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Boosting Ship Detection in SAR Images With
Complementary Pretraining Techniques

Wei Bao ™, Meiyu Huang

Abstract—Deep learning methods have made significant
progress in ship detection in synthetic aperture radar (SAR) im-
ages. The pretraining technique is usually adopted to support deep
neural networks-based SAR ship detectors due to the scarce labeled
SAR images. However, directly leveraging ImageNet pretraining is
hard to obtain a good ship detector because of different imaging
perspectives and geometry. In this article, to resolve the problem of
inconsistent imaging perspectives between ImageNet and earth ob-
servations, we propose an optical ship detector (OSD) pretraining
technique to transfer the characteristics of ships in earth observa-
tions to SAR images from a large-scale aerial image dataset. On
the other hand, to handle the problem of different imaging geom-
etry between optical and SAR images, we propose an optical-SAR
matching (OSM) pretraining technique, which transfers plentiful
texture features from optical images to SAR images by common
representation learning on the OSM task. Finally, observing that
the OSD pretraining-based SSD has a better recall on sea area
while the OSM pretraining-based SSD can reduce false alarms
on land area, we combine the predictions of the two detectors
through weighted boxes fusion to further improve detection results.
Extensive experiments on four SAR ship detection datasets and
three representative convolutional neural network-based detection
benchmarks are conducted to show the effectiveness and comple-
mentarity of the two proposed detectors, and the state-of-the-art
performance of the combination of the two detectors. The proposed
method won the sixth place of ship detection in SAR images in the
2020 Gaofen challenge.

Index Terms—Common representation learning, optical ship
detector (OSD) pretraining, optical-SAR matching (OSM)
pretraining, ship detection, weighted boxes fusion (WBF).

1. INTRODUCTION

YNTHETIC aperture radar (SAR) is an active microwave
remote sensing imaging radar with the capability of tar-
geting objects in all-day and all-weather conditions and has
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been widely applied in many military and civil fields. Ship
detection in high-resolution SAR images has drawn considerable
attention for its broad application prospects, such as marine
surveillance [1], military intelligence acquisition [2], etc. Many
traditional SAR ship detection methods have been proposed [3]-
[5] to detect multiscale ships in complex surroundings. As one
of the most commonly used techniques, the constant false-alarm
rate (CFAR) method [3], adaptively adjusts the threshold given
a false-alarm rate and leverages the estimated statistical dis-
tributions to distinguish objects from the background with the
calculated threshold. However, traditional detection methods
suffer from tremendous difficulties in accurate detection due
to weak feature extraction capabilities.

Recently, benefiting from the rapid development of deep
learning, remarkable breakthroughs have been made in deep
convolutional neural networks (CNN) [6]-based detection meth-
ods. Generally, CNN-based detection methods can be divided
into two categories: two-stage detection methods, such as Faster
R-CNN [7], Mask R-CNN [8], Cascade R-CNN [9]; and one-
stage detection methods, such as SSD [10], RetinaNet [11],
YOLO [12]. Specifically, two-stage detection methods adopt the
feature maps generated from backbone networks, e.g., residual
network (ResNet) [13], to preliminarily extract class-agnostic
region proposals of the potential objects with negative locations
filtered out, and then further refine these proposals and clas-
sify them into different categories. Unlike two-stage detection
methods, one-stage detection methods omit the region proposals
generation process and consider object detection as a regres-
sion problem to directly predict location coordinates and class
probabilities for improving the detection speed, but with the
precision reduced in general. However, with bags of efficient
and effective tricks well used, one-stage detection methods, such
as YOLOV4 [14] can also achieve comparable or even better
performance to two-stage detection methods.

Because of the powerful feature extraction and representation
ability, these CNN-based detection methods have been success-
fully applied to ship detection in SAR images. Based on two
kinds of detection frameworks, effective network structures,
training strategies, and tricks are designed to deal with multiscale
ship detection, leading to significant performance improvement.
As for the two-stage SAR ship detectors (SSDs), Jiao et al. [15]
fused different feature maps by a densely connected multiscale
neural network to solve multiscale ship detection. Lin et al. [16]
proposed a squeeze and excitation rank architecture to sup-
press redundant information of feature maps for representative
ability improvement based on VGG network [17] pretrained on
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Ilustration of ImageNet pretraining, proposed OSD pretraining and OSM pretraining for SAR ship detection. (a) ImageNet pretraining: hard to obtain a

good ship detector because of different imaging perspectives and geometry between ImageNet and SAR images; (b) OSD pretraining: solve the problem of different
imaging perspectives by transferring ships’ annotation information from aerial optical images to improve the feature learning ability of ships in SAR images; (c)
OSM pretraining: solve the problem of different imaging geometry by transferring plentiful texture features from optical images to enhance the feature embedding
of SAR ship detection via Optical-SAR common representation learning. (a) ImageNet pretraining. (b) OSD pretraining. (c) OSM pretraining.

ImageNet [18]. Cui et al. [19] adopted feature pyramid net-
work (FPN) [20] with convolutional block attention module
(CBAM) densely connected to each feature map to integrate
resolution and semantic information. Wei et al. [21] introduced
high-resolution ship detection network (HR-SDNet) to maintain
high-resolution features, expecting to improve detection perfor-
mance. Yan et al. [22] proposed attention receptive pyramid
network (ARPN) with receptive fields block (RFB) and CBAM
combined reasonably. RFB can enhance local features with
global dependency, while CBAM can boost useful information
and suppress the influence of surroundings. As for the one-stage
SSDs, Du et al. [23] effectively leverages saliency information
to improve the representation capability of original SSD net-
work [10] and enhance target detection results by focusing more
on informative regions. Zhang et al. [24] proposed a depth-wise
separable convolution neural network that leverages multiscale
mechanism, concatenation mechanism, and anchor box mech-
anism to improve ship detection speed dramatically. Inspired
by the real-time idea of the YOLO algorithm, Zhang et al. [25]
introduced a grid CNN equipped with depth-wise separable con-
volution to speed up the ship detection with little performance
loss. Fu et al. [26] introduced a feature balancing module for
the small-scale ship detection and a feature-refinement module
to tackle feature misalignment for better localization accuracy.
Instead of horizontal bounding boxes, Chen et al. [27] and An
et al. [28] used the oriented bounding boxes to perform more
suitable ship detection for the geospatially arranged objects.
On the one hand, the improvements brought by these detectors
attribute to effective network structures. On the other hand, the
ImageNet [18] pretraining technique, a common practice, is
adopted to support all these SSDs due to the scarcity of labeled
SAR images. However, directly using ImageNet pretraining is
difficult to obtain a good SSD, which is also a significant issue
but with less attention paid. As shown in Fig 1(a), one significant
problem is the different imaging perspectives. The ships in
ImageNet are taken under natural scenes, while those in SAR
images are obtained from earth observations. The inconsistency
across ships’ viewing perspectives result in annotation informa-
tion from ImageNet not applicable for SSDs. As depicted in

Fig 1(b), we propose an optical ship detector (OSD) pretraining
technique to improve the feature learning ability of ships in SAR
images based on a large-scale aerial image dataset [29]. The OSD
pretraining technique can transfer the characteristics of ships in
earth observations to SAR images by fully taking advantage
of a large amount of ships’ annotation information from aerial
images. Another critical problem of directly applying ImageNet
pretraining to SAR ship detection in Fig 1(a) is the different
imaging geometry between optical and SAR images, making
ship detectors unable to obtain powerful SAR feature embed-
ding. Hence, we propose an optical-SAR matching (OSM) pre-
training technique to enhance the general feature embedding
of SAR images. Specifically, the OSM pretraining technique
transfers plentiful texture features from optical images to SAR
images by common representation learning via bridge neural
network (BNN) [30] on the OSM task. As depicted in Fig 1(c),
BNN employs a couple of convolution neural networks (CNN)
named left-CNN and right-CNN, which project SAR images and
optical images into a common feature space, respectively (see
Section II-C for a more detailed discussion). The optical-SAR
matching task forces BNN to learn useful fusion features. Then,
the left-CNN can be further used as the backbone of the SAR
detection framework to perform ship detection.

Based on the two pretraining techniques, we can obtain
the OSD pretraining-based SSD (OSD-SSD) and the OSM
pretraining-based SSD (OSM-SSD). Furthermore, we propose
to combine the two detectors to get a more comprehensively
better detector based on the observation of their different advan-
tages. Specifically, since the optical-SAR matching task mainly
focuses on land area, the plentiful texture features from optical
images can help distinguish the building structures, resulting in
fewer false alarms on land area by using OSM-SSD. In contrast,
the OSD-SSD can help identify and locate ships on sea area
because of more ships’ annotation information from the aerial
image dataset. Considering these complementary advantages,
we employ the weighted boxes fusion (WBF) strategy [31] to
fuse the predictions of OSD-SSD and OSM-SSD. The WBF
strategy utilizes confidence scores of all predicted bounding
boxes to construct the averaged boxes, including confidence
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scores and coordinate locations, leading to a SSD with better
generalization ability.

According to the above analysis, instead of designing so-
phisticated network structures and using specific tricks, we
consider the incompatibility between ImageNet and SAR im-
ages and propose two complementary pretraining techniques
to boost SAR ship detection. The overall process is depicted in
Fig. 2. Specifically, we utilize the OSD pretraining technique and
OSM pretraining technique to obtain OSD-SSD and OSM-SSD,
respectively. Finally, we leverage the WBF strategy to fuse
the predictions of the two complementary detectors. The main
contributions of our work can be summarized into the following
four aspects:

1) Improve the feature learning ability of ships in SAR im-
ages by proposing the OSD pretraining technique, which
transfers the characteristics of ships in earth observa-
tions to SAR images by fully taking advantage of ships’
annotation information from a large-scale aerial image
dataset [29].

2) Enhance the general feature embedding of SAR images by
proposing the OSM pretraining technique, which transfers
plentiful texture features from optical images to SAR
images by common representation learning via BNN [30]
on the OSM task.

3) Explore the complementary characteristics of the OSD
pretraining-based SSD (OSD-SSD) and OSM pretraining-
based SSD (OSM-SSD) and thus propose to employ the
WBF strategy [31] to fuse the predictions of the two
detectors for further improving detection results.

4) Conduct various experiments on four SAR ship detection
datasets [32]-[35] and three representative CNN-based
detection benchmarks [7], [36] to verify the effectiveness
and complementarity of the OSD-SSD and OSM-SSD
detectors, and the state-of-the-art performance of the com-
bination of the two detectors.

The rest of this article is organized as follows. Section II
introduces our methods in detail. Section III provides the ex-
perimental settings and results analysis. Finally, Section IV
concludes this article.

II. METHODOLOGY

In this section, we first introduce two CNN-based object
detection benchmarks: Faster R-CNN [7] and YOLOv3 [36].
Next, we will describe the OSD pretraining technique based on
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aerial images and the OSM pretraining technique by common
representation learning in detail. Finally, we will introduce how
the WBF strategy [31] fuse the predictions of OSM-SSD and
OSD-SSD.

A. CNN-Based Object Detection Methods

We select two representative methods: Faster R-CNN [7]
and YOLOV3 [36], as the benchmarks in our work. Here, we
only introduce the critical architecture of these two detection
benchmarks, and we refer to their original paper [7], [36] to
see a more detailed introduction. It is noted that our OSD
pretraining technique, OSM pretraining technique, and the WBF
strategy [31] can be easily applied to other state-of-the-art SAR
ship detection benchmarks.

Faster R-CNN [7], as the behalf of the two-stage object
detection methods, consists of three modules: feature embedding
network as the backbone to extract high-level features from the
original images, region proposal network (RPN) generating the
ship proposals for preliminarily predicting the location of ships
and box regression network such as Fast R-CNN [37] finishing
the binary classification and bounding box regression. We adopt
ResNet50 [13] as the backbone for better feature extraction.
Besides, to handle the detection of multiscale ships in multires-
olution SAR images, we use the FPN [20] to combine low-
resolution, semantic strongly features with high-resolution, se-
mantic weakly features. We initially set three anchor boxes with
one scale of size 8 and three aspect ratios of size {0.5, 1,2.0} at
each spatial location of each feature map. After RPN generates
ship proposals, we adopt the RolAlign [8] operation to fix the
misalignment of feature maps caused by coarse spatial quanti-
zation. Furthermore, we select the cross entropy and smooth L1
loss function to optimize the classification and regression task,
respectively.

YOLOV3 [36] is a representative one-stage object detection
method comprising two modules: feature extraction network
and box detection network. The feature extraction network is
set as Darknet53 [36] containing 53 convolutional layers and
some shortcut connections as used in ResNet [13], making
YOLOV3 more powerful and efficient. As similarly used in
Faster R-CNN, FPN is adopted in the feature extraction network
to enhance multiscale object detection capabilities. The box
detection network predicts bounding boxes on three different
scales following the feature extraction network. Feature maps
with small sizes are used to detect large-size ships, while feature
maps with large sizes are utilized to detect small-size ships.
The predefined anchor boxes in Faster R-CNN are leveraged
because learning the offsets between anchor boxes and the
predictions will make the network easier to train. Considering
this convenience, YOLOV3 also presets nine anchors with three
different sizes on each scale to predict bounding boxes more
accurately. The anchor sizes are set according to the dataset.
We use the same initial anchor sizes as those in [36]. Moreover,
instead of fixing the input image size, we use the multiscale
training strategy to resize the input image into one size of
{320 x 320,416 x 416} randomly in each iteration, forcing the
network to perform prediction well across different resolutions.
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Fig. 3. Illustration of simplified structures of ResNet50 and Darknet53.

Cross entropy and mean square error loss functions are utilized to
optimize this network end-to-end. Fig 3 illustrates the simplified
structures of ResNet50 and Darknet53.

B. OSD Pretraining Technique Based on Aerial Images

The OSD pretraining technique transfers the characteristics
of ships in earth observations to SAR images for improving the
feature learning ability of ships in SAR images. Specifically,
we first train OSDs in aerial optical images and then lever-
age the backbone, ResNet50 [13] for Faster R-CNN [7] and
Darknet53 [36] for YOLOv3 [36], to further obtain OSD-SSD
for fully taking advantage of ships’ annotation information.
As for object detection methods in aerial images, recent ad-
vances have been witnessed because of the construction of many
well-annotated datasets [29], [38] and efficient network design
for specific problems [39]. Because a large number of high-
resolution ships are available, we select DOTA [29], alarge-scale
dataset for object detection in aerial images, as the basic dataset
to train our OSDs. For the ResNet50 backbone, we directly
extract it from the trained model provided by the region of
interest (Rol) transformer method [39]. Rol transformer applied
an RRol learner on the Rols to learn spatial transformation from
horizontal proposals to oriented bounding box predictions, ex-
pecting to solve the common mismatch between horizontal box
predictions and oriented objects. This transformation on feature
maps enables the ResNet50 backbone more powerful feature
extraction capabilities, especially for ships from an overlooking
perspective. For extracting the Darknet53 backbone, we adopt
the original YOLOvV3 method to train the OSD without any
architectures modified. In addition to the ResNet50 and Dark-
net53 backbone, we can also extract FPN [20] from the trained
models using Rol Transformer and YOLOv3. We use ResNet50
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(Darknet53) to denote ResNet50+FPN (Darknet53+FPN) for
convenience.

C. OSM Pretraining Technique by Common Representation
Learning

The OSM pretraining technique transfers rich texture features
from optical images to SAR images to obtain a specific feature
extraction model with better SAR feature embedding capabil-
ities. Specifically, the OSM pretraining technique resorts to a
SAR feature embedding operator from common representation
learning based on the OSM task. As for common representation
learning, several researches [30], [40], [41] were proposed to
investigate the relationships between two data sources in dif-
ferent modalities. Among these methods, the BNN proposed
in [30] is adopted to perform our common representation learn-
ing on the matching problem of optical and SAR images due
to its excellent performance. As depicted in Fig 4, BNN acts
as a bridge and projects two images from different modalities
into a common feature subspace. More specifically, given the
OSM task, we should first construct the data pairs of optical
images and SAR images. Supposed we have two data sources
denoted by {X, X,} C R™ x R"2, where X, = {z%}¥, is
from SAR images and X, = {2}, is from optical images.
The ith component % € X, 2 € X, are from the same region
and match each other, while the ith component x?s € X, and
the jth component 2 € X, are from different regions and do
not match each other. Moreover, we define D, = {z%,z!} as
positive samples and D,, = {z,2J},i # j as negative sam-
ples. Second, instead of sharing weights, we build the BNN
architecture illustrated in Fig. 4, which contains two separate,
yet identical CNN: SAR CNN f,{-; 05} and Opt CNN f,{-; 02}
with weights (05, 0,,). For a pair of optical image and SAR image
(zs,,), the output of SAR CNN and Opt CNN is fy(xzs;6s)
and f,(x,;0,), respectively. The CNN can be replaced with
ResNet50 [13] and Darknet53 [36] for the Faster R-CNN [7]
and YOLOV3 [36] benchmark, respectively. To decrease the
feature dimension, we adopt a convolution layer with the filter
size of 1 x 1, a batch normalization layer and a max-pooling
layer following the backbone of the detection benchmark to
output an m-dimensional feature map. Finally, we add a linear
layer followed by the sigmoid activation function to project the
m-dimensional feature map into the common feature subspace.
The BNN outputs the Euclidean distance of the two outputs of
SAR CNN and Opt CNN, which is defined as follows:

F (e, 20300, 0,) = % 1(fe (0:00) = fo (@or 8D (1)

where n is the dimension of the common feature. The ultimate
goal of BNN is to determine whether the optical and SAR images
have a potential relationship, i.e., positive sample or not. Thus,
the loss on positive sample set D,, and negative sample set D,,
regresses the output f(xs, x,;0s,60,) to 0if (zs,2,) € Dp and
to 1if (x4, ,) € D, respectively, as follows:

1
lp (Dp; 05, 0,) = D, >
P

(zs,x0)ED)p

(f (xs,20:05,0,) — 0)2

@)
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Ilustration of common representation learning via BNN [30] on the OSM task, which adopts two CNNs named SAR CNN and Opt CNN to project SAR

images and optical images into a common feature space. The Euclidean distance of the two output layers is regressed to 0 or 1 for positive samples or negative

samples, respectively.

1
ln (Dn;95790) = W Z (f (.135,.130;95,90)—1)2.

(zs,20)EDy,

3)

Thus, the problem of searching the common feature embed-
dings of optical and SAR images can be transferred to a binary
classification problem, where the overall loss of BNN on D,
and D,, can be designed as follows:

lp (Dp; 937 90) +o-l, (Dn; 035 90)

Lbnn<Dp7Dn;95a90): 1+a

“)
where « is a hyperparameter to adjust the balance of positive
samples and negative samples. Then, the BNN model with the
best weights (6%, 0%) can be find via

s 70

(05,0,) = argming_o 1 (Dy, Dy;0s,0,) ®)

LRIl

In the test phase, BNN uses a predefined threshold parameter ~y
to decide whether the input data pair is a positive sample or not.
We train the BNN model on the QXS-SAROPT [42] dataset.
Finally, we can exploit the SAR-CNN as the backbone of our
OSM-SSD, expecting that the plentiful texture features from the
optical image would enhance the feature embedding ability for
SAR images.

D. Weighted Boxes Fusion

We expect to leverage an effective fusion strategy to enhance
detection performance based on the observation of the com-
plementary advantages between OSD-SSD and OSM-SSD. A
commonly used fusion strategy is nonmaximum suppression
(NMS). NMS sorts all the predicted bounding boxes according
to classification confidence and removes redundant boxes to
keep the one with the highest confidence score. However, NMS
pays too much attention to classification confidence without
considering localization accuracy. For example, if a predicted
box has a high intersection over union (IoU) with ground truth
but a low confidence score, it will be removed by another pre-
dicted box with high confidence score but a low IoU. Although
soft-NMS [43] can alleviate this problem, it will retain largely
redundant boxes, increasing many false alarms. To simultane-
ously take classification confidence and localization accuracy
into account, we adopt the WBF strategy [31] to combine the

Weighted
boxes fusion

-

== Ground truth == prediction of OSM-SSD == prediction of OSD-SSD === fused boxes

Fig. 5. Illustration of the WBF strategy [31].

predictions of OSM-SSD and OSD-SSD, expecting to improve
the generalization ability of SSDs. The WBF strategy in our
method utilizes confidence scores of predicted bounding boxes
to construct the averaged boxes, including not only averaged
confidence scores, but also averaged localization predictions
as depicted in Fig 5. Specifically, a predicted box with higher
classification confidence will more proportionally contribute to
the final averaged box. Algorithm 1 illustrates the process of
WBEF strategy.

III. EXPERIMENTS
A. Datasets

We conduct experiments on three kinds of datasets: DOTA
used for OSD pretraining, QXS-SAROPT used for OSM pre-
training, and four SAR ship detection datasets used for OSD-
SSD and OSM-SSD. It is noted that the OSD model based on the
Faster R-CNN [7] benchmark can be directly obtained from [39],
so we only perform OSD pretraining using the YOLOvV3 [36]
benchmark on DOTA. Table I shows the detailed information of
all datasets.

DOTA [29] is a large-scale dataset for object detection in
aerial images including 2806 aerial images with each image
ranging from 800 x 800 to 4000 x 4000 pixels collected from
different sensors and platforms. Compared to version 1.0 with
15 categories annotated, the fully annotated DOTA version 1.5
(DOTA-v1.5) contains 16 common object categories, including
the ship. We used DOTA-v1.5 and adopted the same dataset split
strategy as used in [39]: selecting half of the original images as
the training set, 1/6 as the validation set, and 1/3 as the testing set.
Each image is cropped into 1024 x 1024 pixels with an overlap



8946

Algorithm 1: Weighted boxes fusion strategy. B°*? and
Bes™ are predicted boxes of OSD-SSD and OSM-SSD,
respectively. N is the number of models. thr is the
IoU threshold. Each predicted box is represented as
(Xmin,Ymin, Xmax,Ymaz,C).

Input: N, B¢, Bs™ thr.

Output: Fused boxes of OSD-SSD and OSM-SSD.

1:  B°? and B°*™ are added to a list L and sorted in
decreasing order according to the confidence score C'

2: Declare an empty list E with each position storing a
set of boxes (or a single box) for box clusters. Declare
an empty list F with each corresponding position
containing only one box to represent the fused box.

3:  Loop through all predicted boxes in L, and attempt to
find a matching box in the list F. If the IoU between a
box in F and the current box in L is larger than thr, we
define this box as a matching box (IoU > thr).

4: If the matching box is not found in step 3, add the
current box from the list LL to the end of lists E and F
as new entries; proceed to the next box in the list L.

5: If the matching box is found in step 3, add the current
box from the list L to E and the added position is the
corresponding position of the matching box in F.

6: Leveraging all T boxes from the same position in E to
recalculate the box coordinates and confidence score to
form the fused box in F with the following equation:

T
I c.
C— Z:Tl ©
T .
O x X ” ;
Xmin, max = Z’L:l XT min;, max o
>im1Ci
T .
O xY . ;
Ymin, max = Zz:l XT min;, max ®
iz Ci

where a box with larger confidence contributes more
to the coordinates of the fused box than a box with
lower confidence.

7:  After all boxes in the list L are traversed, adjust the
confidence scores in F again with the following
equation:

C=0Cx &)

of 256 pixels. We directly trained the OSDs on the training set
and directly report the performance of detectors on the validation
set because the annotation information of the testing set is not
available.

QOXS-SAROPT [42] includes 20000 pairs of correspond-
ing SAR and optical images extracted from GaoFen-3 high-
resolution spotlight images and Google Earth remote sensing
optical images. The size of each image is 256 x 256. We select
14000 image pairs as the training set and the remaining 6000
image pairs as the testing set to train our BNN.
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SAR Ship Detection Datasets. We conduct SAR ship detection
experiments on four datasets: AIR-SARShip-1.0 [32], AIR-
SARShip-2.0 [33], which is also the Gaofen competition dataset
provided by the “2020 Gaofen Challenge on automated high-
resolution earth observation image interpretation,” HRSID [34]
and SSDD [35]. The AIR-SARShip-1.0 dataset comprises 31
high-resolution large-scale 3000 x 3000 images collected from
the GF-3 satellite. We randomly select 21 images as the training
and validation data, and the remaining 10 images as the testing
data. The AIR-SARShip-2.0 dataset includes 300 images of size
1000 x 1000 with spatial resolution ranging from 1 to 5 m col-
lected from the Gaofen-3 satellite. We randomly select 210 im-
ages as training and validation data, and the remaining 90 images
are used for testing data. Each image of both AIR-SARShip-1.0
and AIR-SARShip-2.0 is cropped into 512 x 512 pixels with an
overlap of 256 pixels for training and testing. The HRSID dataset
contains 5604 cropped SAR images with the size of 800 x 800
and has been divided into a training set and a test set at a ratio of
65 to 35. The SSDD dataset contains 1160 images of resolution
from 1 to 15 m in total, where the training set includes 928
images and the testing set includes the remaining 232 images.
For the Faster R-CNN benchmark, we directly input each image
of AIR-SARShip-1.0, AIR-SARShip-2.0, and HRSID into the
network, and resize each image of SSDD into 1000 x 600 pixels.
As for the YOLOv3 benchmark, all the images of the four
datasets are resized into 416 x 416 pixels. We do not apply any
data augmentation method for all datasets except for the scaling
technique because of the multiscaling training strategy for the
YOLOv3 benchmark.

B. Parameter Settings

All the experiments are implemented in the PyTorch 1.7
framework and carried out over an NVIDIA 3070 GPU. The
PC operating system is a 64-bit Ubuntu 20.04.

1) OSD Pretraining Technique: For the Faster R-CNN [7]
benchmark, we directly extract the ResNet50 [13] back-
bone from the existing trained model from [39]. As for the
YOLOV3 [36] benchmark, we first use MMDetection! to train
an OSD and then extract the Darknet53 [36] backbone from the
trained detector. The OSD is trained with stochastic gradient
descent (SGD) for 240 epochs with a total of 12 images per
minibatch. The initial learning rate is set as 0.001, which is
then divided by a factor of 10 at the 160th and 200th epoch.
The weight decay is 0.0005 and the momentum is 0.9. Both
the ImageNet-based pretrained ResNet50 and Darknet53 are
utilized for a better converge point.

2) OSM Pretraining Technique: Our BNN models based on
ResNet50 [13] and Darknet53 [36] are both trained with SGD
for 200 epochs with a batch size of 20. The initial learning rate is
setas 0.01 and then divided by a factor of 2 at the 30th and 100th
epochs. The dimension of the common feature is 50 and m is set
as 128. The adjusting factor avis 1 and the threshold yis setas 0.5.
We also adopt ImageNet-based pretrained model to train BNN.

![Online]. Available: https://github.com/open-mmlab/mm-detection
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TABLE I
DETAILED INFORMATION OF ALL USED DATASETS
Image numbers Input image size
Datasets Task type — -
Training set Testing set Faster R-CNN [7] YOLOV3 [36]
DOTA [29] Object detection in aerial optical images 11119 3626 1024 x 1024 1024 x 1024
QXS-SAROPT [42] Optical-SAR matching 14000 pairs 6000 pairs 256 x 256 256 x 256
AIR-SARShip-1.0 [32] SAR ship detection 637 273 512 x 512 416 x 416
AIR-SARShip-2.0 [33] SAR ship detection 1248 536 512 x 512 416 x 416
HRSID [34] SAR ship detection 3642 1962 800 x 800 416 x 416
SSDD [35] SAR ship detection 928 232 1000 x 600 416 x 416
TABLE I

3) SSDs: We also use MMDetection to implement OSD-SSD
and OSM-SSD. For the Faster R-CNN [7] benchmark, all models
are trained with SGD for 14 epochs with a total of eight images
perminibatch. The initial learning rate is set as 0.02 and then
divided by a factor of 10 at the 8th and 12th epochs. The weight
decay is 0.0001 and the momentum is 0.9. For the YOLOv3 [36]
benchmark, all models are trained with SGD for 240 epochs with
a total of 12 images per minibatch. The initial learning rate is
set as 0.001, which is then divided by a factor of 10 at the 160th
and 200th epochs. The IoU threshold is set as 0.5 when training
and testing for rigorous filtering the bounding boxes with low
precision. Warm-up [13] is introduced during the initial training
stage to avoid gradient explosion and the corresponding number
of iterations is 500. We use the same settings for all experiments
for a fair comparison.

4) WBF: We fuse predicted boxes from OSD-SSD and
OSM-SSD through the WBF strategy [31]. The IoU threshold
thr is set as 0.7 verified by many experiments and please see
Section III-D4 for a detailed discussion.

C. Evaluation Metrics

Precision, recall, and F1 scores are employed to evaluate the
performance of SSDs, and the definition of these evaluation
metrics is given as follows:

. Ntp
Precision = ———— 10)
Ntp + Npp (
Ntp
Recall = ——M—— 11
N7p + Npn an
Fl— 2 x Precision x Recall (12)

Precision + Recall

where TP is True Positive, FP is False Positive, TN is True
Negative, and FN is False Negative. Nop, Npp, Npy is the
number of TP, FP, and FN, respectively. More specifically, TP
indicates the correctly detected ships, FP represents the false
alarms and FN denotes the missing ships. A predicted bounding
box is considered as a true positive if its loU with the ground truth
is higher than a threshold, such as 0.5. Otherwise, it is regarded
as a false positive. Moreover, the predicted bounding box with
the highest confidence score is seen as the true positive, if
the IoU of several ones with the ground truth are all higher
than the threshold. F1 score is a comprehensive evaluation
metric for the quantitative performance of different models by
simultaneously considering the precision rate and recall rate.
To further evaluate the comprehensive quality of SSDs, we also

DETECTION RESULTS OF OSDS ON THE DOTA DATASET [29]

Ship All categories
APO_5 APO,75 AP mAP0,5 IHAPO,75 mAP

Faster R-CNN [7] 0.807 — —
YOLOv3 [36] 0.605 0.477 0.470

Benchmark

0.650 — -
0.509 0.284  0.287

adopt the average precision (AP;) metrics, which can be defined
as follows:

1 ..
AP; = 101 Z Precision; [gecan,

resS

(13)

where S = {0,0.01, ..., 1} representing a set of equally spaced
recall rates and 7 indicating the IoU threshold. APy 5 denotes
AP; with the ToU threshold being 0.5. We use Precision to
represent Precisiong 5 for convenience (the same as Recall). To
evaluate the localization performance more accurately, we also
adopt APg 75 and AP metrics. AP indicates the averaged AP;
where 7 is set from 0.50 to 0.95 with the step size set as 0.05,
which can be defined as follows:

1
AP = EZAPi

icl

(14)

where I = {0.5,0.55,...,0.95} representing a set of equally
spaced IoU threshold.

D. Results Analysis

1) OSD-SSD: Table II shows the detection results of our
OSDs on DOTA dataset [29] including the mean AP (mAP)
for all categories and AP for the ship category. It is noted that
the results of the Faster R-CNN [7] benchmark are directly
from [39] (“-” means that the original paper did not provide the
corresponding results). We can see that AP 5 achieves 80.7%
and 60.5% for the Faster R-CNN and YOLOV3 [36] benchmark,
respectively, indicating that ResNet50 [13] and Darknet53 [36]
backbone both have excellent ship detection capabilities. As
for SSDs, the detection performance is showed in Tables III
and IV for the Faster R-CNN and YOLOv3 benchmark, respec-
tively. We can observe that OSD-SSD outperforms the ImageNet
pretraining-based SSD (ImageNet-SSD) under different metrics.
Take the detection results on AIR-SARShip-2.0 [33] using the
YOLOV3 benchmark for an example, the precision rate of the
OSD-SSD gains a large improvement of 3.53% and the recall
rate achieves 2.12% higher value. Due to these improvements,
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TABLE III
OVERALL PERFORMANCE OF DIFFERENT METHODS ON FOUR SAR SHIP
DETECTION DATASETS USING THE FASTER R-CNN [7] BENCHMARK
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TABLE IV
OVERALL PERFORMANCE OF DIFFERENT METHODS ON FOUR SAR SHIP
DETECTION DATASETS USING THE YOLOV3 [36] BENCHMARK

AIR-SARShip-1.0 [32]

ATR-SARShip-1.0 [32]

Method Precision Recall F1 APos APo.75 AP Method Precision Recall F1 APos5 APo.75 AP

ImageNet-SSD  0.9232  0.8003 0.8574 0.8720 0.5461 0.5129 ImageNet-SSD  0.8901  0.8603 0.8744 0.8712 0.5546 0.5024
OSD-SSD 0.9436 0.8529 0.8960 0.8921 0.6260 0.5605 OSD-SSD 0.9411 0.8740 0.9062 0.8849 0.6273 0.5398
OSM-SSD 0.9324 0.8248 0.8753 0.8852 0.6153 0.5586 OSM-SSD 0.9324  0.8797 0.9055 0.8836 0.6146 0.5375
WBF-DM 0.9045 0.8653 0.8847 0.9006 0.6452 0.5801 WBEF-DM 0.8667 0.8964 0.8808 0.8913 0.6529 0.5672

AIR-SARShip-2.0 [33] AIR-SARShip-2.0 [33]

ImageNet-SSD  0.8561  0.7964 0.8252 0.8487 0.5633 0.5190 ImageNet-SSD ~ 0.8711  0.7960 0.8323 0.8300 0.4622 0.4649
OSD-SSD 0.8563  0.8232 0.8391 0.8626 0.6028 0.5618 OSD-SSD 0.9064 0.8172 0.8593 0.8449 0.5609 0.5096
OSM-SSD 0.8676 0.8170 0.8415 0.8582 0.6129 0.5528 OSM-SSD 0.9091 0.8150 0.8562 0.8470 0.5509 0.5114
WBF-DM 0.7944 0.8482 0.8677 0.8736 0.6451 0.5880 WBF-DM 0.8584 0.8497 0.8535 0.8543 0.6156 0.5478

HRSID [34] HRSID [34]

ImageNet-SSD  0.8842  0.8624 0.8736 0.8878 0.7851 0.6703 ImageNet-SSD  0.8541  0.8593 0.8567 0.8364 0.5538 0.5229
OSD-SSD 0.8975 0.8617 0.8784 0.8892 0.7851 0.6743 OSD-SSD 0.9010 0.8684 0.8841 0.8512 0.6035 0.5496
OSM-SSD 0.8826  0.8658 0.8751 0.8932 0.7890 0.6719 OSM-SSD 0.8662 0.8658 0.8665 0.8454 0.5731 0.5319
WBF-DM 0.8455 0.8823 0.8736 0.8971 0.7988 0.6844 WBF-DM 0.7879 0.8933 0.8375 0.8796 0.6581 0.5850

SSDD [35] SSDD [35]

ImageNet-SSD  0.9332  0.9440 0.9385 0.9624 0.7292 0.6231 ImageNet-SSD  0.9482  0.9509 0.9493 0.9447 0.6361 0.5840
OSD-SSD 0.9417  0.9558 0.9487 0.9704 0.7485 0.6328 OSD-SSD 0.9614 0.9505 0.9556 0.9474 0.6572 0.5898
OSM-SSD 0.9429 0.9485 0.9457 0.9679 0.7427 0.6228 OSM-SSD 0.9571 0.9560 0.9561 0.9468 0.6759 0.5885
WBF-DM 0.9079 0.9669 0.9364 0.9740 0.7534 0.6426 WBF-DM 0.9413 0.9633 0.9523 0.9577 0.7017 0.6058

TABLE V

the OSD-SSD finally achieves a 2.7% higher F1 score and
1.70% higher APy 5, reflecting overall performance improve-
ments. Furthermore, when the IoU threshold becomes larger
indicating the requirement of localization accuracy gets higher,
APy.75 and AP gain a larger improvement of 9.87% and 4.47%,
respectively, which means that the predicted bounding boxes are
more accurate. Similar phenomena are also presented on other
datasets for both the Faster R-CNN and YOLOv3 benchmark,
demonstrating the superiority of our OSD-SSD model. In other
words, compared to ships in the natural scene from ImageNet,
ships’ annotation information from earth observations can better
improve the feature learning ability of ships in SAR images.

2) OSM-SSD: Table V suggests that our BNN has an out-
standing performance on the QXS-SAROPT dataset for both
ResNet50 [13] and Darknet53 [36] backbone. Specifically, the
pair matching accuracy based on ResNet50 and Darknet53 are
82.9% and 82.8%, respectively, demonstrating that BNN can
well predict the relationship of SAR and optical images, and
obtain useful common features. As for the performance of
OSM-SSD based on the Faster R-CNN [7] and YOLOvV3 [36]
benchmark, the overall results under different metrics are also
illustrated in Tables III and IV, respectively. We can see that
our OSM-SSD performs better than ImageNet-SSD under all
evaluation metrics for different network architectures and dif-
ferent datasets. Especially on AIR-SARShip-2.0 [33] using the
YOLOV3 network, 3.80%, 1.90%, 2.39%, 1.49%, 8.87%, and
4.65% performance improvement can be achieved in terms of
precision rate, recall rate, F1 score, APy 5, APy 75, and AP,
respectively. All these improved performances can prove that
the common features obtained from common representation

MATCHING RESULTS OF BNN [30] ON THE QXS-SAROPT DATASET

Backbone Accuracy Precision Recall
ResNet50 [13] 0.829 0.748 0.993
Darknet53 [36] 0.828 0.746 0.995

learning can boost ship detection in SAR images. In other words,
BNN can well transfer rich texture features from optical images
to SAR images, enhancing the feature extraction capability of
SSDs without additional ships’ annotation information and any
network architecture modified.

3) Comparison Between OSM-SSD and OSD-SSD: For re-
sults of AIR-SARShip2.0 based on the Faster R-CNN [7] bench-
mark in Table IITI, OSD-SSD and OSM-SSD achieve comparable
detection results in different degrees, such as 1.39%, 3.95%,
4.28% improvements verse 0.95%, 4.96%, 3.38 % improvements
in terms of APg 5, AP 75, and AP, respectively. It is noted that
the DOTA dataset [29] on which our OSD pretraining performed
has a large amount of annotation information while the QXS-
SAROPT dataset on which our OSM pretraining performed only
has region matching information without any ship annotation.
Moreover, we also conduct experiments under the inshore and
offshore scenes, respectively. We can observe from Table VI
that OSD-SSD and OSM-SSD have different performances
in different scenes. Specifically, compared to OSD-SSD, our
OSM-SSD gains 1.50% improvements in precision rate under
inshore scenes. As for the offshore ship detection, our OSD-SSD
improves the recall rate by 0.25% than OSM-SSD. In addition
to quantitative comparisons, we also visualize some detection
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TABLE VI
PERFORMANCE OF IMAGENET-SSD, OSD-SSD AND OSM-SSD UNDER TWO DIFFERENT SCENES

Scene Method Precision Recall F1 APg 5 APg.75 AP

ImageNet-SSD 0.8484 0.8139 0.8307 0.8777 0.5336 0.4941

Inshore OSD-SSD 0.8655 0.8604 0.8629 0.8973 0.5982 0.5332
OSM-SSD 0.8805 0.8197 0.8491 0.8876 0.5789 0.5112

ImageNet-SSD 0.9640 0.9919 0.9777 0.9879 0.7861 0.6605

Offshore OSD-SSD 0.9634 0.9946 0.9788 0.9881 0.8203 0.6705
OSM-SSD 0.9659 0.9919 0.9787 0.9885 0.8074 0.6663

TABLE VII

results in Fig. 6 to show an intuitive understanding of their effect.
We use red rectangles, green rectangles, orange circles, and
yellow circles to figure out ground truth, predicted boxes, false
alarms, and missing ships, respectively. In Fig. 6(a), considering
the first scene on sea area, two ground-truths are perfectly
detected using OSD-SSD while one ship missed in the prediction
of OSM-SSD. Similar phenomena that OSD-SSD has a better
recall on sea area also occurs in other scenes. We conjecture that
this observation is due to the OSD model can better capture ship
features as large amounts of ship annotation in the aerial optical
dataset. On the contrary, we can see that OSM-SSD has better
performance than OSD-SSD on land area from Fig. 6(b). Taking
the first row as an example, compared to one false alarm on land
area for OSD-SSD, OSM-SSD accurately predicts the ground
truth without any false alarms. What causes this phenomenon is
that the OSM dataset on which our OSM pretraining performed
mainly focuses on land area, leading to OSM-SSD has better
feature embedding and fewer false alarms on land area. In
conclusion, OSD-SSD and OSM-SSD can improve detection
results from different perspectives, proving the effectiveness
of our OSD and OSM pretraining techniques. More impor-
tantly, these complementary advantages between OSD-SSD and
OSM-SSD straightly inspire us to utilize fusion strategies to
boost ship detection results, which will be analyzed in the
following part.

4) Wbf-Dm: We use WBF-DM to represent the fusion be-
tween predictions of OSD-SSD and OSM-SSD. The final results
of WBF-DM on four SAR ship detection results are depicted in
Tables III and IV. Taking the result on AIR-SARShip 2.0 [33]
using the YOLOV3 [36] benchmark as an example, WBF-DM
reaches 2.12% and 1.9% higher recall rate but 4.8% and 4.97%
lower precision rates compared to OSD-SSD and OSM-SSD,
respectively. Is is a natural phenomenon because WBF-DM
inevitably produces false alarms when it preserves as many
ships as possible to improve the recall rate. Consequently,
APy 5, APg .75, and AP gains a large improvement with a slight
decrease in F1 score, which demonstrates that WBF-DM can
fully take advantage of complementary characteristics between
OSD-SSD and OSM-SSD. PR curves of OSD-SSD, OSM-SSD,
and WBF-DM compared to ImageNet-SSD under AP 5 and
APy 75 metrics are depicted in Figs. 7 and 8, respectively. We
can observe that the orange curve corresponding to OSD-SSD
is always above the red curve corresponding to ImageNet-SSD.
Similarly, the blue PR curve denoting OSM-SSD is also above
the red PR curve. Although the green curve corresponding to
WBF-DM is slightly lower than the orange or red curve at some

RESULTS OF WBF-DM UNDER DIFFERENT 10U THRESHOLDS

ToU threshold APo.5 APo.75 AP
0.4 0.8533 0.6022 0.5400
0.5 0.8591 0.6086 0.5461
0.6 0.8581 0.6141 0.5476
0.7 0.8543 0.6156 0.5478
0.75 0.8502 0.6188 0.5466
0.8 0.8434 0.6136 0.5424

points in recall rate, the maximum point in recall rate of the
green curve is extremely larger than that of the orange and red
curve. Subsequently, the area under the green PR curve increased
substantially. This phenomenon also illustrates that WBF is a
strategy sacrificing the precision rate for improving the recall
rate to achieve a significant increase in AP. Finally, WBF-DM
yields a considerable increase in terms of a series of AP metrics
compared to ImageNet-SSD, especially 15.34% improvements
in APg.75. All of our experiments manifest positive effects of
WBF-DM on improving the comprehensive quality of SAR ship
detection.

The IoU threshold thr is a significant hyperparameter in
WBF-DM to determine the final fusion results to a large ex-
tent. In order to analyze the influence of thr, we implement a
comparison on AIR-SARShip-2.0 [33] using the YOLOV3 [36]
benchmark with all settings remaining identical except for the
value of thr in Table VII. We can observe that when thr turns to
be 0.5, APq 5 achieves the highest result of 0.8591. However, as
thr gradually increases, AP 5 gradually decreases and AP 75
achieves a maximum value of 0.6188 when thr becomes 0.75.
It is due to the thr of WBF strategy plays NMS’s role and ex-
pects to match the requirements of localization accuracy. Hence,
we can adaptively change the threshold according to different
task requirements. To achieve a comprehensive performance
improvement, we set thr as 0.7 in our experiments.

In addition to fusing the predictions of OSD-SSD and OSM-
SSD, we also conduct experiments to fuse detection results
of different combinations among ImageNet-SSD, OSD-SSD,
and OSM-SSD. Table VIII shows the fusion results. We can
see that, regardless of any combination, the performance of
fusing multiple models is always superior to that of a single
model, demonstrating the effectiveness of the WBF strategy.
Furthermore, the result of WBF-DM not only outperforms the
fusion result between ImageNet-SSD and OSD-SSD, but also
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Gl i OSD-SSD \ OSM-SSD

Comparison results of OSD-SSD and OSM-SSD on four SAR ship detection datasets. The red rectangles are ground truth and the green rectangles

represent the detection results. The orange and yellow circles denote the false alarms and missing ships, respectively. Two sets of visualization results demonstrate
the complementary characteristics of OSD-SSD and OSM-SSD: (a) OSD-SSD outperforms OSM-SSD on sea area. (b) OSM-SSD outperforms OSD-SSD on

land area.

outperforms the fusion result between ImageNet-SSD and OSM-
SSD. Compared to ImageNet-SSD fused with OSD-SSD, the
better improvements contribute to the fewer false alarms on
land area of OSM-SSD. Compared to ImageNet-SSD combined
with OSM-SSD, the improved detection results are due to the
higher recall on sea area of OSD-SSD. It is the complementary
advantage under different scenes that allows the WBF-DM to im-
prove the ship detection performance. Finally, when we combine
the predictions of ImageNet-SSD, OSD-SSD, and OSM-SSD,

APy 5 achieves the highest value of 86.05% while AP 75 and
AP become lower. In other words, the improvements vanish
as the requirement of localization accuracy gets higher. We
conjecture that instead of complementary advantages in different
scenes, the increased AP, 5 is because the WBF strategy adjusts
not only the confidence of the predicted boxes, but also the
position, reaching a better localization accuracy.

NMS is also a commonly used fusion strategy to filter the
bounding boxes with low precision, especially for densely
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Fig. 7. PR curves of four methods: ImageNet-SSD, OSM-SSD, OSD-SSD
and WBF-DM on AIR-SARShip-2.0 [33] using the YOLOvV3 [36] benchmark
under AP 5 metric.
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Fig. 8. PR curves of four methods: ImageNet-SSD, OSM-SSD, OSD-SSD
and WBF-DM on AIR-SARShip-2.0 [33] using the YOLOV3 [36] benchmark
under AP 75 metric.

TABLE VIII
FUSION RESULTS OF PREDICTIONS OF IMAGENET-SSD, OSM-SSD, AND
OSD-SSD UNDER DIFFERENT COMBINATIONS

ImageNet-SSD  OSD-SSD  OSM-SSD | APgs5 APgr7s AP

v 0.8300 0.4622 0.4649

v 0.8449  0.5609  0.5096

v 0.8470  0.5509 0.5114

v v 0.8496  0.5811  0.5265

v v 0.8481 0.5842  0.5283

v v 0.8543 0.6156 0.5478

v v 0.8605 0.6087 0.5468

aligned targets. Hence, we perform a comparison between
NMS-DM (the fusion between predictions of OSD-SSD
and OSM-SSD adopting NMS) and WBF-DM. We conduct
experiments on two forms of AIR-SARShip-2.0 [33]: the whole
dataset containing 536 images and the part of densely aligned
targets containing 84 images (we select 84 images with densely

Ground Truth
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Fig.9. Visualization of comparison results between NMS-DM and WBF-DM

for densely aligned targets.

TABLE IX
COMPARISON BETWEEN NMS-DM AND WBF-DM ON AIR-SARSHIP-2.0 [33]

Datasets (image numbers) Method APo.5 APo .75 AP
Whole dataset (536) NMS-DM | 0.8601  0.5905 0.5302
WBF-DM | 0.8543 0.6156 0.5478
Densely aligned NMS-DM | 0.8636 0.5348 0.5030
targets (84) WBF-DM | 0.8654 0.5475 0.5183
TABLE X

COMPARISON OF INFERENCE SPEED BETWEEN IMAGENET-SSD AND WBF-DM

o o HRSID [34]|SSDD [35]
Ship-1.0 [32][Ship-2.0 [33]
ImageNet
Faster 26.9 26.9 49.1 45.4
-SSD
R-CNN [7]
WBF-DM|  55.7 55.4 98.9 98.7
I
mageNet] 5 17.2 17.2 17.2
YOLOV3 [36]] -SSD
WBF-DM|  36.2 35.9 35.3 36.4
TABLE XI

OVERALL PERFORMANCE OF DIFFERENT METHODS ON TWO SAR SHIP
DETECTION DATASETS USING THE FCOS [44] BENCHMARK

ATR-SARShip-1.0 [32]

Method Precision Recall F1 APo.s APo.75 AP

ImageNet-SSD  0.8649  0.8301 0.8471 0.8638 0.6280 0.6024
OSD-SSD 0.9124 0.8231 0.8654 0.8756 0.6673 0.6279
OSM-SSD 0.8714  0.8581 0.8647 0.8883 0.6641 0.6460
WBF-DM 0.8025 0.8756 0.8374 0.8955 0.7070 0.6657

SSDD [35]

ImageNet-SSD  0.9398  0.8521 0.8938 0.9179 0.5946 0.5554
OSD-SSD 0.9373 0.8823 0.9090 0.9324 0.6485 0.5649
OSM-SSD 0.9341  0.8603 0.8957 0.9248 0.6126 0.5579
WBF-DM 0.8974 0.9099 0.9036 0.9388 0.6841 0.5864

aligned targets from AIR-SARShip-2.0). The IoU thresholds of
both NMS-DM and WBF-DM are set as 0.7. Table IX shows the
comparison results. For the whole dataset, WBF-DM performs
better than NMS-DM under APq 75 and AP metrics, but is
indeed slightly inferior to NMS-DM under AP 5 metric. For
the part of densely aligned targets, WBF-DM is superior to
NMS-DM in all metrics. Moreover, when the requirement of
localization accuracy gets higher, AP 75 and AP gain larger
improvements. We also visualize a set of comparison results for
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TABLE XII
COMPARISON OF DIFFERENT CNN-BASED SHIP DETECTORS ON THE SSDD DATASET [35]

Method Backbone Precision Recall F1 APg 5 APo 75 AP
RetinaNet [11] ResNet50 0.8310 0.8933 0.8610 0.8891 0.5028 —
RFA-Det [27] ResNet50 - - 0.9472 - -
One-stage DRBox-v2 [28] VGG16 - 0.9149 0.9281 - -
FBR-Net [26] ResNet50 0.9279 0.9401 0.9340 0.9410 0.5906 -
WBF-DM (YOLOV3) Darknet53 0.9413 0.9633 0.9523 0.9577 0.7017 0.6058
DCMSNN [15] ResNet50 0.9049 0.8914 0.8981 0.8943 0.5417 —
R-DFPN [44] ResNet50 - 0.8529 0.8345 - -
Two-stage DAPN [19] ResNet50 — — 0.8980 — —
HR-SDNet [21] HRFPN-W40 - - 0.9730 0.7430 0.6370
WBF-DM (Faster R-CNN) ResNet50 0.9079 0.9669 0.9364 0.9740 0.7534 0.6426

densely aligned targets in Fig 9. We can observe that NMS-DM
misses a ship with yellow circle marked compared to WBF-DM.
All these phenomena illustrate that WBF-DM is more effective
than NMS-DM for densely aligned targets due to the averaged
boxes of WBEF strategy.

As for the speed performance, we also conduct compari-
son experiments between WBF-DM and the two benchmarks.
We can observe from Table X that the time consumption of
WBF-DM is slightly more than twice that of ImageNet-SSD for
both two benchmarks. For YOLOV3, the speed performances of
different ImageNet-SSD are identical on four datasets, because
the size of input images are the same. The time consumption of
WBF-DM on four datasets is slightly different due to the number
of boxes to be fused is different. In general, the double-time
consumption phenomenon shows that the WBF is a strategy
that trades time for accuracy.

5) Generalization Ability: To further demonstrate that the
proposed OSM and OSD pretraining techniques can be applied
to other SAR ship detection methods, we also conduct exper-
iments on another ship detection method, namely, FCOS [44].
Either Faster R-CNN [7] or YOLOv3 [36] belongs to anchor-
based detection methods, where the predefined set of anchors has
a great impact on the performance as well as the generalization
ability. Furthermore, most anchors are redundant due to the spar-
sity of ships, which will increase the computation. FCOS is arep-
resentative anchor-free detection method and designed to elimi-
nate the predefined set of anchors. Instead of regressing the trans-
formation from predefined anchor boxes to the target bounding
box, FCOS explores fully convolutional networks (FCN) [46]
to tackle the detection problem in a perpixel prediction manner
and directly regresses the target bounding box at each pixel.
We perform the FCOS benchmark on AIR-SARShipl.0 and
SSDD. As for the experimental parameter settings, the detector
is trained with SGD for 36 epochs with a total of eight images
per minibatch. The initial learning rate is set as 0.002 and then
divided by a factor of 10 at the 24th and 33 rd epochs. The weight
decay is 0.0001 and the momentum is 0.9. We adopt ResNet50
as the basic backbone for convenience. Table XI shows the
overall performance of different methods on two datasets. We
can observe that OSD-SSD and OSM-SSD have higher detection
performance than ImageNet-SSD in terms of all evaluation
metrics. Moreover, APq 5, APy 75, and AP of WBF-DM gain

larger improvements due to the complementarity of OSD and
OSM pretraining techniques. These phenomena can illustrate the
generalization ability of the proposed OSM and OSD pretraining
techniques and the effectiveness of the WBF strategy.

6) Comparison With CNN-Based SSDs: We split CNN-
based SSDs into two categories: one-stage ship detector and
two-stage ship detector for a fair comparison. The overall de-
tection results of different detectors on the SSDD dataset [35]
are listed in Table XII. For one-stage detector, we compare the
proposed WBF-DM method based on the YOLOvV3 [36] bench-
mark with four CNN-based methods including RetinaNet [11],
RFA-Det [27], DRBox-v2 [28], and FBR-Net [26]. Specifically,
our method achieves 1.34% and 2.32% higher precision rate and
recall rate compared with the FBR-Net method, respectively. In
terms of F1 score and AP 5, our method obtains 1.83% and
1.67% better improvements. Furthermore, our method consid-
erably improves AP 75 by a large margin of 11.11%, obtaining
the predicted boxes with higher localization accuracy. Compared
to other methods, similar enhancements can also been achieved.
As for two-stage detector, we also compare our WBF-DM based
on the Faster R-CNN [7] benchmark with four CNN-based
methods including DCMSNN [15], R-DFPN [45], DAPN [19],
and HR-SDNet [21]. We can observe that our WBF-DM method
can achieve considerable improvements in all degrees compared
to other state-of-the-art ship detectors. More importantly, our
methods can easily combine with other detectors to boost SAR
ship detection. All these improvements verify the effectiveness
and complementarity of OSD-SSD and OSM-SSD, and the
superiority of the combination of the two detectors.

IV. CONCLUSION

Considering that directly leveraging ImageNet pretraining
technique as commonly used is hard to obtain a good SSD, this
article introduce a completed framework to boost ship detection
in SAR images. To resolve the problem that ships from ImageNet
are different from ships from earth observations, we first propose
an OSD pretraining technique to improve the feature learning
ability of ships in SAR images by fully taking advantage of ships’
annotation information from aerial images. Second, to handle
the problem of different imaging geometry between optical
and SAR images, we propose an OSM pretraining technique
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to enhance the general feature embedding of SAR images by
common representation learning via BNNs. Third, observing
the complementary advantages of OSM-SSD and OSD-SSD,
this article employ the WBF strategy to combine the predictions
of OSD-SSD and OSM-SSD to further improve detection results
in SAR images. Finally, various experiments are conducted
on four SAR ship detection datasets and three representative
CNN-based detection benchmarks to verify the effectiveness and
complementarity of OSD-SSD and OSM-SSD, and the state-of-
the-art performance of the combination of the two detectors.
In the future, we will consider exploring the performance of
the proposed method on more complicated networks and more
challenging datasets.
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