Keypoint-Guided Network for Oriented
Ship Detection in High-Resolution and

Large-Scale SAR Images
Kun Fu , Jiamei Fu , Zhirui Wang , and Xian Sun

Abstract—Ship detection in synthetic aperture radar (SAR) im-
ages is a significant and challenging task. Recently, deep convo-
lutional neural networks have been applied to solve the detection
problem and made a great breakthrough. Previous works mostly
rely on the manually designed anchor boxes to search for the region
of interests, which is less flexible and suffers from a heavy compu-
tational load. Moreover, these detectors have limited performance
in large-scale and complex scenes due to the strong interference of
inshore background and the variability of object imaging char-
acteristics. In this article, a novel ship detection method based
on the scattering-keypoint-guided network is proposed to remedy
these problems. First, an anchor-free network is built to eliminate
the effect of anchor boxes, in which a more robust representation
scheme is designed for the arbitrary oriented objects. Second, a
context-aware feature selection module is introduced to dynam-
ically learn both local and context features. In this process, the
semantic information of objects can be enhanced while suppressing
the background interference. Third, according to the SAR imaging
mechanism, a set of scattering keypoints is defined to describe the
local scattering regions and reflect the discriminative structural
characteristics of ships. Based on this conception, a novel feature
adaption method is proposed with the purpose of dealing with
the imaging variability issue. Furthermore, to demonstrate the
effectiveness of the proposed improvements, we build the Gaofen-3
ship detection dataset. Meanwhile, the public SAR ship detection
dataset is introduced to verify the robustness and generalization
ability of the detector. Experimental results on these two datasets
show that the proposed method achieves the state-of-the-art per-
formance.

Index Terms—Context-aware feature selection (CFS),
convolutional neural network (CNN), oriented ship detection,
scattering keypoints, synthetic aperture radar (SAR).
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I. INTRODUCTION

A S AN active microwave imaging sensor, synthetic aper-
ture radar (SAR) has all-day operation capability and is

independent of any weather conditions. This makes it a prime
imaging modality in various application fields [1]–[4]. In recent
years, with the rapid development of SAR imaging techniques,
automatic SAR object detection [5], [6] has drawn a lot of
attention. Ship detection in high-resolution and large-scale SAR
images is one of the major tasks, which plays a critical role in
maritime management and surveillance.

Traditional ship detection approaches typically consist of
three main stages: preprocessing, prescreening, and discrimi-
nation [7]. Preprocessing steps including speckle filtering and
sea–land segmentation, are initially performed to suppress the
clutter and eliminate the interference of land area. In the pre-
screening stage, certain algorithms are applied to search for the
region of interests, in which the local clutter background may be
extracted as the candidate parts. Then, the discrimination phase
aims to distinguish the true objects from false alarms. For the
second stage, commonly used techniques include contrast-based
methods and texture-based methods. Contrast-based methods
take advantage of the fact that the radar cross section of an object
is averagely higher than that of the sea clutter. Constant false
alarm rate (CFAR) [8]–[10] is one of the most representative
algorithms and has been extensively studied. Mainly focusing on
the modeling of image background, numerous research studies
explore different statistical distributions to fit the heteroge-
neous sea clutter, such as alpha-stable distribution [11], com-
pound Gaussian [12], and generalized Gamma distribution [13].
In addition, many variants of the CFAR algorithm, including
cell-averaging CFAR [14], greatest-of CFAR [15], smallest-of
CFAR [16], and ordered-statistic CFAR [17], are proposed to
deal with the nonuniform clutter and high density of objects.
These methods usually perform well in simple scenes while
cannot robustly deal with the complex sea states. Texture-based
approaches essentially explore the distinct texture properties to
distinguish between the objects and the clutter. Tello et al. [18]
analyze the local region with the discrete wavelet transform
and compute the spatial correlation to reduce the background
noise. Gierull [19] adopts a kind of textured background model
to facilitate the detection of small ships in challenging marine
environments. Texture-based detectors have higher robustness,
whereas the inshore object detection performance is still inferior.
In general, traditional methods usually achieve good results
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Fig. 1. Two kinds of representations of the bounding box. (a) Horizontal
bounding box. (b) Oriented bounding box.

in simple and specific scenes, but they heavily rely on the
hand-crafted features and regulations, which limits their gen-
eralization ability in complex scenes.

Recently, driven by the success of deep learning methods
for general object detection [20]–[22], convolutional neural
networks (CNNs) have been introduced to solve the detection
problem in remote sensing images [23]–[25]. Benefitting from
the powerful feature extraction ability, deep CNN-based meth-
ods have made remarkable breakthroughs in SAR object de-
tection and gradually become the substitute of the conventional
algorithms in practice. Most of the SAR ship detectors [26]–[28]
adopt the same form as that in natural scenes, i.e., the horizontal
bounding box (HBB), to describe the object location, as shown in
Fig. 1(a). However, this kind of bounding box is not an optimal
way to represent the arbitrary oriented ship with large aspect
ratio, as it only gives a coarse localization, failing to indicate
the accurate orientation and scale information. Furthermore, the
HBB representation contains much interference of background
or nearby objects. This leads to the misalignment for the subse-
quent tasks, such as the object recognition.

In order to solve these problems, some studies [29], [30]
focus on the oriented bounding box (OBB)-based detector that
provides a finer localization for the object in high-resolution
SAR images, as shown in Fig. 1(b). Although these approaches
have been proved to be effective, there are still several limitations
for the application in large-scale and complex scenes. First, the
existing detectors rely on the manually designed anchor boxes
to provide the references for the bounding box classification and
regression. In order to maintain a high recall, anchor boxes with
certain angles, scales, and aspect ratios are usually densely sam-
pled over the input image. Nevertheless, the average distribution
of the objects in large-scale SAR image is sparse, and redundant
anchor boxes cause a heavy computational load. Moreover, these
methods suffer from the problem of corner case caused by the

discontinuous representation, i.e., the related parameters of the
OBB usually have a considerable variation when the box is
nearly horizontal, increasing the difficulty of the regression.
Second, some look-alikes (e.g., wharf area, reef, ambiguities,
and certain inland facilities) have similar visual attributes with
ships. These irrelevant objects are likely to be misidentified,
affecting the reliability of ship detection and resulting in a
considerable high false alarm rate. Considering that the sur-
rounding environment can help to rule out the false alarms,
previous works [31]–[33] design a specific module to capture
the context information. But these methods merely acquire the
surrounding context following a stationary paradigm and fail to
fully utilize both the local and context information. Third, the
imaging results for one object under various conditions may have
quite different characteristics. This will lead to the result that the
detector cannot accurately locate the same kind of object when
the SAR imaging condition changes. We argue that the visual
features learned by the CNNs are incapable of adapting to the
significant scattering change. Thus, it is necessary to delve into
the scattering mechanism to guide the adaptive feature learning.
Some studies [1], [34] analyze the detection problems and object
characteristics on the basis of SAR imaging principles. However,
the scattering information is only exploited in the preprocessing
stage, and it is still a challenge for the network to adaptively
learn the discriminative features for the objects in different
conditions.

Based on the above considerations, a scattering-keypoint-
guided network (SKG-Net) is proposed for the arbitrary oriented
ship detection in large-scale SAR images. Specifically, the net-
work is built on an anchor-free detection pipeline. The bounding
box is encoded by a set of parameters that depict the boundary
shifts from the center point. To deal with the corner case, the
detector guides the selection of the OBB or HBB regression
result based on an additional rotation factor of the detection
box. Then, our method explores the context information and
the SAR imaging characteristics in a novel direction, achieving
more robust performances in complex scenes. The proposed
context-aware feature selection (CFS) module utilizes two kinds
of extractors to acquire local features and the surrounding con-
text, respectively, and combine them via a dynamic selection
mechanism. In addition, a conception based on the scattering
keypoint is introduced. The keypoints obtained by the network
are used in conjunction with the convolution serving as the
refined sampling points. This operation aims to extract the salient
and aligned features for the objects, making the model better
adapt to different imaging conditions.

The main contributions in this article can be summarized as
follows.

1) Different from most anchor-based methods, we propose
an anchor-free detection network, in which the bounding
box is described in a robust representation scheme for
the arbitrary oriented object. By eliminating the effect
of anchor boxes, our method is flexible and computation
efficient.

2) The CFS module is introduced to learn both the local and
context features in a dynamic fashion. In the process of
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multiscale feature fusion, it enhances the semantic infor-
mation of the objects while suppressing the background
interference. The false alarm rate can be significantly
reduced.

3) Taking the SAR imaging principles into account, a set of
scattering keypoint is defined to depict the local scattering
regions with distinct structural characteristics of ships.
Based on this conception, a scattering-keypoint-guided
feature adaption method is proposed, which increases the
model adaptability in different imaging conditions and
advances the localization accuracy to a certain degree.

4) The Gaofen-3 ship detection dataset (GF3SDD) is con-
structed, which provides a strong support for the research
of oriented SAR ship detection in large-scale and complex
scenes. Several existing methods as well as the proposed
network are performed on this dataset, severing as the
benchmark for the following work. The GF3SDD will be
released to boost the research of SAR ship detector in the
future.

Extensive studies on GF3SDD and SAR ship detection dataset
(SSDD) are conducted to validate the effectiveness of the pro-
posed improvements. Our method outperforms the recent com-
petitive detectors and shows a desirable performance on oriented
SAR ship detection.

The rest of this article is organized as follows. Section II
briefly reviews some related works. Section III illustrates the
details of the proposed method. In Section IV, the experimental
results and analysis are given. Finally, Section V concludes this
article.

II. RELATED WORK

A. CNN-Based General Object Detector

Deep CNNs have been successfully applied in the field of
computer vision and become the mainstream in general object
detection task. Modern CNN-based detectors are typically di-
vided into anchor-based and anchor-free methods.

In anchor-based methods, a set of anchor boxes with dif-
ferent scales and aspect ratios is manually predefined. They
serve as reference boxes for region proposals, with the aim
to search the possible regions containing objects in a sliding
window style. Inspired by the proposal-based detector [35],
Faster R-CNN [20] initially introduces the anchor boxes and
replaces the traditional selective search method with the region
proposal network (RPN), making the whole pipeline end-to-end
trainable. Later, on the basis of Faster R-CNN, a variety of
improved approaches have been proposed. In order to reduce
the computational load, R-FCN [36] adopts a regionwise fully
convolutional subnetwork as the substitute of fully connected
layers after the region proposal. Cascade R-CNN [37] builds
a multistage architecture and refines the prediction results by
training a sequence of detectors with certain intersection-over-
union (IoU) thresholds. Different from these methods above,
some frameworks, including SSD [21], RetinaNet [22], and
RefineDet [38], are based on a single feedforward network to
predict the bounding boxes without region proposal generation

and refinement. These unified detectors can achieve high com-
putation efficiency but at the cost of low detection accuracy.

Compared with anchor-based detectors, anchor-free methods
are independent of the predefined anchor boxes. Generally, the
extra hyperparameters of anchor settings need to be carefully
tuned, as they have a great impact on the detection performance.
By eliminating the large set of anchor boxes, anchor-free detec-
tors can avoid related heuristic tuning and complex computation.
In early works, DenseBox [39] and UnitBox [40] directly gen-
erate the results in a point-to-box prediction manner. However,
these methods suffer from a relatively low recall. Recently,
motivated by other vision tasks like semantic segmentation
and keypoint detection, anchor-free methods address the detec-
tion problem with alternate strategies and achieve competitive
performance with the anchor-based counterparts. For instance,
FCOS [41] and FoveaBox [42] encode the bounding box as an
inner point with its normalized distances to four boundaries.
CornerNet [43] and CenterNet [44] detect several keypoints of
the object and then match these keypoints to form a bounding
box. On the whole, anchor-free methods usually have a sim-
pler pipeline and show a better tradeoff between accuracy and
efficiency.

B. Deep Learning Methods for SAR Object Detection

Due to the powerful learning ability, deep neural networks
are utilized for the automatic feature extraction in SAR object
detectors and have achieved superior performance in compar-
ison with the traditional algorithms. In the early stage, CNNs
are employed in certain parts of the conventional detectors.
For example, the fully convolutional network is used for the
sea–land segmentation [45], and the RPN is applied to guide
the CFAR algorithm [46]. Later, with the increase of available
SAR data, various end-to-end methods based on the CNNs
are proposed. In order to deal with the complex scenes, the
attention mechanism [28], [47] and saliency information [5]
are adopted to highlight the salient regions containing objects
while suppressing the background interference. Considering
the semantic inconsistency across different feature levels, Jiao
et al. [26] fuse the multiscale features with dense connections,
and Cui et al. [33] integrate the convolutional block attention
module into the pyramid network, adaptively enhancing the
significant features of specific scales. Some studies analyze the
detection problems from the perspective of imaging mechanism.
Fu et al. [34] propose a refinement module to address the
feature misalignment caused by the surrounding interference
with similar scattering phenomenon. Guo et al. [1] design a
scattering enhancement strategy for the input image to handle
the discreteness and variability of objects.

The methods mentioned above locate objects with HBBs,
which fails to realize the accurate localization of the arbitrary
oriented objects with large aspect ratios. The bounding boxes
may include much background interference or irrelevant regions
from nearby objects. It will cause the object misalignment
issue for the subsequent stages in practical applications, such
as the classification part in SAR automatic target recognition
system. To solve this problem, several detectors with OBBs are
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Fig. 2. Overall framework of the proposed detector. It is composed of a feature extraction network with the CFS module and a scattering-keypoint-guided
detection head.

built following the idea of general detection models [48], [49].
Compared with traditional methods with separate localization
and angle estimation, Wang et al. [30] combine these two
tasks in an improved SSD detector [21], and Liu et al. [29]
propose a similar framework using rotatable bounding boxes to
detect inshore ships. Based on this architecture, a modified box
encoding scheme and an anchor sampling strategy are designed
for more accurate orientation prediction in [50]. Following the
idea in [37], Pan et al. [51] propose a multistage rotational
region-based network to optimize the localization results. Yang
et al. [52] adopt a one-stage model [22] as the basic structure to
save the computational cost and introduce a calibration scheme
to deal with the feature scale misalignment issue.

Different from the aforementioned detectors, our method
adopts the general anchor-free model as the basic framework and
extends it to the oriented object detection task. It is more flexible
by eliminating the predefined anchor boxes. Furthermore, we
exploit the context and scattering information of objects to guide
the feature learning in a dynamic fashion, achieving a better
detection performance.

III. PROPOSED METHOD

The overall framework of the proposed method is shown in
Fig. 2. It consists of a feature extraction network with the CFS
module and a scattering-keypoint-guided detection head. In this
section, we first present the preliminary network structure and
explain the representation scheme for the oriented objects. Then,
to capture the context information for adaptively learning the
discriminative features in the complex scenes, the CFS module
is proposed and described in detail. Taking the unique scattering
mechanism into account, the conception based on the scattering

keypoints is introduced into the detection head with the purpose
of guiding the feature adaption, as illustrated in the final part.

A. Preliminary Network Structure

The proposed method is built on a keypoint-based detec-
tion pipeline [53] that predicts the center point of the object
and directly regresses the size and offset of the bounding box
from the extracted features. The feature extraction network
adopts a similar encoder–decoder architecture [54]–[56] to gen-
erate the feature map for the ensuing prediction part. We use
ResNet50 [57] as the backbone. It is divided into five stages with
respect to the size of the feature maps in different layers. The
outputs of last four stages are denoted as {C2, C3, C4, C5} with
the channel dimensions being {256, 512, 1024, 2048}, and their
downsampling ratios to the input image are {4, 8, 16, 32}, re-
spectively. In the process of upsampling, the high-level features
are fused with the low-level features through skip connections.
Specifically, the channel dimension of Cj is first reduced to 256
by applying one 1 × 1 convolutional layer. In the upsampling
pathway, the features with coarser resolution are merged with the
corresponding low-level feature maps after being upsampled by
a factor of 2 using bilinear interpolation. The merged map with
finest resolution is further refined through a 3 × 3 convolutional
layer to obtain the final feature map F ∈ R(H/s)×(W/s)×256,
where H ×W is the size of input image and s = 4 is the output
stride. Then, four parallel branches are attached to F in the
detection head. Each branch has one 3 × 3 convolutional layer
followed by a 1 × 1 convolutional layer. The detection results
can be decoded by the four predicted maps, as shown in Fig. 2.

The predicted heatmap aims to localize the center points
of different ships in SAR images. For a ground-truth bound-
ing box Bi, the center point in the input image is defined as
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Fig. 3. Visualization of the ground-truth heatmaps.

c̃ti = (x̃i, ỹi). It is mapped to the location cti = (xi, yi) on the
heatmap, where xi = �x̃i/s�, yi = �ỹi/s�. The pixel point cti is
regarded as a positive sample, and the corresponding value on the
target heatmap is set to 1. Other points are negative samples with
the target values set to 0. Following a similar training strategy
as in [43], the penalty for the negative point (xn, yn) within a
scale-adaptive radius r of the positive location is reduced. The
target heatmap values are modified according to a 2-D Gaussian
kernel exp(− (xn−xi)

2+(yn−yi)
2

2σ2 ), where the kernel center is at
the positive point and σ = r/3, as shown in Fig. 3. Variant focal
loss is adopted for the training of the heatmap:

Lheat = − 1

N

∑
x,y{

(1− hxy)
α · log(hxy), if ĥxy = 1

(1− ĥxy)
γ · hα

xy · log(1− hxy), otherwise
(1)

where hxy and ĥxy denote the predicted and ground-truth values
at location (x, y) on the heatmap, respectively, N is the number
of ships, and α and γ are the hyperparameters that adjust the
weights of the modulating term (α = 2 and γ = 4 in this article).
During the inference, the point on the heatmap cannot be directly
mapped back onto the input image because of the precision loss
caused by the downsampling stride. To recover this error, the
offset map O ∈ R(H/s)×(W/s)×2 predicts a local offset for each
center point. The target offset at cti is

ôi = (x̃i/s− xi, ỹi/s− yi). (2)

The training loss is calculated as follows:

Loff =
1

N

N∑
i=1

smoothL1
(oi − ôi) (3)

smoothL1
(t) =

{
0.5 · t2, if |t| < 1
|t| − 0.5, otherwise

. (4)

We introduce a simple representation scheme for the oriented
objects. It regresses the box boundary shifts from the center
point, as shown in Fig. 4. The OBB and the HBB are predicted
simultaneously. For the OBB, the intersection points with the
bottom, left, top, and right boundary of the HBB are defined
as a1, a2, a3, and a4, respectively. The OBB can be encoded
by two vectors (v1 and v2) depicting the direction and distance
of boundary (a1a2 and a2a3) shifts from the center point. Two

Fig. 4. Representation of the bounding box.

Fig. 5. Illustration of the corner case.

additional parameters (d1 and d2) are used to denote the size of
the HBB. The final representation is

b = (v1,v2, d1, d2) ∈ R6 (5)

In practice, it is observed that the problem of corner case occurs
when the OBB is approximately horizontal. By the corner case
(illustrated in Fig. 5), we mean that the vectors present a consid-
erable variation for the nearly horizontal object and are likely to
be in a state of confusion, increasing the difficulty of regression.
In this circumstance, the HBB seems to be a better choice for the
final output, as it is free from the discontinuous representation.
Inspired by Xu et al. [58], we predict a rotation factor ρ for each
object to select OBB or HBB as the final result, and it is defined
as the area ratio between the OBB and the HBB. If ρ is higher
than a threshold, then we use the HBB form as the output. The
threshold is set as 0.8 in this article. During the training, the
predictions of boundary shifts and rotation factor are supervised
by the smooth L1 loss (denoted as Lbnd and Lr) at the center
points of ground truth.

B. CFS Module

In SAR images, some irrelevant elements (look-alikes), such
as reef and harbor facilities, may present similar visual attributes
and scattering mechanism with the ships. They may get incor-
rectly identified by the detector, affecting the reliability of the
detection performance. It is difficult to distinguish these false
alarms from the true objects if we only pay attention to the
object itself. Generally, the surrounding context can provide
more semantic information to understand the object in the
complex scene. For instance, the sea clutter has a relatively
low scattering intensity, making the ships more salient, while
for the inland facilities, the surrounding area usually presents
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Fig. 6. Structure of the CFS module.

a more complicated scattering phenomenon. One direct way of
acquiring the context information is multiscale feature fusion.
In deep CNNs, the low-resolution feature maps in high levels
have larger receptive fields and more semantic information. By
comparison, the low-level features have more spatial but less
semantic information. It is necessary to merge the high-level
maps with the low-level ones to obtain the high-resolution and
semantically strong features. To enrich the context information
for the extracted feature F , we improve the feature extraction
network with the designed CFS module, as shown in Fig. 2. The
CFS module is inspired by the selective kernel mechanism [59]
with the aim to adaptively select the discriminative features in
the multiscale feature fusion.

The CFS module is depicted in Fig. 6. It contains four main
components: the local feature extractor floc, the surrounding
context extractor fctx, the global information extractor fgap,
and the feature selector. To begin with, floc and fctx are ap-
plied on the input X ∈ RH ′×W ′×256 to learn the local feature
U = (U1, U2, . . . , U256) ∈ RH ′×W ′×256 and the surrounding
context V = (V 1, V 2, . . . , V 256) ∈ RH ′×W ′×256, respectively.
Note that U j and V j represents the jth channel dimension of
U and V . floc is composed of a 3× 3 convolutional layer, and we
adopt one 3 × 3 dilated convolutional layer with the rate being
3 for fctx, as it has a larger receptive field and can better capture
the context information. Both convolutions are depthwise in
order to save the computational cost. Two kinds of features are
then fused via the elementwise addition to generate the merged
map T = (T 1, T 2, . . . , T 256) ∈ RH ′×W ′×256:

T = U + V = floc(X) + fctx(X). (6)

Afterward, the global information is extracted from T through
the global average pooling fgap along the spatial dimensions.
It can be regarded as a channelwise weighted vector w =
(w1, w2, . . . , w256) ∈ R256, and its cth element is computed as
follows:

wc = fgap(T
c) =

1

H ′ ·W ′

H ′∑
m=1

W ′∑
n=1

T c(m,n). (7)

This operation is then followed by a variant of multilayer percep-
tron to guide the adaptive feature selection. Concretely, a fully
connected layer fc is initially employed to generate an interfea-
ture z ∈ R256/ε, where ε is the reduction ratio of dimension set
as 16 by default. Then, two separate fully connected layers, fc1

and fc2, are followed to increase the interfeature dimension, and
the output vectors are denoted asp = (p1, p2, . . . , p256) ∈ R256

and q = (q1, q2, . . . , q256) ∈ R256, respectively. The soft atten-
tion vectors (p̄, q̄ ∈ R256) for the feature selection are obtained
using softmax operator

p̄c =
epc

epc + eqc
, q̄c =

eqc

epc + eqc
(8)

where p̄c and q̄c are the scalar weights for the cth channel
dimension with respect to the candidate features (U and V ). The
final output Y = (Y 1, Y 2, . . . , Y 256) ∈ RH ′×W ′×256 is gener-
ated through a channelwise weighted combination

Y c = p̄c · U c + q̄c · V c. (9)

Here, we also consider some other methods to capture the local
and context features, such as using deformable convolutions [60]
or extending to more branches. By comparison, the manner
shown in Fig. 6 achieves a better balance between accuracy and
efficiency.

C. Scattering-Keypoint-Guided Detection Head

According to the SAR imaging principles, one object may
present different scattering characteristics under various con-
ditions. Many factors, such as incidence angle, polarization
mode, object orientation, and sea condition, have great impact
on the imaging results. This brings a huge challenge for the
feature extraction in deep-learning-based approaches. It is found
that the detector is likely to miss the same object when the
imaging condition changes. We argue that the visual features
learned by the CNNs are insufficient for the object representation
and cannot adaptively express the scattering change. Thus, the
information related to the scattering mechanism should be taken
full advantage of to guide the adaptive feature learning. However,
the scattering information is abstract, and two questions should
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Fig. 7. Illustration of scattering keypoint representation. (a) Optical images of ships. (b) SAR images of ships. (c) Extracted points by Harris corner detector. The
red dots represent the extraction results, reflecting the scattering intensity distribution. (d) Cluster results. The red crosses represent the cluster centers, depicting
the local scattering region and the structural characteristics of ships.

Fig. 8. Extracted scattering keypoints for the same kind of ships with different
scattering characteristics.

be considered: 1) How to represent and learn it? 2) How the
CNN-based method can deal with it?

In single-polarization SAR images, the distributions of scat-
tering intensity are informative for the object detection. For a
given object, we model the local scattering regions as a set of
keypoints. Specifically, we extract the points with local peak
values through Harris corner detector to reflect its scattering
distribution. The extracted points are shown in Fig. 7(c). Consid-
ering that these points are redundant and irregular, we partition
them into nine clusters (corresponding to the size of 3 × 3
convolution kernel) using K-means. We call the cluster centers
shown in Fig. 7(d) as scattering keypoints, which can be treated
as representative points, depicting the local scattering regions.
It can be seen that these scattering keypoints roughly reflect the
structural characteristics and capture the discriminative features
of ships. Take the two kinds of ships in Fig. 7 for instance;
the salient features for the oil tanker in the first row are the oil
pipelines and the superstructure at the rear with strong backscat-
tering, and for the bulk carrier in the second row, the interval
between two hatch covers presents a distinct stripe perpendicular
to the side of the ship. In addition, as shown in Fig. 8, for the
same kind of ships with different imaging results, the scattering
keypoints can capture similar structural characteristics. This
provides an alternative way for the feature representation, i.e.,

the scattering feature learning can be formulated as the keypoint
localization. Then, the predicted scattering keypoints are used
to guide the ensuing feature adaption to deal with the scattering
change issue.

Due to the irregular distributions, the scattering keypoints are
difficult to handle by the standard convolution. To this end, a
more flexible operator is required. Following this intuition, we
explore a novel direction of the deformable convolution [60] in
combination with the scattering keypoints, with the aim to refine
the object features at the center points. The proposed scheme is
illustrated in Fig. 2. We use the scattering keypoints to guide the
generation of offset field for deformable convolution. Specif-
ically, the keypoint offset map S ∈ R(H/s)×(W/s)×18 predicts
the point offsets from the center point, and it is embedded into
the offset field branch of deformable convolution. The predicted
keypoints are obtained

φ = {pk | k = 1, . . . , 9} = {p+Δpk | k = 1, . . . , 9} (10)

where {Δpk | k = 1, . . . , 9} refer to the predicted offsets with
respect to the location p on S. The target scattering keypoints
for the ith object are denoted as φ̂i = {p̂ki | k = 1, . . . , 9}. Note
that p̂ki is the point coordinate on input image divided by s. We
use the Chamfer loss [61] to supervise the learning of scattering
keypoints at the center point of objects

Lscatter =
1

N

N∑
i=1

(
1

18

9∑
m=1

min
n

‖pmi − p̂ni ‖2

+
1

18

9∑
n=1

min
m

‖pmi − p̂ni ‖2
)
. (11)

Then, the input feature F of detection head is fed into the
3 × 3 deformable convolution Φ3×3 with the keypoint offset
branch to refine the object features. For the location p on the
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Fig. 9. Image examples in the GF3SDD.

refined feature map F ′ ∈ R(H/s)×(W/s)×256:

F ′(p) = Φ3×3(F, {Δpk}) =
9∑

k=1

ω(Δpk) · F (p+Δpk) (12)

where ω is a set of learnable weights, and the feature vector
F (p′), p′ = p+Δpk = (xp′ , yp′) is computed via the bilinear
interpolation

F (p′) =
∑
q

ξ(q, p′) · F (q) (13)

where ξ(q, p′) is the bilinear interpolation weight between p′ and
the integral sampling point q = (xq, yq). It is defined as

ξ(q, p′) = max(0, 1− |xq − xp′ |) ·max(0, 1− |yq − yp′ |).
(14)

In this process, the object feature is augmented by the informa-
tion from the scattering keypoints. The output map F ′ is used
for the following bounding box prediction, which is illustrated
in Section III-A. Following the multitask learning, the final loss
function is

L = Lheat + Loff + Lbnd + Lr + λLscatter (15)

where λ is a balancing parameter for Lscatter, and it is set as 1 by
default in the experiments.

IV. EXPERIMENTS

A. Datasets

There are already several datasets available for object de-
tection in SAR images. For example, OpenSARShip [62] is
a medium-resolution dataset collected from Sentinel-1. The
dataset in [63] provides multiscale ships in small image patches
with varying background. AIR-SARShip-1.0 [64] comprises
over 30 large-scale images, but the scenarios are relatively sim-
ple. Moreover, the datasets mentioned above only provide HBB
annotations, and they are less suitable for the task of oriented

Fig. 10. Distribution of instances with respect to length and orientation.

SAR ship detection in large-scale and complex scenes. To this
end, the GF3SDD is constructed to demonstrate the effectiveness
of the proposed improvements. In addition, SSDD [65] is utilized
to further verify the robustness and generalization ability of the
detector.

1) GF3SDD: Gaofen-3 is aC-band civilian spaceborne SAR
satellite with the capability of working in multi-imaging and
multipolarization modes. In the experiments, a total of 112
single-polarization images with 1-m spatial resolution in spot-
light mode are utilized. Some image examples are shown in
Fig. 9. Among them, 86 images are selected as the training
and validation dataset, and the remaining 26 images are the test
dataset. The images cover various scenes (16 ports, multitempo-
ral), with the size ranging from 12 000× 12 000 pixels to 40 000
× 40 000 pixels. The GF3SDD contains 4653 labeled instances
of different scales and orientations, whose distribution is shown
in Fig. 10. All the ships are labeled by the professional SAR
image interpreters using OBBs, which is considered reliable
in this article. This dataset provides a strong support for the
research of oriented SAR ship detection in complex scenes.

2) SSDD: The publicly available SSDD dataset consists
of 1160 images collected from RadarSat-2, TerraSAR-X and
Sentinel-1. The image resolution is range from 1 to 15 m.
This dataset includes 2456 labeled ships in various scenes. It is
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divided into training, validation, and test sets with the proportion
of 7:1:2.

B. Implementation Details

The experiments are implemented based on the MMDetec-
tion [66] codebase. This article does not apply any conventional
preprocessing (e.g., speckle filtering, sea–land segmentation)
to the raw images in the GF3SDD. In order to enhance the
generalization ability and avoid overfitting, we adopt several
augmentation strategies for the training set. Specifically, for each
ship, we randomly crop three different sizes of patches (800 ×
800, 1024 × 1024, and 1300 × 1300) from the raw images and
make sure that this object is included in the patch. In this way,
we obtain about 10 200 image patches used to train the detector.
During the training, the patches are randomly cropped (the scale
is within the range of [0.9, 1.0, 1.1]) for further augmentation
and then resized into 608 × 608 as the input of the network.
The model is trained on a 16-GB NVIDIA Tesla P100 GPU for
100 epochs with a total 16 images per minibatch. We adopt the
Adam optimizer, with the initial learning rate 0.00015, which is
divided by a factor of 10 at the 70th epoch.

During the inference, the test images are processed in a sliding
window fashion. A series of 1024 × 1024 patches are cropped
from the raw images with a stride of 512 and then directly fed
into the detector. The outputs of patches are merged to obtain
the final detection results in large-scale scenes. In this process,
the NMS algorithm with the IoU threshold of 0.2 is applied to
filter the overlapped bounding boxes.

C. Evaluation Metrics

In the experiments, the widely used criteria including preci-
sion, recall, F1-measure, and average precision (AP) are adopted
to evaluate the performance of an object detector.

A detection result is typically labeled as a true positive (TP)
if the IoU between the predicted box and the ground truth is
higher than a threshold (generally set as 0.5). Otherwise, it is
considered as a false positive (FP). If a ground truth has no
matched detection box, it is regarded as a false negative (FN).
It is worth noting that the IoU is calculated between two OBBs
rather than HBBs. The precision measures the correctness of
the prediction results, and the recall is the fraction of correctly
detected ships among ground truths. They are computed as

Precision =
NTP

NTP +NFP
(16)

Recall =
NTP

NTP +NFN
(17)

where NTP, NFP, and NFN denotes the number of TP, FP, and
FN, respectively. The F1-measure is the harmonic mean of the
precision and recall

F1 =
2× Precision× Recall

Precision + Recall
. (18)

The AP metric aims to comprehensively reflect the quality of a
detector. All the predictions are first ranked in the descending

Fig. 11. PR curves of different improvements in the proposed method.

order according to the detection confidence level. The preci-
sion and recall are calculated at each unique level to obtain a
precision–recall (PR) curve. The curve is expressed as C50 at
the IoU threshold of 0.5. The AP summarized the shape of C50,
and it is defined as the average of maximum precision for the
recall in S = {0, 0.01, . . . , 1}

AP =
1

101

∑
r∈S

p′(r), p′(r) = max
r∗:r∗≥r

p(r∗) (19)

where p(r∗) represents the corresponding precision value for
the recall r∗.

D. Ablation Studies

We perform a series of ablation experiments on the GF3SDD
to analyze the contribution of each component in the proposed
method. The preliminary network (illustrated in Section III-A)
without and with the rotation factor branch is denoted as
baseline− and baseline+, respectively. We first evaluate the
performance of the rotation factor branch. Then, the CFS mod-
ule and the scattering keypoint guide (SKG) head based on
baseline+ are studied in detail. For a fair comparison, all the
experiments are conducted using the same settings and training
strategies. The overall ablation studies are reported in Table I,
and their PR curves are presented in Fig. 11. It is evident that
each proposed component brings a significant improvement to
the detector. The final network achieves 14.32% higher AP
compared with baseline−. Meanwhile, the number of parameters
and inference time only have a marginal increase. Note that the
inference time here reflects the average runtime speed per patch
rather than the large-scale image.

1) Effect of Rotation Factor Branch: In our method, two
types of bounding boxes are predicted simultaneous, and the
rotation factor branch is introduced to select the HBB or the
OBB as the output representation form for a prediction result.
The HBB form is adopted if the predicted rotation factor is
higher than a predefined threshold. We first investigate the
impact of this threshold with varying settings. It is found that
the detector achieves the best performance when the threshold
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TABLE I
INFLUENCE OF EACH COMPONENT IN THE PROPOSED METHOD

Fig. 12. Comparison results of the methods without and with the rotation factor
branch. The green boxes are the detection results. The blue circles represent the
object with inaccurate localization. (a) baseline−. (b) baseline+.

TABLE II
INFLUENCE OF DIFFERENT LOSS FUNCTIONS FOR THE ROTATION FACTOR

BRANCH

is set to 0.8. Table I shows that the network with rotation factor
branch respectively increases the F1 and AP by 4.1% and 3.82%
over baseline−. Furthermore, the detection results in Fig. 12
demonstrate its positive effect on improving the localization
accuracy. As mentioned above, directly regressing the oriented
box boundaries encounters the problem of corner case. It is
difficult for the detector to differentiate the boundary vectors
of nearly horizontal objects. This results in the failure case,
as shown in Fig. 12(a). In contrast, the method with rotation
factor branch accurately locates the ships shown in Fig. 12(b)
by transforming this issue into the horizontal object detection
that can be handled more easily.

During the training, the rotation factor branch is supervised by
smooth L1 loss. Considering that the OBB/HBB selection can
also be regarded as a binary classification problem, we further
verify the influence of the method with binary cross entropy
(BCE). The target class label is set to 1 if the area ratio between
two kinds of boxes is lower than 0.9. Otherwise, it is set to 0.
Table II shows the effect of different loss functions. It turns out
that using smooth L1 loss yields a slightly better performance
than BCE.

2) Effect of the CFS Module: Two operators in the front end
of the CFS module are utilized to extract the local and context
features, respectively. We first remove one of these two feature
extractors to analyze its impact. In the meantime, the feature
selection is modified by the excitation operation, i.e., generate
one set of channel weights to recalibrate the extracted feature.

TABLE III
ABLATION STUDIES OF THE CFS MODULE

Fig. 13. Comparison results of the methods without and with the CFS module.
The green boxes are the detection results. The yellow and red circles represent
the false alarms and missing ships, respectively. (a) baseline+. (b) baseline+

with CFS.

Then, we verify the importance of the feature selector. It is
noteworthy that the following experiments are conducted based
on baseline+ instead of baseline−. The ablation studies of CFS
are reported in Table III. Ctx and Loc indicate the context and
local feature extractor, respectively. Select and Excit indicate
the feature selection and excitation operation, respectively. It
can be seen that both local and context feature extraction play a
positive role. Specifically, the method with context feature learn-
ing largely boosts the precision metric. In other words, the false
alarm rate is significantly reduced. Then, adding the local feature
extractor in the module gains a consistent improvement. We also
make a comparison between feature selection and excitation.
The better overall performance manifests the effectiveness of
the selection operation. This is because the feature selector can
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TABLE IV
INFLUENCE OF DIFFERENT SUPERVISION STRATEGIES IN THE PROPOSED FEATURE ADAPTION METHOD AND THE COMPARISON WITH THE ORIGINAL DEFORMABLE

CONVOLUTION

Fig. 14. Scattering keypoints in the polar coordinate.

make good use of both local and context information, processing
different kinds of features in a more comprehensive manner.
Compared with the baseline, the CFS module finally leads to a
considerable increase of 5.24% in terms of the AP. Furthermore,
some detection results are demonstrated in Fig. 13. We can
observe that a stack of containers in the yard and the wharf
facilities are incorrectly detected as the true objects in Fig. 13(a).
The baseline method also tends to ignore the small-scale ships. In
contrast, the method with CFS can better deal with the complex
scenes in SAR images.

3) Effect of SKG Head: In the proposed detection head, the
scattering keypoints are introduced to guide the input feature
adaption via the deformable convolution. During the experi-
ments, the set of scattering keypoints are sorted according to a
certain rule. As shown in Fig. 14, the keypoints can be described
in a polar coordinate. The object center is set as the origin of the
polar system. We represent the keypoint sequence according to
the ascending order of the polar angle and radius. The detector
predicts the keypoint offsets with respect to the center of each
instance, regarding the localization task as a regression problem.
In most cases, smooth L1 loss is used for the supervision on each
individual point. Our method adopts an alternative strategy that
measures the discrepancy between the entire keypoint set and
the ground truth using the Chamfer distance. A comparison is
made for these two strategies. From Table IV, we can see that
the supervision on point set achieves 2.39% higher AP than the
counterpart on single point. This happens because the smooth
L1 loss ignores the correlation of different keypoints and is
restrictive for the point prediction, which results in an inferior
performance. The localization loss of scattering keypoints in
(15) is weighted by a balancing parameter λ. We reveal the
influence of λ in Table V. The detection result is insensitive
to this parameter and is impacted marginally by about 1%. It

Fig. 15. Comparison results of the original deformable convolution and the
SKG deformable convolution. The green boxes are the detection results. The
yellow, red, and blue circles represent the false alarms, missing ships, and the
objects with inaccurate localization, respectively. (a) Deformable convolution.
(b) SKG deformable convolution.

Fig. 16. Visualization of the features extracted by different methods.
(a) Method without CFS. (b) Method with CFS.
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Fig. 17. Comparison between different feature adaption methods. The blue crosses represent the sampling points. The green boxes are the detection results.
(a) Deformable convolution. (b) SKG deformable convolution.

TABLE V
RESULTS OF DIFFERENT BALANCING PARAMETER λ

reaches the best when λ is set to 1, which makes the different
terms in (15) achieve a good balance.

We make a further comparison between the original de-
formable convolution and the SKG method. The main difference
between these two methods is the learning of sampling locations.
Results in Table IV show that our method outperforms the
original deformable convolution and improves the performance
by a considerable margin over the baseline. This demonstrates
the effectiveness of the guidance provided by the scattering
keypoints. The comparison results are visualized in Fig. 15.
It can be seen that the original deformable convolution may
yield some inaccurate bounding boxes, leading to a relatively
low detection rate and localization accuracy.

E. Discussion

1) Analysis of Context Information: In order to better show
the effect of the CFS module, some qualitative results are pre-
sented in Fig. 16. For the extracted feature F , we compute the
sum of the elements of each row in the channel dimension to
generate the visualized activation heatmap. Note that the feature
F has 1/4 resolution of the input image. Both the heatmap and
the input are resized to a unified size for better visualization. As
shown in Fig. 16(a), some parts of the harbor have high activation
scores, and the context information of objects is obscure. It is
difficult for the detector to focus on true objects under the strong
interference. By introducing the CFS module in the process of
multiscale feature fusion, objects in Fig. 16(b) become more

discriminative. Meanwhile, the background clutter can be sup-
pressed to a great extent. We argue that the improvement brought
by CFS may be attributed to two aspects. First, benefitting from
the long-range dependencies captured by the dilated convolution
with large receptive field, the surrounding context is informative
for the feature representation in SAR images. Second, context
features are selected in a dynamic fashion, taking fully advantage
of both spatial and semantic information from multiscale feature
levels.

2) Analysis of Scattering Keypoints: The scattering key-
points are defined in Section III-C with the purpose of depicting
the distinct and representative locations. Based on this concep-
tion, we formulate a feature adaption method with the SKG
strategy and the deformable convolution. It can be seen from
Figs. 15 and 17 that our method is superior to the original de-
formable convolution and is more robust to the varying imaging
results. There are three possible reasons. First, the scattering
keypoints can provide coarse-grained structural information,
reflecting the geometric characteristics, e.g., the object scales
and orientations, which is beneficial for the adjustment of the
receptive field. Second, the proposed SKG scheme empowers
the detector with stronger feature extraction ability. As shown
in Fig. 17, our method tends to sample the significant features of
the object (e.g., the oil pipeline for the tanker). In other words,
the scattering keypoints provide an additional guidance for the
convolution to search for the meaningful sampling locations.
The extracted features can better adapt to the different imaging
conditions for the same kind of objects in SAR images. Third,
for the original deformable convolution, some sampling points
are located outside the boundaries. The interference of nearby
objects and the surrounding background with strong scattering
intensity may result in the feature misalignment for the instance.
This has a direct impact on the performance of the object center
localization and the bounding box prediction.
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TABLE VI
COMPARISON WITH DIFFERENT CNN-BASED METHODS ON THE GF3SDD

Fig. 18. Detection results on the SSDD.

TABLE VII
COMPARISON WITH DIFFERENT CNN-BASED METHODS ON THE SSDD

F. Comparison With State-of-the-Art Methods

We compare the proposed detector with some state-of-the-art
CNN-based methods in Table VI. For a fair comparison, the
results of single model with single-scale testing as well as the
corresponding inference time are reported. It can be seen that our
method achieves an AP of 82.63% on the GF3SDD test dataset
and outperforms other competitive detectors in terms of both the
accuracy and the speed, showing a great superiority. In order to
further verify the generalization ability of the proposed method,
all the detectors are experimented on the SSDD. Table VII
illustrates that our method still achieves a superior performance.
Some detection results are shown in Fig. 18. It is also worth
noting that our anchor-free method has simpler architecture and
higher computational efficiency. Given the merits of the anchor-
free framework and the considerable improvement brought by
the effective exploration of SAR imaging mechanism, the pro-
posed method proves to be a promising direction for the oriented
SAR ship detection in large-scale and complex scenes.

Moreover, in order to further show the localization capability
of different methods, we conduct a detailed analysis on the

Fig. 19. Detailed analysis of different method performance. (a) RRPN.
(b) R 2 CNN. (c) RetinaNet OBB. (d) Proposed method.

output results of the GF3SDD to investigate the influence on the
performance of each type of detection error. In addition to the
evaluation methods mentioned in Section IV-C, we introduce
several additional PR curves in Fig. 19. The corresponding
metrics are calculated by (19) and shown in brackets in the
legend. C75 denotes the PR at the stricter IoU threshold of 0.75,
which can better evaluate the quality of the predicted detection
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Fig. 20. Comparison results of R 2 CNN and our method on the GF3SDD. The green boxes are the detection results. The yellow, red, and blue circles represent
the false alarms, missing ships, and the objects with inaccurate localization, respectively. (a) R 2 CNN. (b) Proposed method.

boxes. Loc is drawn at the IoU threshold of 0.1 to measure the
impact of localization error. This kind of error happens when an
object is detected by a misaligned box that has a minor overlap
(0.1 ≤ IoU < 0.5) with the ground truth. Its influence on the
detector performance can be reflected by the blue area in each
plot. For the remaining FP boxes with the overlap less than 0.1,
they are regarded as the confusion with the background. BG is
drawn after removing all the FPs. The yellow area in each plot
reflects the error based on the FNs. The comparison in Fig. 19

shows that our method enjoys several advantages. First, with a
stricter IoU threshold of 0.75, our method yields a significant
improvement over other three detectors, which suggests that
it has a better box regressor to generate more high-quality
detection results. Second, the proposed detector is least affected
by the localization error (about 3.5%, while more than 8.0% for
other methods). The objects can be located with well-aligned
bounding boxes. Third, the number of FNs is reduced under a
very low confidence threshold, while other methods miss more
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Fig. 21. (a) and (b) Limitations for the proposed method. The red circle
represents the missing ship.

objects. The effectiveness of the proposed method can also be
verified in Fig. 20. From Fig. 20(a), we can observe that some
reef and inshore facilities are incorrectly detected, and R 2 CNN
cannot well handle the two ships laying alongside of each other.
In contrast, our method has a better localization capability and
achieves a superior performance in different scenes.

Despite the great improvement in our research, there are still
a few limitations. Fig. 21 presents two typical failure cases.
In Fig. 21(a), one object in the dockyard is detected, while
the other one is ignored. We argue that the surrounding con-
text for the ships located in the inland area is complex and
ambiguous, which disrupts the object feature representations.
Under this circumstance, the dependencies with nearby objects
should be considered. For the object in Fig. 21(b), its rear deck
is not included by the misaligned bounding box. The detector
fails to capture the sufficient clues to describe this local area
with the indistinct scattering characteristics. Although the ship
boundary presents the high scattering intensity and seems to be
informative for the localization, the detector cannot exploit this
kind of implicit and low-level information. Motivated by some
studies in the task of segmentation [67]–[69], we will consider a
relevant model with the self-attention mechanism and focus on
a more effective representation for the scattering characteristics
to address the above issues in the future work.

V. CONCLUSION

In this article, a novel method based on the SKG-Net is pro-
posed for the oriented ship detection in large-scale SAR images.
The anchor-free architecture and the proposed representation
form for the OBBs make the detector more flexible and efficient.
The designed CFS module selects the discriminative features
in a dynamic fashion, with the aim to enhance both the se-
mantic and spatial information of objects while suppressing the
background interference. Furthermore, considering the unique
scattering mechanism, we introduce a novel conception based on
the scattering keypoints to guide the adaptive feature leaning in
order to deal with the variability issue of object imaging charac-
teristics. Ablation studies show that the context information and
scattering keypoints play a vital role in SAR object detection.
The comparison with other CNN-based detectors on GF3SDD
and SSDD demonstrates the superiority of our method.
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