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Abstract—We address the optimization problem of antenna
placement on satellite-mounted interferometric synthetic-aperture
instruments. In classic designs, the antennas on satellites are
aligned regularly on the satellite’s frame. Inspired by methods
proposed for the placement of antennas in astronomical interfer-
ometers, such as ALMA or SKA, we explore irregular layouts
and show that they are a valid alternative in terms of spatial
resolution and reconstruction error. We formalize mathematically
the optimization problem of irregularly placed antennas and we
show that this kind of arrays can still be calibrated with the same
methods used for regular arrays. Finally, this strategy is evaluated
in the context of soil moisture and ocean salinity (SMOS) follow-up
concepts, such as SMOS-HR (high resolution), for which the new
optimized irregular configurations are compared to the regular
ones.

Index Terms—Antenna arrays, differentiation (mathematics),
Fourier transforms, optimization methods, radio
interferometry.

I. INTRODUCTION

THE retrieval of accurate brightness temperature maps of
the Earth from space is imperative for the production of

reliable estimates of soil moisture and ocean salinity (SMOS)
and two essential climate variables (ECVs) [1]. Recovering such
brightness temperature maps from spaceborne radiometric mea-
surements is a key component of the SMOS satellite mission [2].
SMOS was launched in 2009 and is still operational, though
operating well beyond its nominal expected mission lifetime of
three years. The SMOS instrument consists of N = 69 LICEF
antennas spaced byR = 0.87λ m operating within the protected
L-band (λ ≈ 0.21 m).

The L-band has been extensively used in radio astronomy and
Earth-observation satellites, such as SMOS [2]–[4], since it is
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Fig. 1. Random spatial layout of antennas on the left and associated layout
of baselines on the right with N = 8 antennas. The sampling frequencies are
obtained from the baselines, the vectors joining each possible pair of antennas.

not heavily attenuated by the atmospheric constituents and not
strongly perturbed by the ionosphere. In addition, L-band radi-
ation is less affected by the vegetation than higher frequencies,
allowing accurate estimation of surface variables such as soil
moisture.

The SMOS instrument receives the radiation emitted from the
Earth’s surface, which can then be related to the moisture content
in the first few centimeters of soil over land, and to salinity in
the surface waters of the oceans [2].

With SMOS still operating after more than twice its expected
lifetime, new designs for a follow-on mission are under study.
SMOS-HR (high resolution) is currently under study by the
Centre National d’Etudes Spatiales [5]–[7]. As SMOS, the
SMOS-HR is an aperture synthesis radiometer, but with base-
lines up to 17 m to provide a spatial resolution up to 10 km, three
times better than that of the SMOS.

A. Positioning the Problem

In this study, we focus on how to place the antennas of the
synthetic aperture instrument (an array of antennas) in order
to obtain a brightness temperature map of low error that also
maximizes the alias-free field of view (FOV).

Fig. 1 shows the baselines associated to an interferometer
whose antennas are randomly placed on a plane: To each pair
of antennas (i,j), respectively, placed at ai= (xi, yi) and aj=
(xj , yj) on the satellite’s planar frame, is associated a baseline
vector νi,j =

ai−aj

λ
, where λ is the wavelength of the signal

received by the interferometer. We denote by νui,j and νvi,j the
two components of the vector in the u− v frequency plane.
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By the Van Cittert–Zernike theorem [8], correlating the signal
of both antennas leads to the measurement of a visibility function
defined for each couple of antennas (i, j) by

Vi,j(u, v)

=

∫
∥∥∥
(

ξ
η

)∥∥∥
2
<1

Fi,j [ξ, η]√
1− ξ2 − η2

T [ξ, η]e−2iπ(ν
u
i,jξ+νv

i,jη)dηdξ

(1)

where Fi,j = Fi × Fj is the product of the antenna radiation
pattern (ARP) functions of antennas i and j, η and ξ are the di-
rection cosines with respect to the axes of the u− v plane. In our
experiments, we will assume that any antenna can be modeled
as radial function Fi = π2 cos2(θ), with θ = asin(

√
ξ2 + η2).

In the following, we will write T̃ [ξ, η] = T [ξ, η]× Fi,j [ξ,η]√
1−ξ2−η2

(the modified brightness temperature) to lighten the notation,
with

Fi,j [ξ, η]√
1− ξ2 − η2

=

{
π4(1− ξ2 − η2)

3
2 if ||(ξ, η)||2 < 1

0 otherwise
.

The visibilities, therefore, can be written as

V = F
{
T̃
}
+N (0, σi) (2)

whereN (0, σNi
) is zero-mean white Gaussian noise with stan-

dard deviation σi added to visibility i, for 1 ≤ i ≤ N , andF {.}
is the Fourier transform operator. The noise level for the SMOS
radiometer is well-known [9]; its standard deviation is

σi = Vdc/
√

mi2Bτ (3)

where Vdc is the dc component ofF {T̃}, mi is the multiplicity
of baseline i, B is the bandwidth, and τ is the integration
time. Thus, each baseline bi,j is associated with a sample
Vi,j [u, v] = Vνi,j

(u, v) of the Fourier transform of the modified

temperature T̃ . To recover a large-FOV and low-error tempera-
ture map, the chosen antenna array design must ensure that the
baselines provide a proper (dense, uniform, without “holes”)
coverage of the u− v plane.

The optimization of an irregular layout of antennas is a well-
known problem [10]–[12]. However, satellite deployment im-
poses additional constraints on the layout (such as strict limits on
the size, weight, and mechanical complexity of the instrument,
which can make the problem of avoiding overlapping antennas
nontrivial, as well as the requirement of sufficient redundancy in
the baselines to allow for self-calibration), and optimal antenna
layouts found using traditional approaches may not be feasible
in this context. Because of these tight constraints, regular place-
ment of the antennas along simple geometric frames, such as
polygons, as illustrated in Fig. 2, is a natural choice as it greatly
reduces the complexity of the problem. This approach was used
for SMOS [13], and is also considered for its successors [7].
The well-known drawbacks of this choice are the inevitable
redundancy of some baselines (see Fig. 2), which prevent ad-
equate sampling of the Fourier domain and thus spatial folding,
as illustrated in Fig. 19.

Fig. 2. Uniform layout of antennas on a square satellite frame (left) and
its baselines (right) with N = 44 antennas. Each dot represents a baseline
and its size is proportional to its multiplicity. A uniform layout induces many
redundancies due to the symmetries involved. In this configuration, each baseline
has a multiplicity m ≥ 2 and the baselines (1, 0), (−1, 0), (0, 1), and (0,−1)
each has multiplicity 22. Here the antennas—and their weight—are being used
inefficiently, redundantly sampling certain baselines and, as a result, undersam-
pling the u− v plane, which can produce spatial folding in the reconstruction
of brightness temperatures from the visibilities.

Inspired by the methods used for optimizing the placement
of radio telescopes in Earth-based astronomical interferome-
ters, such as ALMA and SKA [14], [15], such as the method
developed in [16], we consider the problem of choosing irregular
layouts for a spaceborne interferometer, such as the SMOS suc-
cessor, and propose a new algorithm for optimizing the antenna
placement in this context. In the next section, we describe how
the state-of-the-art has addressed these questions in different
contexts.

B. An Overview of Optimization Methods

The antenna array optimization problem can be traced back
to a first paper published in 1968 by T. Moffet investigating
“minimum-redundancy linear arrays” [10]. While different in-
teferometer array shapes have long been in use [17], the antenna
array optimization problem on these shapes is more recent [11].

Current approaches use heuristics to express multiple spatial
constraints. For instance, Oliveri et al. [18] minimizes a cost
function of the form 1

B , where B is the number of cells in the
u− v plane (gridded uniformly) that are sampled for each given
layout. Such a cost function is not differentiable, and is therefore
minimized by using a combination of a genetic algorithm and
the almost different sets (ADS) method. A similar method is
developed in [14], where a particle swarm optimization (PSO)
algorithm is used to search for optimal layouts.

In the pressure forces method [16] by Boone, each of the
N antennas moves through actions on its associated N Fourier
associated samples. A pressure force is applied to the baselines
to push them away from the areas where the density of baselines
exceeds a target density in the u− v plane. Each antenna,
therefore, moves according to the sum of the pressure forces
applied to the N baselines it is involved in. This optimization
principle is illustrated in Fig. 3 . Fig. 4. shows the pressure forces
associated with the configuration in Fig. 1.

In 2004, Y. Su et al. proposed a novel “sieving” algorithm,
which starts with a very large number of antennas and gradually
removes the less useful elements until it reaches a suitable
configuration [19].
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Fig. 3. Pressure force on the red antenna on the left, resulting from the pressure
forces on its associated red baselines on the right.

Fig. 4. Densities associated with the random layout of Fig. 1 for σ1 = σ0 and

σ2 = σ0
2 on the left and right, respectively. Here σ0 =

√
S
|B| , S is the surface

on which one can place the baselines and |B| the number of baselines.

Another independent approach is suggested in [20], where
the u, v samples are projected onto a one-dimensional vector.
An equivalent projection is done for an ideal model distribution,
and the difference between these vectors yields correction terms,
which can be mapped to new antenna positions. Such modifica-
tions are iterated in all directions until a close match is achieved
to the desired u, v plane coverage.

To summarize, a variety of specific methods have been de-
signed to solve the configuration problem, yet no consensus
has emerged. In the current article, we show that instead of
designing a specific method to solve the configuration problem,
it can be reduced to the classical minimization of a differentiable
functional by the careful design of an appropriated cost function.
The optimization of the aforementioned functional can then
be performed with the classical gradient-based tools, whose
scalability has significantly improved recently as a consequence
of the rapid development of machine learning. Indeed, this quick
development has led to the refinement of methods (automatic
differentiation) and hardware (GPU) that plays a great role in
the approach we develop.

The rest of this article is organized as follows. Section II de-
fines the minimization problem, which is reduced to a cost func-
tion for which we detail the parameters. Section III addresses the
problem of minimizing the cost function defined in Section II,
as well as discussing how to discretize the problem choosing
a Lagrangian-like approach to solve the constrained problem
and picking the right hyperparameters. Section IV presents the
specific issues raised in the context of a satellite, namely the
need for a configuration that can be actually calibrated, and
the minimal distance between antennas to avoid overlapping.
We discuss potential successors of SMOS as an application of

our approach. In Section V, we present our results and evaluate
them with two SMOS-HR candidates. In particular, we use
simple theoretical arguments to develop a visual representation
of the quality of a layout. In particular, we associate a kernel
representing the impulse response of the instrument to each
antenna configuration. We show simulated experimental results
for the brightness temperature maps using two different scenes.
We use them to compare the results of our irregular layouts
with those obtained with two regular ones, the square and cross
quincunxes, which have been considered for the SMOS-HR.
Finally, Section VI concludes the article.

II. THE MINIMIZATION PROBLEM

Given a set A = {ai}, i ∈ [1, . . . , N ] containing the posi-
tion of N antennas on a plane, we consider the set B =
{ai − aj}, ai, aj ∈ A of its associated baselines. Denoting by
SA ⊂R 2 the planar region constraining the antennas, it follows
that the baselines b ∈ B belong to SB = SA − SA. Our goal is
then to optimize the positions of the antennas ai ∈ SA so that SB

is well sampled by the baselines bij. This requires a quantification
of the sampling quality, which relies on the computation of
a baseline density function dB and its comparison with an
ideal/target density dt. As developed in [21], the choice of dt

entirely relies on the scientific purposes of the interferometric
array, the typical choice being a Gaussian or an uniform density
dt =

1
|SB |1SB, where |.| is the area.

To compute dB, we consider the following two ways:
� either by computing the number of baselines in the vicinity

of each point, which depends on a scale parameter ε, so that

dε
B(u) =

card(D(u, ε) ∩B)

πε2
(4)

where D(u, ε) is the circle of center u and radius ε and
card(.) the cardinality; and

� or by convolving the Dirac baseline comb with a Gaussian
kernel, which requires a scale parameter σ, so that

dσ
B(u) =

(∑
b∈B

δb ∗ gσ
)
(u) =

1

2πσ2

∑
b∈B

e−
|b−u|2
2σ2 (5)

where δb is the Dirac mass at b and gσ the Gaussian of
variance σ2. Fig. 5 shows an example of the computation
of the density with (5).

Both (4) and (5) for dB can be seen as a convolution and are
characterised by a parameter representing a typical distance or
scale. Equation (5) is preferred for optimization because it is
differentiable and there exist efficient optimization algorithms
in that case. Following the above considerations, we define our
cost function as

C(A, σ) =

∫
SB

f(dB(u, σ)− dt(u))du (6)

whereA is the unknown antenna layout and f a distance function
to the target density. The question now is how to specify f , σ,
and dB. In the following, we explain how.

We address first the choice of dB. We opt for the second
formula with a Gaussian, since it has the advantage of being
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Fig. 5. Classic formulation of the problem where a uniform coverage of the
u− v plane is sought for. The target density dt is uniform and the ideal layout
of the baselines Bi is a regular grid. Top left: the target density. Top right:
dσ
Bi

with σ = σ0. Note that this ideal density, associated with the ideal layout
of the baselines Bi, is close to the target density. Therefore, minimizing the
distance (6) to the target density implies being close to the ideal layout of the
baselines: the cost function represents properly the problem. Bottom left: dσ

Bi

with σ = 0.5σ0. With such a standard deviation, a sum of Gaussians cannot
approximate a uniform distribution. Bottom right: dσ

Bi
, the same problem with

σ = 2σ0.

differentiable. Still, we must fix σ so that the induced cost
function is adapted to the problem. We shall denote by BI an
“Ideal” set of baselines, i.e., a set of baselines that is perfectly
suited to the scientific application but not necessarily attainable
with a feasible antenna layout. Given that we aim for a uniform
coverage of the u− v plane, BI is, therefore, on a uniform
grid. Because BI is such an ideal set of baselines, the cost
function should be as low as possible when evaluated inBI . This
leads us to define σ as the solution of the convex minimization
problem (7). This problem is illustrated in Fig. 5.

σ1 = argmin
σ>0

∫
SB

f(dσ
BI

(u)− dt(u))du = argmin
σ>0

C(σ).

(7)
A simpler approach could have been to define a scale pa-

rameter σ that is compatible with the typical surface of the
problem, namely σ2

0 = |SB |
|B| . This heuristic σ0 is actually used

as an initialization for the minimization by gradient descent
of (7). Fig. 6 shows the landscape of the convex minimization
problem (7), which confirms that σ0 is a good initialization for
the gradient descent.

We now address the question of an adequate form for the
function f . For an accurate image reconstruction, what matters
is to avoid holes in the coverage. In the contrary, a higher density
than the target density simply implies a richness of sampled
baselines in the region, which cannot on its own reduce the
quality of the resulting brightness temperature image. Conse-
quently, we designed functions f that only increase the cost
when dB < dt. We, therefore, consider {fα/α ∈ N∗}, where
α is an hyperparameter usually set to 2 and

fα(x) =

{
0 if x > 0
|x|α otherwise

.

Fig. 6. Plot of the cost function σ → C(σ) for problem (6) and 40 antennas.

The red dot represents the value σ2
0 =

|SB |
|B| , which is a good initialization to

start approaching the minimum.

When x > 0, there is a higher density than the target, and when
x < 0, there is a deficit. In practice, the values of dB and dt,
though never identical, are always close, and the value of dB

dt

generally stays between 1
2 and 2. Thus, we decided to normalize

the cost function so that the value taken by the cost becomes
easy to interpret, as

C(A, σ) =

(
1

|SB|
∫

SB

fα

(
dB(u, σ)

dt(u)
− 1

)
du

)1/α

. (8)

The majority of values of C are between 0 and 1 with this
formulation.

III. DISCRETE FORMULATION AND OPTIMIZATION

The whole layout will be optimized by moving all the an-
tennas of the instrument at each iteration of the optimization
process. The reason behind this choice is that, given a number
of antennas (on the order of N �200), an optimization antenna
by antenna may get stuck in a local minimum. Indeed, moving
only one antenna leads to the displacement of N − 1 baselines,
and therefore, the whole configuration is changed, making it
less likely to stop in local mimima. We observed that a classic
constrained gradient descent works. The geometric constraints
imposed by the shape of the satellite (see Section IV-C) are
smooth enough, so that there is no Swiss cheese effect; that is,
the constrained domain SA is not plagued with holes that would
make constrained gradient descent ineffective.

In order to compute the cost function (7), we will use a
discrete version of (7) by associating a grid Gr with SB. The
minimization problem (7) becomes(

1

|SB |
∑
b∈Gr

fα

(
dB

dt
(b)− 1

))1/α

. (9)

An adequate choice of the grid Gr is a key ingredient to the
success of the method. To keep the algorithm as simple and
natural as possible, we opted for a uniform grid

Gδ = {δk k ∈ Z2 } ∩ |SB|.
The value of δ is the result of a compromise between accuracy
and complexity. It must be small enough to detect gaps in the
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Algorithm 1: Antennas To Baselines(A).

Input: A ∈M2,n(R) where n is the number of antennas
and A1,i = axi , A2,i = ayi the coordinates of antenna #i.

Output: B, the baselines associated with A.
An ← A.Repeat(n) {Creates a 2× n× n tensor by
stacking n times A}
B← An − Transpose(An)
Bk,i,j ← Ak,i −Ak,j = (bi,j)k
B← B.Reshape(2 N2)
return B

Algorithm 2: Compute Local Density(B,U, σ).
Input: B the baselines,
U : point on which we want to compute the density
σ: kernel parameter discussed above.
D ← (B− Ux)[0]

2 + (B− Uy)[1]
2

Output: the local density matrix.
G← 1

2πσ2 exp(− D
2σ2 )

return G.Mean()

coverage of SB by the baselines. If the baselines were uniformly
distributed, the typical surface occupied by a baseline would
be |SB |

|B| . Thus, we define a frequency gap as a round area of

size 2 |SB |
|B| containing no baseline. Detecting such gaps leads to

impose a maximal value on δ

δ2 < 2
|SB|
|B| . (10)

Thus, we must have δ = λδ0, where 0 < λ < 1 and δ0 =√
2 |SB |
|B| . Typically, we use λ = 1 or λ = 1

2 if one can afford
a computation time four times longer. The cost function in (9)
only depends on three parameters, σ, α, and δ. As discussed, an
optimal value can be calculated for them, so actually the cost
function can be considered parameter-free.

Recalling that the whole point of our approach is to design a
differentiable cost function, the question that naturally arises is
the calculation of the gradient of our discrete cost (9) with respect
to the positions of the antennas. Even though the expression of
the gradient can be computed explicitly, it is much more practical
and computationally efficient to use automatic differentiation.
This requires encoding C as a composition of differentiable
functions. The first step is to encode the operationA→ B, which
is detailed in Algorithm 1.

Then, for any u ∈ Gr, we have to encode the computation of
dσ1

B (u), which is done in Algorithm 2.
Using these two functions, one can easily compute the discrete

cost (9) as the result of Algorithm 3.
Note that the proposed algorithms are purposely based on

basic matrix operations only so they can be implemented with
any of the available automatic differentiation libraries.

Finally, one needs to take into account the spatial constraints
of the instrument. Indeed, in the final layout, the antennas are
expected to lay on the surface SA of the satellite. The shape of

Algorithm 3: Cost Function(A,Gr,α, fα,dt).

Input: A ∈M2,n(R) where n is the number of antennas
and A1,i = axi , A2,i = ayi the coordinates of antenna #i.

G: The grid
σ: Kernel parameter
α: Constraint parameter
fα: The constraint function
dt: The target density function
Output: the cost associated to the given array of
antennas.
B← AntennasToBaselines(A)
C← 0
for u ∈ G do
D ← ComputeLocalDensity(B, U, σ)
C ← C + fα(

D
dt(u)−1 )

end for
return ( 1

|SB |C)
1/α

the structure depends on what is possible to deploy on space
after unfolding the instrument. The square, hexagon, cross, or
“Y” (SMOS) shapes have been considered for SMOS-HR and
it is indeed a very challenging engineering problem to find the
right way to store and unfold the structure.

We express this as the following constrained problem:

min
A∈SA

N C(A). (11)

Thus, we have reduced the original problem to a standard
constrained optimization for which a variety of methods can
be applied. Comparing the performances of these methods has
a potential for future work, and,thus we have only focused on
one augmented Lagrangian-like method. This heuristic implies
solving a series of nonconstrained problems instead of directly
solving (11), an approach that is commonly believed to be a
good heuristic for avoiding local minima [22].

The first step in this method is to define a penalty function g
such that

g(ai)

{
= 0 if ai ∈ SA

> 0 otherwise
. (12)

Then, for all μ > 0, we define the unconstrained problem

(P (μ)) : min C(A) + μ
∑
ai∈A

g(ai).

In this way, a high value of μ induces tight constraints (any
antenna outside of SA produces a strong augmentation of the
cost) while a low value of μ would relax to loose constraints.
The value of μ is incremented throughout the optimization,
so that in the end, g(A) = 0 (meaning that the constraints are
respected) while keeping the value of C(A) as low as possible.
More precisely, we define a finite increasing sequence (μn) and
we solveP (μn+1) by gradient descent using as initialization the
solution obtained for P (μn), as detailed in Algorithm 4.

The choice of a proper penalty function g is a classic issue
in constrained optimization. Here, the squared distance to SA is
a natural candidate that checks the required properties, namely
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Algorithm 4: Constrained Optimization(∇g,∇Cost, (μn)1:N ,
A0, η, nsub).

Input: ∇g : the gradient of the penalty function
∇Cost: the gradient of the Cost function
(μn)1:N : the finite increasing sequence A0: The
initialization
η: the learning rate nsub: the number of subiteration nsub

Output: A: optimized position of the antennas
A← A0

for n ∈ 1, .., N do
for k ∈ 1 . . . nsub do
A← A− η(∇Cost(A) + μn∇g(A)) {GD step}

end for
end for
return A

being differentiable and easy to compute. Thus, in the following,
we simply define

g(ai) = d(ai,SA)
2. (13)

If we call PSA
the projection on SA, we thus have

g(ai) = |ai − PSA
(ai)|2 (14)

and

∇g(ai) = 2(ai − PSA
(ai)). (15)

The presence of constraints makes the process more complex,
as it depends on three additional hyperparameters: the sequence
(μn), the learning rate η, and the number of subiterations
nsub. To make it simpler, we make the classic assumption that
μn+1 = 2nμ0. This reduces the definition of the sequence to the
parameterμ0. The visualization of the values taken byC(A) and
g(A) through the optimization provides insight on the correct
choice of these hyperparameters. Indeed,
� C(A) decays quickly at first because the problem P (μ0)

has very loose constraints. Then, it increases slowly as the
algorithm tries to keep C(A) as low as possible despite
the tightening of the constraints. Thus, if C(A) does not
decrease quickly at the beginning of the optimization pro-
cess, it means that μ0 is too high. If it does not increase
afterwards, it means that μ0 is too low. If μ0 is set correctly
(e.g., μ0 = 0.001 in our case), the evolution of C(A) is
expected to look like as shown in Fig. 7 .

� The choice of the learning rate η is a classic problem
in optimization. The goal is to set η at values as high
as possible while avoiding oscillations and eventually the
divergence ofC(A). For the applications considered in this
article, our choice is η = 10.

� Finally, nsub must be as low as possible to control the
computational cost, but large enough so that the algorithm
converges at each subiteration. This parameter can be easily
validated by checking that the evolution of C(A) and g(A)
becomes very slow at the end of each subiteration (see Fig.
8).

Fig. 7. Evolution of C(A) through the optimization when μ0 is properly
chosen. This plot corresponds to N = 100 antennas, μ0 = 0.001.

Fig. 8. Evolution of the penalization through the optimization when nsub is
properly chosen. The decrease gets really slow at the end of each subiteration.

The typical value for the applications considered in this
article is nsub = 50.

IV. CONSTRAINTS IN A SATELLITE

We now examine the specific problem of optimizing the
configuration of an interferometric array supported by a satellite.
This situation comes with two major issues: the nonoverlapping
spatial constraint for the antennas located on a narrow bar and
the calibration of the antennas on an irregular grid.

A. Proximity of the Antennas

In the case of a spaceborne interferometric array, the radii
of the antennas are not negligible compared to the size of their
supporting frame, and the typical width W of an arm begins
typically less than five times the radius R of an antenna. There-
fore, avoiding antenna overlaps is both a nontrivial constraint and
mandatory to get a feasible configuration. The most direct option
would be to turn the gradient descent method into a projected
gradient descent on the space of “nonoverlapping antennas.”
Unfortunately, this projection is both difficult to formalize and
computationally expensive. It can be simplified by moving each
antenna separately. Instead of computing this projection, we
consider the N-nearest neighbors of the single moving antenna
and find the largest favorable move such that this antenna does
not overlap with its neighbors.
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Fig. 9. Computation of 1-NearestNeighborProjector where the antennas X0

and X1 are overlapping. P1 is the projection of X0.

Algorithm 5: 1-Nearest Neighbor Projector(A,R).

Input: A ∈M2,n(R) where n is the number of antennas
and A1,i = axi , A2,i = ayi the coordinates of antenna #i.
R: the radius of each antenna
Output: A, resulting configuration of antennas
(in-place).

for i ∈ 1, .., n do
X0 = (axi , a

y
i )

X1 = arg minj �=i(‖X0 − (axj , a
y
j )‖)

if ‖X0 −X1‖ ≤ 2R then

X0 ← X0 +max
((

2R
‖X0−X1‖ − 1

)
, 0
)
(X0 −X1)

{Put away}
A1,i = X0,1

A2,i = X0,2 {Set position of (axi , a
y
i )}

end if
end for
return A

Fortunately, the layout of antennas produced by our method
do not tend to have that many overlapping antennas.1 Thus,
applying the 2-nearest neighbors projection for each antenna
at each step of the gradient descent is enough to solve the issue
while remaining computationally feasible.

In the following, we expand on the computation of the
1-nearest neighbors and 2-nearest neighbors projectors. We will
use the following notations: X0 is the position of the antenna to
move, X1 and X2, respectively, are its first and second nearest
neighbors, and R is the radius of the antennas. The 1-nearest
neighbor correction move is summarized in Fig. 9

or by (16)

P1 = X0 +max

((
2R

‖X0 −X1‖ − 1

)
, 0

)
(X0 −X1).

(16)
It can be computed with Algorithm 5.

1Because a configuration where the antennas are close is a bad configuration,
it tends to be naturally avoided by minimizing the energy in (8).

Fig. 10. Case 1 in the computation of the 2-NearestNeighborProjector P2:
d(P1,X2) > 2R. The solution of the 1-nearest-neighbor-projector is also the
solution of the 2-nearest-neighbor-projector.

Fig. 11. Case 2 in the computation of the 2-nearest-neighbor-projector P2:
d(P1,X2) < 2R. The solution of the 1-nearest-neighbor-projector is too close
to X2.

Fig. 12. SA and SB for a cross-shaped satellite frame.

The 2-nearest neighbor approach is much more efficient and
it can be calculated through basic geometric considerations. We
summarize it in Figs. 10 and 11.

In the first case, the computation of P2 is reduced to the
computation of P1, and in the second case, the computation
of P2 involves finding L satisfying

(2R)2 = L2 +

∣∣∣∣∣∣∣∣X2 −X1

2

∣∣∣∣∣∣∣∣2
so that the updated position of X0, P2, will be of distance 2R
from both neighbors X2 and X1.

Thus, it can be performed as described in Algorithm 6.
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Fig. 13. SA and SB for a square-shaped satellite frame.

Algorithm 6: 2-Nearest Neighbor Projector(A,R).

Input: A ∈M2,n(R) where n is the number of antennas
and A1,i = axi , A2,i = ayi the coordinates of antenna #i.

R: the radius of each antenna //
Output: A, resulting configuration of antennas
(in-place).

for i ∈ 1 . . . n do
X0 = (axi , a

y
i )

X1 = arg minj �=i(‖X0 − (axj , a
y
j )‖)

if ‖X0 −X1‖ ≤ 2R then

X0 ← X0 +max
((

2R
‖X0−X1‖ − 1

)
, 0
)
(X0 −X1)

{Put away}
X2 = arg minj �=i(‖X0 − (axj , a

y
j )‖) where X2 �= X1

U1 = X2−X1

2 +√
R2 − ‖X1−X2

2

2‖
((

X2−X1

2

)
y
,− (X2−X1

2

)
x

)
U2 = X2−X1

2 +√
R2 − ‖X1−X2

2

2‖
(
− (X2−X1

2

)
y
,
(
X2−X1

2

)
x

)
X0 = arg mini‖Ui‖
A1,i = X0,1

A2,i = X0,2 { Set position of (axi , a
y
i ) }

end if
end for
return A

B. Calibration

Camps et al. [23] discussed the problem of the calibration
of large antenna arrays in the absence of a beamforming point
source, which is a common problem in the beamforming radars
and interferometric radiometers. They proposed an iterative
method to calibrate the gains in phase and amplitude taking ad-
vantage of the fact some baselines are redundant. Their method,
called redundant space calibration (RSC), is the base of the
SMOS calibration [24]. Taking into account that the baseline
redundancy is significantly reduced in the case of irregular array
configurations, it is pertinent to ensure that irregular arrays can
be calibrated. In the following, it is shown that the RSC can
still be applied to irregular arrays if the antennas positions are
discretized in a fine grid.

The raw phase of the visibility observation from antennas ai
and aj is

φraw
i,j = fi − fj + φi,j (17)

where fi and fj give the phase offsets for antennas i and j and
φi,j gives the phase of the corresponding baseline (ai − aj) for
the ideal instrument.

The log modulus of the visibility observation can be decom-
posed in a similar fashion

Araw
i,j = Gi +Gj +Ai,j . (18)

The phase shift of each of the antennas can be determined
by solving the system of equations for each pair of anten-
nas with (17) and the gains independently with the system of
equations (18). The unknowns are the f(.) (respectively, G(.))
and φ(.,.) (respectively, A(.)). The RSC method assumes that
φi,j = φk,l and Ai,j = Ak,l if ai − aj = ak − al (redundant
observations of the same baseline should have the same ideal
instrument visibility modulus and phase). Therefore, the system
of equations can be solved only if each antenna is involved in
a visibility that is observed more than once. From now on, we
will only refer to equations on the phase shiftφ, since exactly the
same can be applied to the log gains, without loss of generality.

In matrix notation,

φraw = (f1 f2 . . . φ1,2 φ1,3 . . . )Ψ (19)

where Ψ is a matrix that contains entries with +1 (for fi and
φi,j) and −1 (for fj). Each of its columns represents one of the
equations of the system.

As Camps et al. [23] point out, one can assume that f0 = 0
and refer all the other phase shifts to that reference. Indeed,
the system is invariant to adding a global phase-shift constant.
Therefore, the system is determined if

rank(Ψ) ≥ |f |+ |φ| (20)

where |f |+ |φ| is the number of unknowns.
However, in a purely irregular configuration, there is no

guarantee that the multiplicity of the visibilities is more than
one. Hence, the system of equations is likely to be unsolvable.
A simple solution is to introduce increasingly a slight quanti-
zation of the position of the antennas, until the system can be
calibrated with the condition in (20). To obtain this regularity,
we introduce a grid of regular step ε on the antennas’ plane, thus
shifting each antenna to its nearest neighbor on the grid. The
optimal ε∗ is defined by

ε∗phase = infε {ε/rank(Ψε) ≥ |f |+ |φ|} (21)

where Ψε is the matrix obtained after by fixing a grid of step ε.
The optimal ε∗phase is found by a dichotomic search. Moreover,
all this approach could also be adapted for the calibration of
the gains which will then produce a ε∗gain. Then, one should take
ε∗ = max{ε∗phase, ε

∗
gain} as the global solution.

C. Application to Tentative Successors of SMOS

We optimize the positions of the antennas on several designs
envisaged for the higher resolution successors of the SMOS
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Fig. 14. Penalty function on the domain SA for a square-shaped frame.

satellite, which we will call SMOS-HR [5]–[7], [25], [26]. The
optimization problem is fully specified by the shape SA of the
satellite, the number N of antennas, and their radius R.

In the case of SMOS-HR, we have the following.
� R = λ/2 ≈ 0.11 m (this also includes any minimal barrier

distance between antennas).
� 69 ≤ N ≤ 231 antennas. The exact number of antennas

has not been already set, but certainly SMOS-HR will
have more antennas than the current SMOS, and up to 231
antennas.

� Several shapes have been proposed, including the cross
with Lc = 2× Ls (see Fig. 12) and the square with Ls =
12m (see Fig. 13).2

The width of the frame will be fixed for bothW 0
s = 5R and

W 0
c = W 0

s . This implies that the centers of the antennas
are constrained to a width W = W 0

s − 2R (respectively,
W 0

c ).
From these quantities, one can easily deduce the other char-

acteristics of the problem, such as SB, δ0, and σ0.
In both cases, it is also easy to explicitly compute the penalty

function and its gradient [see (14) and (15)]. Indeed, in both
cases, one can easily compute the projection PSA

on SA. If we
write a = (ax, ay) the position of the antenna and we assume
that ax > ay ≥ 0 without loss of generality, in the case of the
square, we have

PSA
(ax, ay) =

(
min

(
Ls

2
+

Ws

2
, ax

)

max

(
Ls

2
− Ws

2
, ay

))
.

In the case of the cross, we have

PSA
(ax, ay) =

(
min

(
Ls

2
, ax

)
,min

(
Ws

2
, ay

))
.

The associated penalty function is represented in Fig. 14 for
the square frame.

2These two quantities have in common the associated satellite can carry the
same number of antennas in the case of a regular layout.

Fig. 15. Comparison of the u− v plane sampling of the quincunx config-
uration and the optimized irregular configuration on the square frame. The
baselines of the quincunx configuration are displayed on the upper left corner,
while the baselines of our optimized configuration on the irregular square frame
are displayed on the bottom right for comparison. We can observe that we have
almost twice as many distinct sampling points within the same area with the
irregular configuration as we do with the quincunx (see Table I).

Fig. 16. The same as Fig. 15, except that the irregular configuration is our
optimized cross. We can then observe that we have almost twice as many
sampling points within the same area (see Table I).

V. RESULTS AND ANALYSIS

A. Results: Layouts

We have applied our method to the two candidates for the
shape of the SMOS-HR: the square and the cross. The number
of antennas in SMOS-HR has not been yet decided, but certainly
it will be more than the 69 antennas in the current SMOS
instrument, and up to 231 antennas. The method we present
in this article is general and can be adapted to different frame
shapes and number of antennas. In our simulations, we have
used 180 antennas.

Appendix A shows the layouts we have obtained for the two
regular configurations which are currently being considered for
SMOS-HR (irregular cross in Fig. 23, and irregular square in Fig.
24), along with the quincunx cross (Fig. 22). The quincunxes
consist of satellites with regularly placed antennas and half an
arm shifted by (R,R), where R is the radius of the antennas.3

3Note that the square and cross quincunxes as presented here are really
effective configurations in terms of coverage of the u− v plane, but are not
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In Appendix B, we show the baselines in detail (quincux in
Fig. 25, our solution on the cross in Fig. 26, and our solution on
the square in Fig. 27).

B. The Kernel of Each Configuration

Here we develop a visual representation of the quality of a
layout.

Recall that, according to (2), an ideal observation would be
V = F(T̃ ). Yet the observed visibilities are restricted to the
sparse set

VB = {V(νb) for b ∈ B} (22)

where B is the set of baselines and V(νb) the Fourier transform
evaluated at νb = b

λ
, associated with the baseline b. Thus, we

have only access to the pseudo-Dirac comb

Vα
B = V.

∑
b∈B

αbδvb
(23)

where αb is a weight associated with the visibility observed in
b, which we add to compensate for local visibility redundancy.
Hence, the reconstruction of the signal can be described as the
operation

T̃r = F −1 {Vα
B} . (24)

Thus, in order to get a good approximation T̃r ≈ T̃ , we need
to have that Vα

B ≈ V at least on 1
λ
SB. Therefore, the quality of

the reconstruction depends on the quality of the approximation∑
b∈B

αbδub
≈ 1 1

λ
SB

.

This approach confirms the intuition that a uniform distribu-
tion of the baselines provides to the best reconstruction. Indeed,

in that case, a constant weight αb =
| 1

λ
SB |
|B| provides an efficient

approximation. In the general case, one must compensate the fact
that some areas might be oversampled and other subsampled by
modifying the weight accordingly. Fortunately, we have access
to a metric to estimate this notion of density that makes sense
within the framework of this article, namely dB. Thus, in the
following, we simply use

αb =
dB(b, σ)∑
dB(b, σ)

∣∣∣∣1λSB

∣∣∣∣ . (25)

By classic properties of the Fourier transform, we have

T̃r = F −1 {Vα
B} = F −1 {V} ∗F −1

{∑
b∈B

αbδub

}

T̃r = T̃ ∗K (26)

where K = F −1{∑b∈B αbδνb
} =∑b∈B αbe

−2iπνb is the ker-
nel, which quantifies the quality of the reconstruction. The ideal
kernel would of course be the Dirac mass δ0,0.

Since T̃ has a compact support that is the discD1 = {(ξ, η) ∈
R 2, such as ||(ξ, η)||2 < 1}, it only matters to plot K in D2 =

feasible because two antennas overlap. Still, we consider these since they provide
the ideal achievable frequential coverage with regular configurations.

Fig. 17. log(1 + |K|), where K is the kernel of the regular configuration (on
the square). The kernel exhibits four parasite Dirac in (±1,±1) induced by
coherent aliasing; these Dirac have the same mass as the central Dirac which
imply a strong image folding.

Fig. 18. log(1 + |K|), whereK is the kernel of the irregular configuration (on
the square). The kernel exhibits unstructured noise which adds a reconstruction
error, but not spatial folding.

{(ξ, η) ∈R 2, such as ||(ξ, η)||2 < 2}, to give the local weights
with which T̃ is averaged in the convolution operation.

Plotting the kernels yields an understanding of the efficiency
of the different configurations. As shown in Fig. 17, the kernel
associated with the quincunx configuration exhibits four parasite
Dirac in (±1,±1) and thus reduces to

Kqcx = δ0 +
∑

(i,j)∈(±1,±1))
δ(i,j). (27)

The reconstruction associated with such kernel exhibits a
nonfolded area {x / T̃ ∗K(x) = T̃ (x)} with low error and
a folded area where the information is lost. As illustrated in
Fig. 19, the folding causes a loss of 73% of the information.
Conversely, Fig. 18 shows the kernel of an irregular layout,
where there is no folding structure but a “dirty image” instead
(replicas of the images centered at each of the sampling points).
This confirms that the intrinsic flaw of the regular configurations,
namely its image folding, can be amended by using an irregular
array. The fraction of the information irrevocably lost in the case
of the quincunx (see Fig. 19) is available with the irregular array,
at the cost of more noise in the reconstruction.
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Fig. 19. Folding with the quincunx array. The black circle represents the
D1 disc in which the information is located, i.e., in which T̃ is not null. The
nonfolded area Π is in blue, while the folded area due to the parasite dirac is in

red. A fraction 1− |Π|
|D1 | =

2π−4
π = 0.73 of the information is irrevocably lost

because of the folding. The green circle represents the largest discussed Dρmax

in the nonfolded area, ρmax =
√
2− 1 ≈ 0.41.

C. Inversion

To compare the efficiency of the different layouts, we shall
compare the results of the image reconstruction from visibilities
in the presence of noise. In order to obtain the reconstructed
image via our antennas’s layout, one needs to define the number
of pixels that should be used for the reconstruction. We have
νi,j =

ai−aj

λ
, where λ = 2R ≈ 0.21 cm is within the L-band.

νui,j and νvi,j are the two components of the baseline vector in
the u− v frequency plane. The size of the reconstruction size is
given by the maximum sampling frequency

fmaxu = max
i,j

νui,j −min
i,j

νui,j

and

fmaxv
= max

i,j
νvi,j −min

i,j
νvi,j .

We obtain

Npixel = fmaxu
× fmaxv

.

In the following, we will write Nx and Ny for the number
of pixels, respectively, along the X- and Y -axes of the recon-
structed image. Thus, according to the previous reasoning, the
right choice is Nx = fmaxu

and Ny = fmaxv
. The first step of

the reconstruction is then to discretize (1) as

Vνi,j
(u, v) =

4

NxNy

Nx−1∑
x=0

Ny−1∑
y=0

T [ξ, η]Fi,j [ξ, η]

× exp
(−2iπνui,jξ − 2iπνvi,jη

)
(28)

where ξ = 2(x− Nx

2 )/Nx and η = 2(y − Ny

2 )/Ny . Viewing
Vi,j [u, v] as a vector of dimensions |B| (the number of baselines)
and T̃ as a vector of dimensions Nx ×Ny , we can write this
system of equations as

V = GT. (29)

In the ideal noiseless case, when in addition the ARPs of the
antennas are equal and perfectly known and all baselines are

TABLE I
CALIBRATION STEP GRID AND THE NUMBER OF VISIBILITIES FOR

THE DIFFERENT CONFIGURATIONS

regularly placed, (28) reduces to a simple discrete Fourier trans-
form. G is then a Fourier matrix and the reconstruction of T̃ is
the result of an inverse discrete Fourier transform. To obtain the
brightness temperatures from the visibilities, one needs to solve
the minimization problem in (30). It can be solved directly by a
least squares method. Although if the brightness temperature
needs to be obtained directly on board (like in the case of
SMOS), a Moore–Penrose pseudo-inverse is preferred because
of computation timing constraints.

Tr = arg minT ||V −GT ||22. (30)

We evaluated the reconstructions obtained with the quincunx
and the irregular configurations (with the square and cross shapes
in both cases). The level of noise added is governed by (3),
and the parameters are B = 20 MHz bandwidth and τ = 2 s
integration time.

1) Simple and Complex Scene: We used two different
ground-truth scenes: a disk representing a body of constant
300 K temperature and 0 K outside the disc, and a map of
brightness temperatures of the Earth, containing the oceans at
90 K (not constant, but with SD=1) and the continents.

We call these scenes, respectively, the simple and the complex
scenes. They are not meant to be realistic scenes of the bright-
ness temperature of the Earth in the L-band, but retain similar
variations and contrast. The simple scene has an abrupt change
when it goes from 300 K to 0 K, which is useful to evaluate
the behavior of the instrument in the presence of extreme signal
changes. The complex scene allows for testing with a scene
with values of brightness temperatures close to the expected
ones in both the oceans and continents, with smooth and fast
variations. Using this setting, we evaluated the performance of
our layouts in terms of root mean squared error (RMSE) and
show the reconstructed brightness temperature maps, as well as
the difference with the ground-truth.

Since the reconstruction provided by the quincunx configu-
ration (as well as any regular one, due to the minimal distance
between antennas and the nonoverlapping constraint) are nec-
essarily folded, we limit the RMSE evaluation to the unfolded
zone. Thus, we compared the two different RMSEs in the inner
discDρmax , where ρmax =

√
2− 1 is the maximal radius possible

for the disc in which no folding occurs, as illustrated in Fig 19.
Thus, we define our RMSE in the nonfolded area as

RMSE(Tr, T )=
√

meani,j([Tr[i, j]− T [i, j]2), (i, j) ∈ Dρmax .

(31)
Table II gives the RMSEs for the reconstruction of the simple

and complex scenes, the size of the reconstruction in pixels, and
the angular resolution in radians, for all the tested configurations.
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TABLE II
RMSES FOR THE RECONSTRUCTION OF THE SIMPLE AND COMPLEX SCENES,

THE SIZE OF THE RECONSTRUCTION IN PIXELS, AND THE ANGULAR

RESOLUTION IN RADIANS, FOR ALL THE TESTED CONFIGURATIONS

Fig. 20. First column: Results on the simple scene (body at constant 300 K
temperature). Second column: Results on the complex scene. First row: Original
scene (ground truth). Second row: Irregular cross. Third row: Irregular square.
Fourth row: Quincunx square. Fifth row: Quincunx cross. The red circle repre-
sents the edge of the unfolded Dρmax disc.

The angular resolution is calculated as λ/D, where D is the
diameter of the instrument (the largest distance between two
antennas). Fig. 20 shows the obtained reconstruction with each
of the layouts.

2) Simulation of Failures in the Antennas: Each of the an-
tennas comes along with the electronic circuitry (amplifiers,
accurate filters, etc.), which is prone to failures. Failures could
happen, given that SMOS is now beyond twice its expected
5-years planned lifetime.

We simulated a failure of 7% of the antennas in the instrument.
If such an event should happen, the G matrix and its pseudo-
inverse would be recomputed to take into account the new layout

Fig. 21. Left column: Reconstruction with the irregular square, irregular cross,
quincunx square, and quincunx cross with 7% antenna failure. Right column:
Reconstruction error (difference between ground-truth and reconstruction). The
perfect regularity of the quincunx is lost when some antennas fail, thus the
reconstruction artifacts approaching to those of the irregular configurations.

TABLE III
RMSE OBTAINED WITH EACH OF THE CONFIGURATIONS, WITHOUT ANY

FAILURES (LEFT) AND WITH 7% OF THE ANTENNAS FAILING, FOR THE

“COMPLEX” SCENE

The error approaches that of the irregular configurations in the
event of failures

of antennas. In the case of regular configurations, the perfect
regularity of the instrument is lost, therefore approaching an
irregular sampling. Fig. 21 shows the reconstructions and the
error images.

Table III gives the RMSEs of the configurations. Our evalua-
tion confirms that the RMSE of the reconstruction after simulat-
ing the failure of some antennas in the quincunx configuration is
close to the RMSE of the irregular configuration. However, there
is a fundamental difference in these two cases: in the quincunx
and any other regular configuration, the antennas were located
on a regular grid and the axes of the DFT are orthogonal. This
means that there is no way to recover the missing information
from other visibilities. This limitation is not present in the
irregular configuration, where interpolation is possible. This
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is a significant advantage of the irregular layouts in terms of
robustness with respect to the regular configurations, such as
the quincunx or the current SMOS.

VI. CONCLUSION

Missions such as SMOS, SMAP, and Aquarius are useful for
a wide range of applications, well beyond the nominal product
(SMOS).

The SMOS was launched in 2009. While SMOS is still fully
operational, it has gone beyond its planned life time. Its next-
generation higher resolution version (SMOS-HR) is under study.

In this article, we have addressed the problem of optimizing
the positions of antennas for a spaceborne interferometric array.
The methods presented here are general and have been applied
here to a tentative design of the future SMOS-HR. We have
proposed a new method to optimize the array of antennas on an
irregular grid, yet calibrable with a simple procedure.

The most obvious advantage of the irregular layout is that
it is not classically folded, as happens with regular configura-
tions. In the case of a regular configuration, the information in
the folded area is completely lost, whereas in the case of the
irregular layout, one gets a complete reconstruction in the ξ − η
plane, with a thin noninvertible ring close to the border due
to the amplification of the noise by the antennas’ ARP. Besides,
irregular layouts can achieve a more dense coverage of the u− v
plane with the same number of antennas. On the other hand,
the irregular layout has a higher reconstruction error (however
unstructured) with respect to the regular configurations.

Moreover, we showed that such an irregular array can be
calibrated using the same methods as for regular arrays.

We also simulated the effect of failures in the antennas in
both types of configurations. Any component in the instrument
has a certain probability of permanent failure after its expected
useful lifetime. When a failure in one or more antennas happens,
the perfect regularity of the instrument is lost and its sampling
becomes irregular. Our evaluation confirms this. We proved that
the RMSE of the reconstruction after simulating the failure
of some antennas in the quincunx configuration is close to
the RMSE of the irregular configuration. However, there is a
fundamental difference between both sorts of configurations: in
the quincunx or in any other similar regular configuration, the
antennas are located on a regular grid and the axes of the discrete
DFT are orthogonal. This means that there is no way to recover
the missing information from other visibilities. This limitation
is not present in the irregular configuration, where interpolation
remains feasible. This is a significant advantage of the irreg-
ular layouts in terms of robustness with respect to the regular
configurations, such as the quincunx or the current SMOS.

As future work, we aim to find regularization methods for the
inversions that are better than a simple cutoff of the singular
values of the G matrix or a mere Tikhonov regularization.
Indeed, the larger the G matrix, the more numerically unstable
and sensitive to noise the reconstruction. There is room for math-
ematical research on this problem. Another research direction
is the denoising of the snapshots acquired by the instrument.
A potential approach would take advantage of the knowledge

of the kernel of the impulse of the instrument (in our irregular
solution, it mainly appears in the form of unstructured noise) to
deconvolve it. A second approach would be to exploit the fact
that the satellite takes overlapping snapshots of the Earth as it
orbits around, making it possible to fuse them to reduce the noise.
Moreover, given that the alias-free FOV is larger with the irregu-
lar layout, the multisnapshot approach seems to be well adapted.

APPENDIX A ANTENNAS LAYOUTS

Fig. 22. Quincunx configuration, which has been considered in several
projects for successors of SMOS.

Fig. 23. Optimized irregular configuration of antennas for the cross.

Fig. 24. Optimized irregular configuration of antennas for the square.
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APPENDIX B FULL BASELINES LAYOUTS

Fig. 25. Baselines associated with the quincunx configuration.

Fig. 26. Baselines associated with our optimized cross configuration.

Fig. 27. Baselines associated with our optimized square configuration.
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