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Unsupervised Hyperspectral Image Change Detection
via Deep Learning Self-Generated Credible Labels

Qiuxia Li, Hang Gong, Haishan Dai, Chunlai Li, Zhiping He, Wenjing Wang, Yusen Feng, Feng Han,
Abudusalamu Tuniyazi, Haoyang Li, and Tingkui Mu

Abstract—Change detection (CD) aims to identify differences in
scenes observed at different times. Hyperspectral image (HSI) is
preferred for the understanding of land surface changes, since it
can provide essential and unique features for CD. However, due
to the high-dimensionality and limited data, the HSI-CD task is
challenged. While model-driven CD methods are hard to achieve
high accuracy due to the weak detection performance for fine
changes, data-driven CD methods are hard to be generalized due
to the limited datasets. The state-of-art method is to combine
a single model-driven method with a data-driven convolutional
neural network (CNN). Wherein the pseudolabels can be generated
automatically by the model-driven method and then fed to CNN
for training. However, the final detection accuracy is limited by
the model-driven method which produces pseudolabels with one-
sidedness and low accuracy. Therefore, the generation of credible
pseudolabels is anticipated and crucial for such a combination.
Herein, a novel strategy, the combination of two complementary
model-driven methods, structural similarity (SSIM) and change
vector analysis (CVA), is proposed to generate credible labels for
training a subsequent CNN. The results show that the final accuracy
is higher than that of SSIM and CVA. The main contributions of
this article are threefold: First, a new paradigm for generating
credible labels is proposed. Second, SSIM is used for the first time
for HSI-CD tasks. Third, an unsupervised end-to-end framework
is presented for the HSI-CD. Experimental results demonstrate the
effectiveness of the proposed framework.
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I. INTRODUCTION

CHANGE detection (CD) aims to identifying the differ-
ences between bitemporal images obtained over the same

geographical region at different times. Differential monitoring of
bitemporal remote sensing images is essential for understanding
land surface changes. It has been extensively applied to various
applications, such as ecosystem monitoring [1], [2], land cover
mapping [3], urban expansion research [4], [5], and resource
management [6]. The complete CD process requires a series
of comprehensive processing steps, which include selecting
training data, accurately preprocessing image, extracting image
features, designing the CD algorithm, and evaluating the CD
performance.

The rapid development of sensor technologies facilitates the
formulation of hyperspectral images (HSIs) [7]. The rich spectral
information from HSI is helpful to achieve target detection,
classification, as well as CD. HSI provides a dense sampling of
target spectral signatures over a wide spectral wavelength range,
which makes it possible to monitor land-cover precisely at a
fine spectral scale [8]. The spectral information can distinguish
the spectrally similar materials and describe the finer spectral
changes [9], [10]. However, effectively exploiting the HSI data
to accurately monitor land-cover changes is still a challenging
task.

The existing hyperspectral image CD (HSI-CD) methods
can be broadly classified into model-driven CD methods and
data-driven deep learning CD methods [11]. Most model-driven
CD methods do not rely on groundtruth change maps. Therefore,
model-driven methods are still utilized at high frequencies,
although evolving new techniques have been used for CD tasks.
However, there are two challenges concerning model-driven
methods. The first challenge is that the use of a single model
is one-sided, as each model has unique limitations. A feasible
strategy is to consider combining different model-driven meth-
ods in the design of CD algorithms. The key question is how
to combine them. The second challenge is that the complex
characteristics of HSI make it difficult to obtain the desired
results by model-driven methods. To find a new way, deep
learning with the convolutional neural network (CNN) is utilized
extensively for HSI-CD recently.
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Many research showed that deep learning has swept across
the field of computer vision and remote sensing image in-
terpretation due to the significant advantages in deep feature
representation and nonlinear problem modeling [12], [13]. With
end-to-end structure, deep learning methods can obtain depth
features and global information from bitemporal images, which
can be used to give change maps directly [14]. In general,
supervised deep learning methods require a sufficient amount of
ground reference datasets for training CNN. However, collect-
ing ground reference data for diachronic HSIs is an expensive
and time-consuming process. Therefore, the design of effective
unsupervised automatic HSI-CD algorithms remains a critical
problem.

For the problem of unsupervised HSI-CD, existing works
usually use pseudolabel to train CNN [15]. The first step of
these methods is to produce pseudolabels based on the difference
image (DI) obtained by a single model-driven method. The
second step is to train the formulated CNN. Such approaches
intend to use the learning ability of the CNN and obtain a
better result than the model-driven method. The drawbacks of
such methods are accuracy limitation and criterion limitation.
The accuracy limitation means that the wrong samples in the
pseudolabels directly increase the error rate of the final detection
results. It is difficult to remove this limitation even with the
use of noise removal models for pseudo labels. The criterion
limitation means that the discriminant criteria of CNN and
model-driven methods are very similar because both of them rely
on the same model-driven method. Therefore, it is meaningful
to explore the combination of model-driven methods and deep
learning methods for the achievement of HSI-CD concisely and
efficiently.

Another challenge of the HSI-CD task is the great difficulty
of detecting edge regions in the image, especially for low- and
medium-resolution remote sensing images. In the general HSI-
CD method, the change map is obtained from the discriminant
of DI, and it is the binary map characterizing whether a pair of
pixel points from T1 and T2 changes. Most of the remote sensing
images with low resolution have mixed image elements in the
edge region. When a pair of changed pixels contains a mixed
image element, the DI is low. Obviously, the lower intensity
change information in DI is difficult to detect by the model. The
pseudolabel method also faces this challenge.

The accuracy and automation of HSI-CD would be effectively
improved by solving the above problems. In this article, HSI-CD
is considered as a segmentation problem. An unsupervised HSI-
CD method using CNN is presented. The proposed framework
is different from the supervised method, which learns features
from the manually labeled data. The proposed method uses
pseudolabels to train the network in an end-to-end manner.
Different from the pseudolabels generated from a single model-
driven CD method, the proposed framework balances the credits
of pseudolabels generated from two selectively model-driven
CD methods, changed vector analysis (CVA) and structural
similarity (SSIM) [16]. Such pseudolabels are not only highly
credible, but also comprehensive, as they contain both strongly
changed pixels and weakly changed pixels. Experimental results
demonstrate the effectiveness and flexibility of the proposed

framework. The major contributions of this article can be sum-
marized as follows.

1) A new paradigm using two complementary model-driven
methods for the generation of credible labels is proposed.

2) SSIM is used for the first time for the HSI-CD task.
3) An unsupervised end-to-end framework is proposed for

the HSI-CD.
The rest of this article is organized as follows. The related

work is introduced in detail in Section II. Section III presents the
proposed methodology. Experiments and discussions are given
in Section IV. Finally, Section V concludes the article.

II. RELATED WORK

The binary CD is one of the typical and popular CD tech-
nologies of recent decades [17]. Its objective is to classify all
pixel pairs in bitemporal images into change class and no-change
class. This section discusses model-driven CD methods and deep
learning CD methods separately.

Model-driven CD methods can be broadly categorized into
four classes: image arithmetical-based algorithms [18]; image
transformation-based algorithms [19]; postclassification algo-
rithms [20]; and methods focused on HSI-CD [21].

1) Image arithmetical-based algorithms directly compare
pixel values in a pixel-wise manner with arithmetical oper-
ations from bitemporal images to produce DI. Thresholds
of DI are applied to classify pixels into the changed class or
unchanged class. The most commonly used arithmetical
operations are image subtraction [22], image regression
[23], and image rationing [24]. The most widely used
algorithm is CVA [25], which is a typically unsupervised
method using spectral vector subtraction. Some modified
CVA algorithms have also been proposed [26], [27]. How-
ever, CVA algorithms do not consider contextual informa-
tion for pixels that are treated independently, and thus they
are sensitive to noise and misregistration errors.

2) Image transformation-based algorithms transform image
spectral into a specific feature space to emphasize changed
pixels and suppress unchanged ones. Principal component
analysis (PCA) [28] and iterative reweighted multivariate
alteration detection [29], [30] are the most common algo-
rithms in the image transformation-based algorithms for
dimensionality reduction. In addition, slow feature analy-
sis (SFA) can extract slowly changing features from time
series [31], [32]. SFA can be used for CD by suppressing
invariant pixels and highlighting the changing pixels [33].
These methods highly depend on empirically designed
algorithms for the extraction of discriminative features,
which are usually hard to achieve satisfying results on
high-resolution images.

3) Postclassification algorithms rely on a priori knowledge
for training the classifier [34]. Bitemporal images are
independently classified first. Then, the changed areas are
extracted through a direct comparison of the classification
results. Consequently, postclassification algorithms are
highly sensitive to the availability of prior knowledge as
well as the selection of the classifier.
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4) The methods that focus on HSI-CD can be at pixel level.
For example, Chen and Wang [35] proposed a spectrally–
spatially regularized low-rank and sparse decomposition
model. Wu et al. [36] proposed a hyperspectral anomalous
CD method based on joint sparse representation. In con-
trast, there are also methods at the sub-pixel level. In [37],
HSI-CD based on spectral unmixing was investigated and
validated on carefully prepared synthetic datasets and also
with real datasets. In [38], a linear mixture model was used
to analyze the estimated endmembers and abundances in
each HSI.

Deep learning CD methods transform the image into a feature
space using CNN and distinguish changes. It can be divided
into two categories according to how they manage bitemporal
images: early-fusion methods and postfusion methods. Daudt et
al. [39] proposed supervised three fully convolutional network
architectures for multitemporal CD including early-fusion and
post-fusion.

The early-fusion method stack all bitemporal images as input
[40]. Peng et al. [41] proposed a supervised end-to-end early-
fusion framework for very-high-resolution satellite image CD. It
extracted the features of the fused image using Unet++ without
pre-training.

The postfusion methods take each of the bitemporal images
as input [42]. The features of both images are extracted by each
of the two independent pipelines in the network, and then the
features are fused in the final part of the network to obtain the
change map. Zhang et al. [43] proposed a deeply supervised
post-fusion method for CD in high-resolution bitemporal remote
sensing images. The method employed a deeply supervised
image fusion network consisting of a fully convolutional two-
branch structure and a deeply supervised difference discrimina-
tion network. The former was used for depth feature extraction
and the latter for depth feature discrimination. Recently, several
novel HSI-CD method based on deep learning was proposed.
Li et al. [44] proposed a noise modeling-based unsupervised
postfusion HSI-CD framework, which adopted a two-branch
full convolutional network to extract the features of bitemporal
images separately. The unsupervised noise modeling module
can alleviate the accuracy limitation caused by pseudolabels.
Song et al. [45] proposed an unsupervised post-fusion HSI-CD
architecture based on a recurrent 3D fully convolutional net-
work. The network, consisting of spectro-spatial and temporal
modules, was able to extract the spectro-spatial features of
HSIs while recording and analyzing the multi-temporal vari-
ation information of HSI. Wang et al. [15] proposed a general
end-to-end 2-D CNN (GETNET) unsupervised post-fusion HSI-
CD framework, in which mixed-affinity matrices were formed
and features were extracted for classification. The pseudolabels
of the GETNET were selected from the result of the single
CVA method. Du et al. [46] proposed an unsupervised post-
fusion DSFA framework, which extracted invariant paired pixels
from the single CVA’s result as training samples. The two
trained depth networks were used to transform the bitempo-
ral images separately. The invariant pairwise pixels were sup-
pressed and the changed pairwise pixels were highlighted using
SFA constraints.

III. METHODOLOGY

In this section, we introduce the proposed unsupervised HSI-
CD framework in detail. The framework structure is shown in
Fig. 1, which shows the process of acquiring a change map from
the prechange image T1 and the post-change image T2. The
proposed approach consists of three main components: obtaining
change maps using CVA and SSIM, respectively; generating
training samples to feed the specified CNN; and training the
CNN to obtain the CD results.

Module 1: Obtaining change maps using CVA and SSIM, re-
spectively. CVA algorithm is an algebraic operation based on
pixel points. SSIM is a pixel-block-based detection method.
For CVA, each pixel point is independent of the neighboring
pixel points, whereas for SSIM, the neighboring pixel points
affect the result.
Module 2: Generating the training set to feed the specified
CNN. The pixels with the same value of both change maps
are selected as high confidence pixels. Pixels detected as
changing by both algorithms are used to make a positive
sample set, and pixels detected as unchanging by both al-
gorithms are used to make a negative sample set. The final
training set is constructed based on the two sample sets.
In this case, the training set labels are called self-generated
credible labels because there is no manual inference and
discrimination.
Module 3: Training the CNN to obtain the CD results.
The identification rule of CD is mastered by the model via
learning the sufficient training set. The optimal model can
directly infer the complete change map from the biphasic
images.

A. Module 1: Obtaining Change Maps Using CVA and SSIM

Both CVA and SSIM use clustering of DI to obtain change
maps. The two algorithms obtain DI based on different ways and
implement clustering based on the same Kmeans.

CVA is a common way to identify binary information based
on comparison operators, which is a typically unsupervised
method using spectral vector subtraction [27]. For the CD task
with binary classification, CVA first generates the magnitude of
change as DI by spectral vector subtraction, then obtains the
change map by clustering. Considering T1 and T2 as two input
HSIs, the DI of CVA is computed by

DI(i,j) =

√√√√ K∑
k=1

{[P(i,j,k)(T2)− P(i,j,k)(T1)]
2} (1)

where i and j are the spatial coordinates, P(i, j, k)(T1) and
P(i, j, k)(T2) are the pixel values of band k from T1 and T2,
respectively. In addition, K is the number of bands. Then, the
change map CM1 shown in Fig. 2 is obtained by K means
clustering of the DI.

SSIM was first introduced for image similarity measurement
methods based on structural information degradation [16]. It
is an advanced method for comparing the structure between
reference and distorted images. It can express the degree of
similarity between two images. Therefore, SSIM can determine
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Fig. 1. Illustration of the proposed HSI-CD framework. Module 1: obtaining change maps using two model-driven methods, respectively. Module 2: generating
the training set to feed the specified CNN. Module 3: training the CNN to obtain the CD results.

Fig. 2. Selection mechanism for high-confidence pixel points.

whether a pair of pixels has changed or not in CD tasks. The
SSIM index is, based on the statistical similarity measurements,
defined as follows:

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
. (2)

To take into account the influence of neighboring pixels, the
sliding windows are used to perform the selection of the parts
of the image. The average value of each window is the score of
its central pixel. Thus, the inputs x and y are two windows of
image. The statistical parameters μx, μy , σ2

x, and σ2
y are the

means and variances of x and y. The σxy represents the statistical
covariance between x and y. C1 and C2 are constants. The three
measurements considered in building the similarity between the
x and y are given as follows.

Luminance:

L(x, y) =
2μxμy + C1

μ2
x + μ2

y + C1
. (3)

Contrast:

C(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
. (4)

Structure:

S(x, y) =
σxy + C3

σxσy + C3
. (5)

The constants C1 and C2 are given as follows: C1 = (K1G)2

and C2 = (K2G)2, with K1 and K2 <<1, C3 = C2/2, and G is the
dynamic range of the pixel values (G = 255 for 8-b image). The
small constants C1, C2, and C3 are used to avoid the case of the
denominator is zero, and have almost no effect on the accuracy
of the final result. Let the center of the sliding window traverse
the entire image to get the SSIM matrix as large as the original
image. For HSI, the SSIM score of a pixel is the average of the
scores of all bands, which is computed by

SSIM(HSI) =
1

K

K∑
k=1

(SSIM(k)) (6)

where SSIM(k) is the SSIM matrix of the kth band in HSI and
K is the number of bands. Thus, DI of a pair of pixels can be
expressed as

DI = 1− SSIM(HSI). (7)

Similarly, the change map CM2 shown in Fig. 2 is also
obtained by K means clustering of the DI.

B. Module 2: Generating Credible Labels and Dataset

This module obtains the training set from the obtained change
maps CM1 and CM2 shown in Fig. 2, using the two model-driven
methods. It is a bridge that connects the model-driven method
with deep learning. The module consists of three steps: selecting
high confidence pixels, generating two kinds of sample sets,
generating the training set. As seen, this automatically generated
training set is a pseudotraining set without any human labor.
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Fig. 3. Process of a sample set generation.

Since the two obtained change maps, CM1 and CM2, are not
exactly correct, the high-confidence samples need to be selected
by balancing them. The selection mechanism is shown in Fig. 2.
Both CM1 and CM2 are binarized images with the same shape
as T1 and T2. On the change map, the pixel with a value of 1
indicates that the ground object at the corresponding location
has changed. The pixel with a value of 0 denotes that the ground
object at the corresponding location has not changed. The pixel
points with the same value on both change maps are the ones with
higher confidence. The selection strategies can be formulated as

⎧⎨
⎩

Changed sample if CM1 = CM2 = 1
Unchanged sample if CM1 = CM2 = 0
Uncertain if CM1 �= CM2

. (8)

As seen, in our selection mechanism, only a portion of pixels
that are simultaneously recognized by the two algorithms can
be considered credible pseudolabels. That is, other one-sided
pixels of change maps are uncertain and discarded temporally.
However, we can use the selected credible pseudolabels to train
the CNNs, and then let the uncertain pixels be predicted unam-
biguously. The sample set of T1 and the sample set of T2 are
generated with these pixel points as the center. The generation
process is shown in Fig. 3. The final training set consists of
two sample sets combined in different ways, such as subtractive
combination and concatenation combination.

C. Module 3: Training the CNN to Obtain the CD Results

The CNN plays the role of extracting features, discriminat-
ing features, fusing features, and mapping classification in the
framework. The ability of the CNN to detect change information
is continuously improved by learning the training set adequately.
The final change map is predicted by the trained CNN model.

In order to fully demonstrate the proposed framework, three
methods, including a postfusion method and two early fusion
methods, are discussed. For the convenience of description,
the post-fusion method is named model P, the concatenation
early-fusion method is named model E1, and the subtractive

early-fusion method is named model E2. Different methods em-
ploy different generating methods of training sets and different
frames of CNNs. In all three models, the input to the CNN is
3-D data.

The inputs of model P are the two independent sample sets
from the bitemporal images. The sample sets are the original
information of the images. Therefore, the selected network
consists of a feature extraction module and a feature fusion
module. The integrated CNN structure is shown in Fig. 4. Among
them, the two-branch Unet networks are responsible for feature
extraction [47], and the feature fusion module is responsible
for feature fusion, difference discrimination, and mapping clas-
sification. Thus, in the complete network, backpropagation is
performed from the last disparity discrimination layer to the first
feature extraction layer. The advantage of this model is that the
original features of the image are utilized. Bitemporal images are
transformed into the same feature space by the Unet networks
for effective difference discrimination.

The inputs of model E1 are the concatenation of the two
sample sets. The two sample sets are denoted as Sets 1 and 2.
The specific structure of the model is shown in Fig. 1. The image
fusion strategy is expressed as (9). Therefore, the model just uses
a single Unet network as shown in Fig. 4. It is responsible for both
the original feature extraction and the difference discrimination
at the same time.

The input of model E2 is the absolute difference between the
two sample sets, which represents the intensity change map. The
image fusion strategy is shown in (10). The network only needs
to perform the difference discrimination and mapping. Therefore
the model E2 in Fig. 4 just contains a single convolutional layer
as the core, takes DI as input and change map as output. The
advantage of such network is that it is easy to train and suitable
for simple binary classification tasks with a small training set
due to a small number of trainable parameters. According to
the input information and network structure of the network, the
model E2 will get the test result speedily.

Input = concat(Set1, Set2) (9)

Input = abs(Set1− Set2). (10)

In addition, when only a small number of training samples are
available, data enhancement is critical to generalize the network.
To increase the diversity of the sample sets, a series of image
preprocessing methods are used for data enhancement, such
as image noise addition, image random brightness, and image
random contrast.

IV. EXPERIMENTS

A. Datasets

To the best of our knowledge, currently, there are few public
datasets available for HSI-CD. In this article, two datasets are
used to validate the proposed method. The two datasets have
their own characteristics, such as data size, change type, time
interval.

The two datasets are from earth observing-1 (EO-1) hyper-
ion hyperspectral sensor. The EO-1 hyperion sensor provides
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Fig. 4. Network structure of three models P, E1, and E2.

Fig. 5. Experimental datasets. (a) Farmland imagery on May 3, 2006. (b) Farmland imagery on April 23, 2007. (c) groundtruth change map of Farmland dataset.
(d) River imagery on May 3, 2013. (e) River imagery on December 31, 2013. (f) Groundtruth change map of River dataset.

HSIs with a swath width of 7.7 km and a spectral range of
0.4–2.5 μm [48], [49]. In the meantime, it offers a spatial
resolution of 30 meters and a spectral resolution of 10 nm
[50]. Each dataset consists of three images, which are bitem-
poral images and a groundtruth change map. The bitemporal
images with time difference contain change information. The
white pixels in the binarized groundtruth change map indi-
cate the changed classes and the black pixels indicate the un-
changed classes. The two datasets are described in detail as
follows.

The first is a Farmland dataset and its groundtruth change map
[51]. It features bitemporal HSIs covering the area near the city
of Yancheng, Jiangsu province, China, as shown in Fig. 5(a) and
(b). The two HSIs were acquired on May 3, 2006, and April 23,
2007, respectively. The HSI has 155 bands with a spatial size
of 450 × 140. Fig. 5(c) shows the corresponding groundtruth
change map, which is obtained by manually marking based on
the specialist knowledge. The main changes in this dataset are
the conversion between bare soil and crops. The changed regions

contain 18 277 pixels, whereas the unchanged regions contain
42 723 pixels.

The second is a River dataset and its groundtruth change map
[15]. The bitemporal images were acquired on May 3, 2013, and
December 31, 2013, respectively, in Jiangsu province, China.
Fig. 5(d) and (e) shows the bitemporal HSIs, which consist of
198 bands with a spatial size of 463 × 241. Fig. 5(f) shows the
corresponding groundtruth change map. The changed regions
contain 12566 pixels, whereas the unchanged regions contain
99017 pixels.

B. Parameter Setup

This experiment is implemented on the Windows system,
TensorFlow 2.0 framework, and 2080Ti graphics processing
unit. To achieve optimal results for the three models P, E1,
and E2, the optimizer SGD is used, and just 30 epochs are
trained. The performance of the proposed methods are compared
with the five existing model-driven CD methods, including



9018 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

CVA [25], SSIM [16], image ratioing (imageratio) [52], image
regression (ImageRegr) [23], and dynamic PCA (DPCA) [53],
and two data-driven methods, including early-fusion FCN [54],
and postfusion Siamese network [42]. Among them, the results
of CVA and SSIM are obtained by Python, and the results of
other model-driven CD methods are obtained by Matlab. Both
data-driven methods use CVA to generate pseudolabels. The size
of the sliding window for SSIM is taken as 3, and the appropriate
odd value is recommended in the ranges of 3–9.

C. Evaluations Measures

Evaluation measures are critical to analyzing the performance
of CD methods. To verify our proposed method, three evaluation
metrics are applied, namely overall accuracy (OA), F1-score,
and Kappa coefficient. In the calculation of evaluation metrics,
four indexes are adopted: true positives (TPs), the number of
changed pixels that are correctly detected; true negatives (TNs),
the number of unchanged pixels that are correctly detected; the
false positives (FPs), the number of unchanged pixels that are
wrongly detected as changed pixels; and the false negatives
(FNs), the number of changed pixels that are detected as un-
changed pixels. In the CD task, Precision and Recall also have
been commonly used as evaluation metrics. A large value of
Precision denotes a small number of false alarms, and a large
value of recall represents a small number of missed detections.
F1-score combines both precision and recall metrics. F1-score
and OA reveal the overall performance, where their larger values
will lead to better performance. The larger value of the Kappa
coefficient, the better the performance of the corresponding
method. First, Precision and Recall are defined as

Precision =
TP

(TP + FP)
(11)

Recall =
TP

(TP + FN)
. (12)

Then, OA and F1-score are defined as

OA =
TP+ TN

TP + TN+ FP + FN
(13)

F1− score =
2× (Precision× Recall)

(Precision + Recall)
. (14)

The Kappa coefficient is employed as a consistency test,
which is an index to evaluate the accuracy of classification. In
the CD task, the Kappa coefficient indicates the consistency
between the predicted change map and the groundtruth change
map. The Kappa coefficient is denoted as

Kappa =
OA−OP

1−OP
(15)

OP =
(TP+FP)(TP+FN)

(TP+TN+FP+FN)2
+

(FN+TN)(FP+TN)

(TP+TN+FP+FN)2
.

(16)

D. Experimental Results and Discussions

In this section, we first analyze the complementarity of the
used two model-driven methods, which are the key to the

proposed methods. Then, the three models, P, E1, and E2, are
compared. The best one is selected. Finally, the selected model
is analyzed in detail.

The complementarity of the two model-driven methods, SSIM
and CVA, is the key to break the accuracy limit of every single
model. Since both algorithms use Kmeans to obtain the change
map by clustering of the DI, comparing the DI and the change
map obtained by the two algorithms can illustrate their com-
plementarity. First, there are differences between the two al-
gorithms, mainly due to their detection units and discriminative
mechanisms. Fig. 6 shows the DIs of the two algorithms for each
of the four bands (7, 57, 117, 147). The darker color represents
the more intense variation. Therefore, strong changes refer to
change information with high value in DI, and weak changes
refer to change information with low value in DI. Obviously, the
differences of DIs obtained by CVA and SSIM are significant,
especially for the first three bands. Besides, the DI differences
of SSIM for each band are larger than that of CVA. These
phenomena demonstrate the variability of the two algorithms
at each band.

The Kmeans is used to obtain the change map by clustering
of the DI. Fig. 7 shows the visualization of the change maps
obtained by the two algorithms. The four colors, respectively,
represent the pixels corresponding to the four metrics of the
evaluation measures. While green and gray represent TP and
TN, respectively, purple and yellow indicate FP and FN, re-
spectively. As seen, both algorithms can obtain full change
maps but differ significantly in the detection of edge regions
and discrete points. The completeness and differences of the
change maps obtained from the two algorithms ensure that
they are complementary to each other. Completeness ensures
that the training samples are sufficient to train neural networks
for getting strong detection ability. The differences in details
provide the possibility of breaking the accuracy limitation and
the criterion limitation. Therefore, if the training samples are
pixel points that are doubly affirmed by these two algorithms,
they will ensure a high confidence level. The models trained
by the high confidence samples will perform well on other
unselected samples.

Figs. 8 and 9 show the performances of the three models
P, E1, and E2 on the Farmland dataset and the River dataset,
respectively. As seen, model P with two-branch Unet networks
achieves modest performance, model E1 with the deeper net-
work leads to the worst performance, and model E2 with the
single convolution layer provides the most accurate and fast
performance. It is important to note that the model P imple-
ments the combination of low resolution and high resolution
information and difference discrimination. The model E1 has
both original feature extraction and difference discrimination
capabilities. The model E2 has only difference discrimination
capabilities. As seen, the difference discrimination capability of
the used network is important, since the model E2 has the best
performance. From another perspective, the model E1 is hard to
combine the features extraction and difference discrimination,
and thus, obtains the worst results. In contrast, the model E2 is
characterized by its small structure, high accuracy, and low time
consumption.
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Fig. 6. DIs for each of four bands (7, 57, 117, 147) obtained by (a) change vector analysis and (b) structural similarity, respectively.

Fig. 7. Visualization of the change maps obtained by the two algorithms. The
farmland change maps of (a) change vector analysis and (b) structural similarity.
The river change maps of (c) change vector analysis and (d) structural similarity.

Fig. 8. Running times of three models P, E1 and E2 on (a) the farmland dataset
(b) the river dataset, respectively.

To further demonstrate the performance of the model E2,
extensive experiments and comparisons are implemented. The
following contents including the results evaluation of the eight
methods (five model-driven methods, the chosen model E2, and
two data-driven methods), the change maps of eight methods,
the visualization change maps of the five model-driven methods

and the results evaluation of the model E2 based on different
two model-driven methods, and results of different parameters
in model E2.

It should be noted that the pseudotraining set still contains
some error messages on the region of weak changes, which
cannot be doubly confirmed as the correct changes by the two
model-driven methods, CVA and SSIM. These weak changes
with error messages cannot be fully learned by the used CNN.
As a result, the higher accuracy and unstable results appeared
when the training CNN does converge. Therefore, the results of
the model with the best convergence are chosen for comparison.

Table I gives the results of eight methods on the farmland
dataset and the River dataset. As seen, all the evaluation met-
rics on the river dataset are lower than those on the farmland
dataset, which is related to the content characteristics of the
dataset. The contents of the farmland dataset are crops and
bare soil. Their change information is concentrated, and the
change type is onefold. The river dataset mainly includes rivers,
sand and gravel, buildings, and roads. The change information
is fragmented, and change types are complex. Therefore, the
characteristics of the River dataset are a challenge for all HSI-CD
methods. The results of both data-driven methods are lower
than the results of the CVA which is used to generate the
pseudolabels. Such results validate that generating pseudolabels
using a single model-driven method will face insurmountable
accuracy limitations. In contrast, our method achieves the best
results, which proves that the high-quality and comprehensive
pseudolabels generated by the combination of CVA and SSIM
can make a breakthrough in accuracy.

Fig. 10(a)–(e) shows the change maps of the Farmland dataset
obtained just using the five model-driven methods. The change
maps are diverse due to their different discriminative mecha-
nisms. However, the change maps of CVA and SSIM algorithms
also demonstrate the best completeness and differences. Both
of them obtain the complete change maps, whereas the dif-
ferences appear in the edge regions. While CVA detects each
pixel pair independently, SSIM detects the block of pixels as
a unit. Consequently, the results of CVA have some discrete
points and many false negative samples in the edge region.
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Fig. 9. Performance of three models P, E1 and E2 on (a) the farmland dataset and (b) the river dataset, respectively.

TABLE I
OA, F1, AND KAPPA OF EIGHT METHODS

Fig. 10. CD results on the Farmland dataset using different methods. (a) ImageRatio. (b) ImageRegr. (c) Dynamic PCA. (d) Change vector analysis. (e) Structural
similarity. (f) FCN. (g) Siamese network. (h) Our model E2. (i) Groundtruth.

The results of SSIM have no prominent discrete points. shows
the change maps of the River dataset obtained using the five
algorithms. Since the river dataset has complex change types
and discrete change information, the change map of CVA has a
large number of redundant white dots, and the SSIM lacks many
white dots.

Figs. 10(f) and 11(f) show the change maps of the FCN
method. It can be seen that the pseudo changes in the CVA are
transmitted to the final change map. Figs. 10(g) and 11(g) show

the change maps of the Siamese network method. A lot of details
are lost in the change map, especially the edge areas. Suppression
of false alarm rate leads to the increase of missed detection rate
due to pseudo change information in the pseudolabel.

Figs. 10(h) and 11(h) show the change maps of the model
E2. Both maps are close to the groundtruth change maps, re-
spectively. The results can be considered as the neutralization
of SSIM and CVA. Especially in the edge regions, which are
neither as sharp as the CVA results nor as smooth as the SSIM
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Fig. 11. CD results on the River dataset using different methods. (a) ImageRatio. (b) ImageRegr. (c) Dynamic PCA. (d) Change vector analysis. (e) Structural
similarity. (f) FCN. (g) Siamese network. (h) Our model E2. (i) Groundtruth.

Fig. 12. Visualization of the Farmland dataset change maps obtained by (a) ImageRatio. (b) ImageRegr. (c) Dynamic PCA. (d) Change vector analysis.
(e) Structural similarity. The visualization of the River dataset change maps obtained by (f) ImageRatio. (g) ImageRegr. (h) Dynamic PCA. (i) Change vector
analysis. (j) Structural similarity.

TABLE II
OA, F1, AND KAPPA OF MODEL E2 BASED ON DIFFERENT COMBINATIONS OF TWO MODEL-DRIVEN METHODS

results. The first reason is that the obtained pseudotraining set
contains not only strong changes in the block regions, but also
weak changes in the partial edge regions. The second reason
is that CNN can not only accurately detect trained pixels, but
also accurately detect edge region pixels that are not training
samples.

The visualization change maps of the five model-driven meth-
ods are shown in Fig. 12. For the Farmland dataset, the change
map of ImageRegr contains large areas of missed detection,
does not satisfy the requirement of completeness. Therefore,
ImageRegr is difficult to complement with other algorithms. For

the River dataset, the change map of SSIM also contains many
missing regions. Therefore, the complementarity of SSIM with
other algorithms is weak.

Table II gives the results evaluation of the model E2 based on
combining any two model-driven methods. Combining Fig. 12
and Table II reveals the impact of the complementarity of the
two model-driven methods on the final change map. Different
combinations of model-driven methods demonstrate different
performances. Most of the combinations obtain more accurate
change maps than the two model-driven change maps. The
weakly complementary combinations obtain change maps with
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Fig. 13. Results based on the number and size of convolutional kernels. Farmland dataset of (a) overall accuracy, (c) F1, and (e) Kappa. River dataset of
(b) overall accuracy, (d) F1, and (f) Kappa.

an accuracy between the two model-driven change maps. As
seen, the model E2 combining CVA and SSIM provides the
best performance. Importantly, for both datasets, the model E2
combing CVA and SSIM obtains the best results than just using
any one of five model-driven methods. It can be concluded that
only the combination of two model-driven methods with good
complementarity can generate the complementary and credible
pseudotraining set. Then the trained model can get the better
detection capability over all regions of the image.

In addition, in model E2, the parameters of the single con-
volutional layer are crucial, including the number and size of
convolutional kernels. Fig. 13 shows the relevant experimental
results of different parameters. On each dataset, the convolution
kernels of 256 and the convolution kernel size of (3, 3) are the

best choices. The results of the model E2 in Table II, Figs. 10(h)
and 11(h) are all based on these parameters.

V. CONCLUSION

Rather than simply propose a modified network based on the
existed architectures, we focus on exploring a new paradigm to
solve the task of HSI-CD. We propose to integrate the model-
driven methods with deep learning methods in an end-to-end
way. Especially, the DIs of the used two model-driven meth-
ods, CVA and SSIM, are the basis for generating the credible
pseudotraining set. The proposed model E2 trained with the
self-generated credible labels provides a new paradigm for the
implementation of unsupervised HSI-CD. The lightweight of
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the model E2 just using the single convolution layer ensures the
timeliness of HSI-CD. In the future, we will explore the avail-
ability of the proposed method for CD tasks in heterogeneous
bitemporal images, such as bitemporal synthetic aperture radar
and optical images.
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