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Abstract—The digitization and automation of the raw material
sector is required to attain the targets set by the Paris Agreements
and support the sustainable development goals defined by the
United Nations. While many aspects of the industry will be affected,
most of the technological innovations will require smart imaging
sensors. In this review, we assess the relevant recent developments
of machine learning for the processing of imaging sensor data.
We first describe the main imagers and the acquired data types
as well as the platforms on which they can be installed. We briefly
describe radiometric and geometric corrections as these procedures
have been already described extensively in previous works. We
focus on the description of innovative processing workflows and
illustrate the most prominent approaches with examples. We also
provide a list of available resources, codes, and libraries for re-
searchers at different levels, from students to senior researchers,
willing to explore novel methodologies on the challenging topics of
raw material extraction, classification, and process automatization.

Index Terms—Deep learning (DL), earth observation, machine
learning, mining, raw materials.

I. INTRODUCTION—MINING TOWARD SUSTAINABLE GOALS

THE rapid increase of the human population, the
ever-growing levels of economic activity, and the

transition toward greener technology are all contributing to an
exponential demand in resource extraction and consumption [1].
The transition toward a low-carbon future is paradoxically one
of the main drivers to the recrudescence of mining activity. The
concept of a purely circular economy where only recyclable
material is used, is currently not sustainable due to the increasing
demand for metals that were not or used less in the past and the
difficulty to recycle more and more complex compounds. Since
2015, more than half of the global material extraction has been
originating from mining, with a predicted global extraction
of ores to be between two and three gigaton (Gt) by 2050
(see Fig. 1 [1]). The ever-increasing technological innovation
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Fig. 1. Global convergence scenario of global material extraction (DE) in
Gt/yr by main material groups. The historic trend in DE from 1900 to 2015 is
shown in blue and the predicted trend in DE is shown in brown. Mineral inputs
to stock and ores contribute to mining [1].

requires a larger variety of elements to improve energy efficiency
and miniaturization. The criticality of raw materials has been
summarised and categorized by several institutions, such as the
European Commission [2] or the Canadian Government [3],
and is based on economic importance and supply risk.

There is a growing demand for mineral resources worldwide,
and yet the industry is facing increasing obstacles in obtaining
public acceptance for new exploration and mining projects.
Numerous recent citizen protests highlight the public perception
of “destructive” mining projects and increase the reluctance of
investors to finance exploration and mine projects [4].

Social scientists attempted to provide a framework to improve
the sustainability of metal sourcing. Renn et al. [5] provide a
framework to establish sustainability objectives.

1) The ecological pillar includes the notions of decarboniza-
tion, dematerialization, and rehabilitation of used land
(renaturalization).

2) The economic pillar will focus on the circular economy
and sustainable welfare.

3) The social pillar considers a fair distribution of risks and
benefits, personal, and social opportunities for codetermi-
nation of decisions and social well-being, including health.

These three pillars of sustainability can be related to the UN
Sustainable Development Goals (SDG) [6]. Not only do we need
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Fig. 2. Airborne platforms with passive sensors represent ideal tools to ensure
reliable, safe, and cost-effective monitoring of mining activities.

raw materials to ensure the green deal and the Paris Agreement,
but a responsible metal sourcing is required for many of the
SDGs.

The responsible sourcing of critical raw materials, thus,
requires the development of new technologies both for an im-
proved extraction but also for efficient monitoring. The mon-
itoring of mining activities is fundamental to the respect of
environmental, societal, and governance targets. Noninvasive
exploration and monitoring techniques can be defined as energy-
efficient, safe, and low-impact technologies (see Fig. 2). They
assist in the detection and mapping of mineral deposits, improve
exploration targeting, and the monitoring of mining activities
and their impacts with a minimal environmental footprint while
improving social acceptance (e.g., [7]).

The mining industry will embrace the visions of the Industry
4.0 and fully automated mines as well as more technologi-
cally sophisticated ore-processing facilities. Better, integrated
exploration data have the potential to improve the probability
of discovery by reducing and optimizing drilling while boosting
information gains. The integration of geological data into multi-
modal models or digital twins also contributes to optimize drill
and blast patterns, create an executable mine plan, and avoid
quality issues at the source. Monitoring sensors have also the
potential to improve material and equipment flow in an operative
mine, to anticipate failures, to enable increased mechanization
through automation with real-time updates. At the same time,
mining operations often take place in extreme environments
and in remote locations. Data processing needs to account for
the specific conditions in which remote sensing data have been
acquired. Real-time data and the status of machines must be
monitored remotely and be modeled with digital twin off-site.
All processes will require smart sensors and adapted processing.
The monitoring of mining activities will have to deal with big
data, smart data processing, and multisensor data fusion.

Imaging sensors are key in the digital evolution of the
mining sector. Digitization is used as a catalyst for mines
to become more automated by using instruments, networks

and intelligent designs to transition towards “smarter” oper-
ations in order to improve forecasting. It includes the fore-
casting of geological and environmental parameters within
which miners work, taking into account the possible dan-
gers. Effective forecasting systems already used by the mining
industry include predictive maintenance to take preventive ac-
tion by collecting data to give priority to repairs via machine use
and process parameters. The first aspect of digital processing
concerns image enhancement or image preprocessing. Before
the evaluation, an image must be improved and optimized for
the task at hand. Usually, it concerns all the radiometric and
geometric corrections that are required for a proper analysis of
the data. There make use of image processing algorithms, such
as filters, points, arithmetic, and logical image operations. The
result of an image processing is usually an image again. One of
the key aspects of preprocessing and focus of recent research
concerns denoising. After a potential transformation (e.g., fea-
ture extraction and fusion), imaging data are then analyzed to
produce evaluations, such as classifications or segmentation.

While many aspects of the digitization and automation of
mining operations will, without doubt, increase the efficiency of
metal extraction (e.g., [8]), this review will focus on the required
imaging sensors and is not intended to cover all the necessary
technical developments to achieve Industry 4.0.

The main algorithmic challenges in mining-related applica-
tions can be summarized as follows.

1) Complication in acquiring labeled training samples for
mineralogical and geological applications. Rocks are frac-
tured, weathered, and altered and composed by a large
variety of minerals leading to mineral mixtures at the
pixel scale. Defining labels and getting training sets are
a challenge.

2) Due to this rock complexity, in situ, visual interpretation of
extracted samples (e.g., drill-core samples), and accord-
ingly selecting some representative training samples for
further analysis (e.g., geochemical analysis) can be sub-
jective and usually based on the experience of a geologist.

3) High-resolution mineralogical laboratory measurements
are time-consuming, costly, and require the (partial) de-
struction of the samples.

These issues have made a simple adaptation of ML tech-
niques developed in other communities extremely challenging
for mineral mapping. To partially address these issues, current
approaches in the mining community take advantage of math-
ematical optimization approaches [e.g., sparse, low-rank, and
total variation (TV)] and machine/deep learning (DL) methods
(e.g., supervised and unsupervised learning) to develop efficient
and effective algorithms to provide a clear cutting edge for more
responsible sourcing of critical raw materials.

The rest of this article is organized as follows. Section II re-
views the imaging technologies, which have largely been utilized
for mineral mapping and raw material extraction, at different
scales ranging from space-borne remote sensing data to lab-scale
measurements, followed by advances in denoising techniques to
improve the quality of the acquired data. Sections III and IV are
dedicated to advanced machine learning and DL methodologies
specifically utilized for mineral mapping. While the first four
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sections are mostly on the use of optical data, Section V reviews
3-D point clouds and their challenges in mineral mapping and
raw material extraction. Section VI provides a list of available
resources and software platforms. Finally, Section VII concludes
this article.

II. DATA ACQUISITION, CORRECTION, AND PREPOSSESSING

A. Data Acquisition and Correction

Exploration and mining applications pose special require-
ments on data quality, originating from both the particulate-
related environmental conditions as well as the physical proper-
ties of the material to analyze. Targets can vary greatly in scale
and feature highly heterogeneous and partly merging classes.
Data quality is often influenced by strong topography, dust,
unfortunate lighting conditions, and occlusions. These factors
challenge proper data acquisition and processing and require
innovative approaches in terms of sensor platforms, viewing
angles, and data corrections. On top of the challenging envi-
ronmental conditions, mining applications are demanding in
terms of required data quality. Minerals and raw materials are
usually characterized by subtle, small-scale changes in observ-
able material properties. In the common example of spectral
imaging, the respective features of interest are usually subtle
changes in the slope, depth, and position of characteristic spec-
tral absorption features. In the case of mineral identification, not
only the composition of the minerals plays an important role but
also the mixtures in the mineral assemblages and variations in,
for example, grain sizes. Imaging spectrometers can provide
an abundance of spectral information spanning from visible
to infrared wavelengths. The range of acquisition influences
the rock types and minerals that can be accurately identified
because of the different behavior of the molecular bonds (e.g.,
vibrational or electronic absorption processes or stretching and
bending). In general, hyperspectral images in the visible to
near-infrared (VNIR) and the short-wave infrared (SWIR) pro-
vide means to reliably identify alteration minerals, such as
oxides or hydroxides, micas, clays, amphiboles, and chlorite.
On the contrary, hyperspectral long-wave infrared can be used
to map rock-forming minerals, such as feldspars, pyroxenes, and
quartz. Depending on the scale of observation, a wide range of
platforms, sensors, and processing tools have been developed to
tackle these challenges, which will be discussed in more detail
in the following sections.

1) Satellite (Space-Borne): Space-borne spectral imaging is
a widely employed technique in exploration and mining [9]. A
wide range of datasets is available online for free or at low cost,
covering large parts of the earth’s surface and in addition often
providing temporal resolution. On the one hand, the high costs
and the effort to transport a sensor into space result in a sensor
design that cannot be changed for several years and that does
not allow any subsequent customization by the individual user.
Alternatively, it enables the establishment of fixed and mature
data correction and processing routines. Whereas geometric cor-
rection parameters are usually retrievable from the data provider,
the influence of topography and atmosphere is compensated with
available digital elevation models and established atmospheric

correction tools based on atmospheric models and user-defined
parameters [10], [11]. To achieve contiguous spectra at accept-
able data volumes, developers usually need to make sacrifices
regarding spatial sampling to achieve sufficient spectral reso-
lution, resulting in large ground sampling distances of most
space-borne hyperspectral sensors, e.g., EO-1 Hyperion sensor
(30 m, out of operation today) or the recently launched PRISMA
(30 m). Developers of new space-borne sensors face crucial
challenges, such as low signal-to-noise ratio values due to the
extreme influence of the atmosphere, high sensor costs, and
time-consuming processing of the retrieved, large datasets [12].

2) Crewed Aircraft (Airborne): In the last decades, airborne
surveys have been the most common way to acquire high-quality
remote sensing data, which has led to a strong development
in acquisition workflows and correction tools [13], [14]. The
reasons for their popularity are manifold: The variety of de-
ployable sensors is nearly unlimited, and the spatial resolution
and coverage are reasonable for a wide range of applications
and can be adjusted by changing the flight altitude to fit the
individual objective. However, extensive flight campaigns are
usually costly, weather dependent, and require a not negligible
amount of infrastructure and logistics. Multitemporal measure-
ments are accordingly time- and cost-consuming and sources
for failures are manifold. In contrast to satellite surveys, prior
knowledge of the approximate position of the target is crucial. At
common flight altitudes (several hundred meters to kilometers),
a radiometric correction with ground reference targets is not
applicable and the geometric correction is complex due to the
movements of the platform. Properly corrected airborne datasets
can feature a high spatial and spectral resolution and coverage
with significantly reduced noise in comparison to space-borne
data, not at least due to the possibility to fly any sensor regardless
of its weight. However, the costliness often denies small-budget
stakeholders from targeted airborne surveys.

3) Uncrewed Aircraft (Drone-Borne): Uncrewed aerial sys-
tems (UASs), also referred to as drones, recently became a
major developing branch in the field of autonomous vehicles.
Lightweight, low-cost, customizable, and usable by anyone and
nearly anywhere, UAS offers individual solutions for a wide
range of applications. Imaging sensors are a common UAS pay-
load and can range from standard RGB frame or video cameras
up to multi and hyperspectral imaging sensors, which allow the
mapping of chemical and physical properties of the observed
target. Current developments in UAS technology look to in-
crease flight times, payload, and ease of operation, and artificial
intelligence (AI) has a key role in this goal [15], [16]. Parallel to
the technical development, the number of prospective users and
application fields for drone-borne mapping rises fast, including
mineral exploration, mining, and environmental monitoring due
to, for example, the possibility of acquiring data with high spatial
resolution covering extensive regions and even reaching compli-
cated terrains. Drone platforms also create new challenges due to
complex geometric and radiometric conditions, as well as data
acquisition, quality, integration, and interpretation [17]. Ade-
quate data corrections and interpretation require advanced tools
and the development of adapted methodology for geometric
referencing and data fusion [18]. Autonomous flying and drone
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Fig. 3. Left: Paths of radiance and external radiometric disturbances in a hyperspectral field acquisition [23], [24]. Right: Importance of topographic corrections
for the retrieval of reliable reflectance data [25].

swarms have been made possible for mono- or nonsensoric ap-
plications such as transport, delivery, and large photogrammetric
surveys [19]. Real-time flight planning adjustments, the complex
preprocessing of imaging data, multimodal/high-dimensional
data support as well as heterogeneous fleet management remain
challenging and require further research.

4) Terrestrial/Small-Angle Scans: Geological targets, such
as cliffs, vertical outcrops, or mine faces, tend to be hardly
observable by common nadir or near-nadir imagery. This raised
the need for a new approach of hyperspectral data acquisition at
small angles. Usually, this is achieved by horizontal or slightly
tilted sensor mounting on a tripod or rotary stage (in case
of a push broom sensor) [20]–[22], alternatively, any other
sensor-bearing platform, such as a car, boat, or low-altitude
UAS, can be used. Even if the acquisition is straightforward and
requires no additional platform, the radiometric and geometric
correction of the data is extremely complex (see Fig. 3). The
main disturbances originate from strong topography-induced
illumination differences, shadows, and in the case of high-
distance measurements, atmospheric effects. Orthorectification,
visualization, and integration involve a lot of intricate processing
steps. Recent developments utilize direct 2.5-D/3-D representa-
tions of the acquired data to overcome these challenges. A more
detailed review can be found in Section VI.

5) Lab-Scale: Hyperspectral imaging at lab-scale or near-
field (spatial sampling distances in the millimetre to the sub-
millimetre range) is a highly demanded topic in not only the
exploration, mining, and processing industry, but also in the
framework of most remote sensing studies regarding validation
and detailed sample analysis. The need for near-field hyper-
spectral imaging data acquisition, processing, and interpretation
arises from the fact that hyperspectral imaging lab setups provide
means to rapidly scan large amounts of data with high-spectral
resolution and coherent coverage in a noninvasive and nonde-
structive manner. Spectral imaging of rock material in mining
and processing is usually highly automatized and simplified to
produce only a few classification criteria, for example, to decide
between waste rock and ore or between different ore grades.

Since the focus lies on high throughput, the employed sensors
need to be adequately highly specialized, robust, and reduced to
the essential task. In exploration and lithological mapping, the
amount and complexity of mineral phases to be distinguished is
usually much higher, and simple indices are no longer sufficient.
Instead, the acquisition and careful analysis of full spectra is
required. Moreover, depending on the size of the project, large
quantities of samples still have to be analyzed. The upscaling of
locally constrained geochemical data, multisensor data fusion,
and real-time processing are the most urgent challenges of this
scale.

B. Denoising

Recent advances in remote sensing technologies provide non-
invasive techniques for mineral exploration and mining monitor-
ing. On the other hand, different technologies contain different
noise and artifacts that need to be reduced to guarantee reliable
results in the whole processing chain. For instance, optical
remote sensing data contain mixed noises, such as sparse, strip-
ping, Gaussian, and Poisson noise. As a result, noise reduction
can be considered as a preprocessing step that can boost mineral
exploration and mining [26]–[29].

1) State of the Art: Remote sensing images are often de-
graded by two major sources, i.e., the imaging systems and
instrumental noises as well as the atmospheric effect that has
been discussed in the previous section. The instrumental noises
include thermal, quantization, and shot noise often modeled with
the Gaussian distribution. The missing pixels, lines, and stripes
(often exist in push-broom imaging systems) can be modeled
as the sparse noise with the Laplace distribution [30]–[32].
Therefore, we assume

H = X+ S+N (1)

where H is the observed image, S is the independent additive
sparse noise, and N is the additive Gaussian noise. Therefore,
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X can be estimated using an optimization problem given by

X̂ = argmin
X

Q(H,X) + λR(X) (2)

where functionsQ andR, respectively, define the fidelity and the
penalty terms balanced by the tuning parameter λ. Depending
on the application and the noise model, problem (2) can be
subjected to equality and inequality constraints.

Signal and image denoising have been considerably improved
over the past decades. The emergence of wavelets made a
significant impact on the field of denoising compared to the
Fourier transform and conventional filtering techniques, such as
mean or median filtering [33]. Wavelet transforms decompose a
signal into different scales (resolutions) assigned by frequency
ranges, and therefore, the noise can be successfully decorrelated
from the signal. This type of representation using wavelets was
the beginning of the sparse and redundant representations that
have shown great advantages in many applications particularly
in denoising [34]. In sparsity theory, signals are spanned by over-
complete dictionaries, and therefore, they can be reconstructed
using a few representative dictionary atoms [35]. Later on, sparse
and low-rank representations showed considerable advantages
compared with the sparse and redundant representations [36]–
[38]. For instance, Rasti et al. [36] showed that for hyperspectral
images, low-rank models outperform the sparse models due to
the spectral redundancy [36]. Therefore, sparse and low-rank
techniques have shown to be a great advantage in hyperspectral
image denoising [39], [40]. An automatic hyperspectral restora-
tion technique, entitled HyRes, was proposed in [41], which is
based on the following cost function:

Ŵ = argmin
W

1

2

∥∥H−DWVT
∥∥2
F
+

r∑
i=1

λi

∥∥w(i)

∥∥
1

(3)

where D and W are the wavelet basis and coefficients, respec-
tively. V is given by the singular value decomposition (SVD):
SVD(H) = ŨS̃VT where the subspace bases (i.e., the columns
of V) were selected using the hyperspectral Stein’s unbiased risk
estimator [42]. Similar to HyRes, fast hyperspectral denoising
(FastHyDe) [43] also uses a low-rank technique that first projects
the HSI into a subspace and, then, uses BM3D [44] for spatial de-
noising. Noise-adjusted image recovery using low-rank matrix
approximation (NAIRLMA), proposed in [45], uses a combi-
nation of a low-rank norm and a sparsity norm. Hyperspectral
denoising via robust principal component analysis (RPCA) and
self-similarity was proposed in [46] for mineral mapping, which
applies the block-matching and three-dimensional collabora-
tive filtering (BM3D) [44] to the components extracted by the
RPCA [38].

TV denoising [47] is another efficient denoising approach,
which minimizes the signal variations using

X̂ = argmin
X

1

2
‖H−X‖2F + λTV(X) (4)

where TV is the total variation function. So many variations of
(isotropic and anisotropic) TV denoising have been adapted for
different images considering the characteristics of the observed
signal. For instance, the spatio-spectral TV proposed in [48] ex-
ploits anisotropic spatial-spectral TV penalties for hyperspectral

Fig. 4. Results of applying different denoising methods to the hyperspectral
dataset captured by using FX10 sensor from drill-core samples.

denoising to capture the spectral and spatial correlations. Rasti
et al. proposed hyperspectral mixed noise reduction (HyMiNoR)
in [49], which exploits the spectral gradient to capture the
spectral correlation. The low-rank TV was also proposed for
both feature extraction and denoising [36], [50].

DL-based denoising techniques are considered state-of-the-
art in the signal and image processing community. DL-based
denoising techniques designed for RGB images can often be
used for remote sensing image denoising, however, they cannot
take into account the specific characteristics such as spectral
dependency. Additionally, the main challenge to use DL-based
methods is the absence of a comprehensive training database for
different remote sensing applications such as mining. Therefore,
training the supervised networks is cumbersome. On the other
hand, unsupervised deep networks use the observed image and
iteratively train the network such as deep image prior (DIP) [51].
In DIP, the observed image is used to train an unsupervised con-
volutional encoder–decoder for generating the noiseless image
from noise. Noise2Noise [52] uses noisy image pairs as targets
and inputs for training the network and Noise2Void uses the
noisy image as the target and input, however, it exploits a blind-
spot network to preserve learning the identity. A convolutional
neural network (CNN) using a blind-spot network then predicts
a pixel using all the neighboring pixels except itself.

2) Experimental Results: Here, we show how denoising
techniques can be applied as the final step of the preprocessing
chain to boost mineral exploration. Fig. 4 compares different de-
noising techniques applied to hyperspectral dataset captured by
the FX10 sensor (400–1000 nm) from four sections of drill-core
samples (see [26] for details). The comparison reveals that the
low-rank techniques (i.e., HyRes, FastHyDe, HyMiNoR, and
NAIRLMA) outperform the full-rank ones (i.e., 3-D Wavelets
and FORPDN). The DL-based technique, HSI-DIP, visually out-
performs the other techniques. The positive effect of denoising
techniques over the data is evident. This improvement allows
more reliable identification of different patterns observed in the
data, such as lineaments which in this case, relate to mineral
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veins. This can have a great influence when mapping minerals
and, therefore, boost mineral exploration since different veins
and their composition can indicate, for example, different alter-
ation zones in a geological deposit.

III. ADVANCES IN CLASSIFICATION APPROACHES

Recent advances in remote sensing techniques (e.g., hyper-
spectral imaging) assure the fast and reliable acquisition of
geological information in a sustainable manner. In order to an-
alyze the remote sensing data, various machine/DL approaches
(i.e., supervised and unsupervised) have been developed [53].
Among those, supervised learning approaches rely on labeled
samples (also known as training samples), which, in most remote
sensing applications, are hard to acquire [54]. This is the same for
geological applications where training data or ground truthing
is not always available. Unsupervised learning (also known as
clustering) approaches have received significant attention due to
their empirical success, and also, their capability of analyzing
remotely sensed data without a need for training samples or any
prior knowledge [55], [56]. Therefore, clustering can provide
valuable insight into the under process remote sensing data for
mineral exploration.

A. Unsupervised Approaches

Clustering has become a mature research field. Many studies
have been devoted to developing spectral, spatial, and spectral–
spatial clustering approaches for remote sensing data analy-
sis [57]–[59]. In general, clustering approaches can be divided
into the following two main categories: 1) conventional shallow
clustering approaches and 2) DL-based clustering approaches.

1) Conventional Shallow Clustering Approaches: K-means
clustering is one of the most well-known clustering ap-
proaches [56], [60].K-means is regarded as an iterative process,
where the algorithm initially selects random cluster centroids;
then, it computes the distance (i.e., Euclidean distance) between
data points and the selected centroids, consequently, data points
closer to a cluster centroid are assigned to that cluster. The
process of refining the centroids selection is carried on until,
either the maximum number of iterations reaches or the cluster
centroids do not change further [60]. However, centroid-based
clustering approaches are efficient when the dataset has a low
complexity; while, in many studies, like remote sensing datasets
(specially hyperspectral images), the spectral variability can
cause poor performances of such approaches [58]. Therefore,
more advanced clustering approaches have been proposed in
recent years, to name a few, density-based clustering approaches,
graph-based clustering approaches, and subspace-based cluster-
ing approaches [56], [61]. Among the aforementioned clustering
approaches, subspace-based clustering approaches have drawn
considerable attention in remote sensing studies [55], [57]–[59],
[61].

Sparse subspace-based clustering (SSC), is a well-known
subspace-based approach [61], benefits from the so-called self-
expressiveness property [58]. In short, self-expressiveness prop-
erty expresses that each data point can be written as a linear
combination of other data points from the same subspace.

In other words, if two data points are from the same subspace,
in the sparse representation, their relation is identified by a
nonzero coefficient; otherwise, zero in the representation shows
that two data points are not from the same subspace. The sparse
coefficient matrix is computed as follows:

argmin
C

||C||1 + ||X−XC||2F (5)

where C ∈ RN×N represents the sparse coefficient matrix of
the original image (X). To generate the final cluster map, SSC
computes the similarity matrix as W = |C|+ |CT |, and then,
feeds W to spectral clustering for the final step [61]. Although
SSC usually outperforms traditional clustering approaches in
terms of accuracies, its concept suffers from a few shortcomings.
One shortcoming is that SSC uses all data points to compute the
sparse representation; such a strategy is, therefore, computation-
ally and temporally expensive [55], [59], [62]. As a result, SSC
fails in handling large-scale datasets. Thus, various studies focus
on using a subset of the original dataset for sparse representation
computation. For instance, in [55], the authors proposed a scal-
able exemplar-based subspace clustering approach (the so-called
ESC). In ESC, sparse coefficient matrix is constructed by using
a subset of representative samples (also known as exemplars)
fromX. In addition, You et al. [55] designed a search function to
identify the exemplars by minimizing a maximum representation
cost of X. One can rewrite (5) as

argmin
C

||C||1 + ||X−X0C||2F (6)

where X0 ∈ RN×P is a subset of representative samples. P
expresses the number of representative samples. Therefore,
spectral clustering cannot be directly applied to W. To cope
with the problem, for each ci, which is the ith column vector in
C, t nearest neighbors with the largest positive inner products
are found. Then, the produced W is passed through spectral
clustering to generate the final cluster map.

2) DL-Based Clustering Approaches: Autoencoders (AEs)
are the most representative DL-based clustering techniques [63],
which aim to reconstruct the original image (X) in two phases
(i.e., encoder and decoder). In the encoder phase, discriminant
features (also known as latent features) are extracted, and then,
the latent features are employed to shape the reconstructed image
(X′). Thus, the main aim in an AE-based network is to minimize
the loss (L) between X and X′ often computed using the mean
square error

L =
1

N

N∑
i=1

||xi − x′
i||22 (7)

where xi and x′
i are the ith column vectors of X and X′,

respectively. At last, the trained network produces informative
features that can be clustered by a clustering approach. Such
approaches are robust against the spectral variability within the
data points in a hyperspectral image, and offer an end-to-end
block paradigm to process high-dimensional datasets [63].

3) Clustering Approaches in Mineralogical and Geological
Applications: Clustering approaches have been deployed in-
tensively for mineralogical and geological applications [59],
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TABLE I
QUANTITATIVE ASSESSMENT OF ALL CONSIDERED CLUSTERING APPROACHES

[64]–[68]. For instance, Guo et al. [64] proposed a 1-D spatial
domaining approach that segments drill-core hyperspectral im-
ages into meaningful domains along with the depth. Similarly,
in [66], the usability of SSC approaches for drill-core hyper-
spectral domaining has been evaluated, in which according to
the authors’ observations, incorporating spatial information with
spectral information considerably improves the final domaining
results. Fouedjio et al. [65] investigated the usability of geostatis-
tical clustering approaches to domain an iron ore deposit located
in Western Australia. Domaining of drill-core hyperspectral
images can provide valuable but general mineralogical infor-
mation [59]. Additionally, domaining techniques are computa-
tionally affordable for drill-core; however, these techniques are
hard to apply on large-scale datasets (e.g., UAV-based data). To
cope with the aforementioned challenges, and produce a detailed
mineral cluster map, fast and scalable clustering approaches are
required.

In [59], the authors proposed a fast and automatic hierar-
chical sparse subspace-based clustering approach (HESSC).
HESSC was designed to process large-scale datasets, and its
performance was tested on drill-core hyperspectral images. The
experimental results showed its superiority compared to other
clustering algorithms; however, HESSC only utilizes spectral
information in the analysis procedure. In [67], authors proposed
a multisensor sparse-based clustering approach (Multi-SSC) for
multisensor data fusion. Multi-SSC inherits a similar structure
as HESSC; whereas, it incorporates spatial information, which
is derived from a high spatial-resolution image. Utilizing such
complementary information allows Multi-SSC to preserve spa-
tial structures. The performance of Multi-SSC was evaluated
for the application of UAV-based geological mapping, where
Multi-SSC was capable of distinguishing mineralogical and
geological targets, accurately, compared to the state-of-the-art
clustering approaches.

4) Experimental Results: In this section, the performances
of different machine/DL (i.e., supervised and unsupervised)
approaches are examined. A mineral dataset, i.e., Finland (see
Fig. 5), is adopted for the quantitative and qualitative assessment
of different approaches. The Finland dataset was captured by
a 0.6 Mp Rikola hyperspectral imagery. This image contains
50 channels ranging from 0.5 to 0.9μm, and its spatial resolution

Fig. 5. Finland dataset. From top to bottom: RGB image, training samples,
testing samples, and class name.

is 3.3 cm. The RGB dataset was obtained by a senseFly RGB
camera. Its spatial resolution is 1.5 cm. Both of them have been
registered before the fusion operation. They have 717× 1848
pixels. The experimental results using unsupervised learning
approaches, can be found in Table I and Fig. 6; furthermore,
the experimental results using supervised and multisensor data
fusion approaches are presented in Fig. 8 and Table II.
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Fig. 6. Cluster maps obtained by different approaches as, (a) K-means, (b) FCM, (c) LSC, (d) ESC, (e) HESSC, (f) AE.

TABLE II
CLASSIFICATION ACCURACIES OF ALL CONSIDERED APPROACHES

In this study, we evaluate the performance of two conventional
clustering algorithms (i.e., K-means [60] and fuzzy c-means
(FCM) [69]); three scalable sparse-based clustering approaches
(i.e., landmark-based spectral clustering using sparse representa-
tion (LSC) [70], ESC [55], and HESSC [59]); and one DL-based
clustering approach (i.e., AE [54]). In the AE-based clustering
approach, the extracted latent features from AE are passed
through K-means to generate the clustering results. Moreover,
to further promote employing advanced clustering approaches
in the field of mineralogy and geology, we provide a list of online
available clustering toolboxes in Section VI.

Fig. 6 illustrates the clustering maps of the unsupervised
classification approaches. The qualitative comparison of the

clustering maps reveals that AE [see Fig. 6(f)] produces less
“noisy” clusters.

Additionally, to quantitatively assess the performance of stud-
ied clustering approaches, the following evaluation metrics are
used: overall accuracy (OA), average accuracy (AA), and kappa
coefficient (Kappa). According to the obtained quantitative
results (see Table I), several conclusions can be made. Two
conventional clustering approaches (i.e., K-means and FCM)
have similar and weak performances compared to other studied
approaches.

The results confirm that HESSC performs well compared
to other studied clustering approaches. However, HESSC con-
siders the structure lying between data points as linear, while
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Fig. 7. Classification map of a drill-core sample obtained by training an RF
classifier using VNIR-SWIR hyperspectral data acquired with a FENIX sensor
and high resolution mineralogical data [75]. Classification accuracies are of
74%.

in real-world high-dimensional datasets, there exists nonlinear
relation between data points [71]. On the other hand, AE obtains
the highest clustering accuracy among all studied clustering
approaches. This indicates the capability of DL-based clustering
algorithms to capture nonlinear intrinsic structures between data
points and their suitability for mineralogical and geological
applications.

B. Supervised Approaches

Traditional methods to map rocks and minerals with hy-
perspectral data mainly focus on the visual interpretation of
the sample spectra and a comparison with reference spectral
libraries, e.g., USGS Spectral Library [72]. Endmember spectra
obtained with, e.g., Pixel Purity Index, NFINDR, and vertex
component analysis have been used to derive the main spectrally
distinct minerals [73]. The spectral angle mapper has also been
widely used to select the best match for unknown pixels accord-
ing to the reference spectra or the retrieve endmembers [74].
These methods, which are based on intensive expert interaction,
have shown satisfactory performances but they are subjective,
time-consuming, and rely on extensive expertise. Recent de-
velopments in the processing of hyperspectral data for mineral
exploration make use of available datasets routinely acquired
during exploration campaigns. Examples of these are whole-
rock geochemistry or high-resolution mineralogical analysis
providing identification and quantification of minerals. Such in-
formation can be used as a reference to generate training and test

datasets [75], [76] as can be seen in Fig. 7. Here, hyperspectral
and scanning-electron microscopy mineral liberation analysis
(SEM-MLA) data from a drill-core sample of a porphyry deposit
are fused. The hyperspectral data have a spatial resolution of
1.5 mm/pixel and 450 bands covering the VNIR and SWIR
(from 380 to 2500 nm). SEM-MLA provides high-resolution
mineralogical data. These were coregistered and resampled
to the resolution of the hyperspectral data to be able to upscale
the detailed mineralogical composition. This, therefore, permits
the use of robust supervised machine learning approaches to
accurately identify and map the distribution of different minerals
(see Fig. 7).

Outside the mineral exploration community, a huge number
of complex algorithms have been recently developed in the
fields of machine/DL, computer vision, and image and signal
processing. Most of those approaches take advantage of—and
at the same time, they require—the increasing power of ad-
vanced computing. Inspired by these advancements, machine
(deep) learning techniques have been utilized for a variety of
applications for mineral mapping (classification) and character-
ization. These classifiers, in a similar manner to unsupervised
approaches mentioned in the previous section, can be broadly
split into the following two categories: 1) Conventional shallow
classifiers and 2) DL-based classifiers. In the following, we will
describe each of these categories in more detail. We also describe
one representative from each of these categories whose superior
performance has been validated for mineral mapping.

1) Conventional Shallow Classifiers: Currently, various
spectral classifiers have been investigated for classification of
remote sensing images [77], such as support vector machine
(SVM) [78], random forest (RF) [79], and multinomial logis-
tic regression [80]. Here, we briefly describe a very popular
spectral classifier, i.e., SVM, because of its strong ability in
tackling high-dimensional data with a limited number of training
samples, which makes this classifier well-suited for a variety of
mineralogical applications.

SVM aims at defining an optimal hyperplane to separate
different classes of interest in a multidimensional feature space.
The best hyperplane is the one that makes the maximum mar-
gin between different classes, which is obtained by solving
an optimization objective function. Specifically, let X = {xi},
X ∈ RM×Nt denote the test set, where M indicates the feature
dimension of each test sample andNt represents the total amount
of test samples. The class label is named asY = {yi},Y ∈ RNt ,
where yi stands for the label of ith test sample xi. Z = {zn},
n = 1, 2, . . ., Ntr is the training set, in which the label of each
training sample zn is defined as yn. The SVM classifier is
expressed as

f(xi) = sign

(
Ntr∑
n=1

λnynΦ(xi, zn) + b

)
(8)

where λn denotes the Lagrange multiplier, yn is the label of
xi sample, and b is the bias. Φ(xi, zn) represents a linear or
nonlinear kernel function. For the hyperspectral image classifi-
cation task, the Gaussian radial basis function kernel has been
widely used since the kernel can well tackle complex, nonlinear
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Fig. 8. Classification maps of different approaches. (a) SVM on hperspectral data. (b) SVM on RGB image. (c) FDSI on HSI data. (d) CNN on hyperspectral
data. (e) CNMF. (f) IIDF. (g) SubFus.

high-dimensional data. For a detailed solution of (8), we refer
readers to [81].

Most recently, in [82], the performance of several conven-
tional (e.g., PCA [83] and MNF [84]) and recent shallow feature
extraction approaches, e.g., orthogonal total variation compo-
nent analysis (OTVCA) [85] and wavelet-based sparse reduced-
rank regression (WSRRR) [86])) have been evaluated on three
case studies from geological hyperspectral mapping campaigns,
including drone-borne mineral exploration, terrestrial paleoseis-
mic outcrop scanning, and thermal hyperspectral lithological
mapping with sparse or partly inaccurate validation data. The
outcome of the study reveals the advantages of innovative feature
extraction algorithms in terms of classification accuracy and
geological interpretability.

2) DL-Based Classifiers: DL, as a subfield of machine learn-
ing, aims for automatizing the main building blocks of the
machine learning approaches (i.e., feature extraction and classi-
fication) by developing an end-to-end framework. DL classifiers
automatically receive the input, performs automatic feature ex-
traction and classification by considering the unique nature of

the input data (instead of those hand-crafted feature extraction
designs in machine learning), and output classification maps.
With an adequate amount of training data, DL approaches can
outperform any other shallow machine learning approaches in
terms of mapping quality [54]. Among deep neural networks,
CNNs are the most widely used deep classifiers whose suc-
cess has been validated in mining-related applications [87]. We
briefly describe a simple CNN [54] for the task of classification,
which mainly consists of three components, i.e., convolutional
layers, pooling layers, and fully connected layers. The deep
features can be obtained by convolution operation, which can
be expressed as

yj =

d∑
i=1

f(xi ∗wj + bj), j = 1, 2, . . ., k (9)

where k denotes the number of filters in the convolutional layer,
wj and bj indicate the weight and bias of the jth filter,xi is the ith
feature map of the input X, d is the amount of spectral channels,
∗ is the convolution operation, and f(·) is the activation function.
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A widely used activation function, i.e., ReLU, is adopted in this
work, which can be formulated as

σ(x) = max(0,x). (10)

Then, the extracted features are further processed with the
pooling layer to decrease the size of feature maps. Specifically,
an average pooling operation is performed on the feature maps

z =
1

N

∑
(i,j)∈Δ

xij (11)

where N denotes the number of elements in local region Δ. xij

is the element at the position (i, j).
Finally, the fully connected layers are adopted to extract high-

level features and output the final results, which can be expressed
as

Y =
∑
i

f(WXT + b) (12)

where Y,W,X, and b are the output, weight, input, and bias
of a fully connected layer, respectively.

3) Experimental Results: To evaluate the classification per-
formance of different approaches, three representative classifica-
tion methods are adopted, including SVM classifier [88], fusion
of dual spatial information (FDSI) [89] and CNN [54]. All pa-
rameters of these methods are set according to the corresponding
publications. Experiments are performed on the Finland dataset,
which is described in Section III-A4.

The visual classification results are shown in Fig. 8. As
shown in Fig. 8, the SVM classifier produces “noisy” labels [see
Fig. 8(a), (b), and (e)]. This is because the spatial information
between adjacent pixels is not taken into consideration. By
contrast, other spectral–spatial classification methods such as
FDSI and CNN can better preserve the homogeneous areas
belonging to the same mineral. Furthermore, Table II lists the
objective indexes of different approaches. The SVM classifier
performed on hyperspectral data yields higher classification
accuracies than that of the RGB image, which also confirms that
the rich spectral information of hyperspectral data is essential
for mineral mapping. The FDSI method performs well on six
classes. However, the classification accuracy of the second class
(Glimmerite–Carbonatite) is relatively low because the discrim-
ination between the Glimmerite–Carbonatite and Glimmerite
classes is small. The CNN-based classification method can
achieve better classification performance than the FDSI method,
since the DL-based method can extract more discriminative
information ranging from shallow-level to high-level spatial
features.

IV. FROM A SINGLE SENSOR TO MULTISENSOR APPROACHES

Satellite space-borne remote sensing provides baselines for
large-scale lithological mapping [90]. However, new methods
are needed for geological applications as a consequence of the
limitations of space-borne sensors with respect to their spatial
and/or spectral resolution, e.g., LETM+ images consist of eight
spectral bands with a spatial resolution of 30 m for bands

1–7 while the panchromatic band 8 has a resolution of 15 m;1

the hyperspectral environmental mapping and analysis program
(EnMAP) [91] has 30 m spatial resolution with more than 240
spectral bands [91]. Within this context, the integration of new
Copernicus sensors (both spectral sensors covering the visible
to thermal-infrared part of the electromagnetic spectrum and
digital elevation data) with higher resolution is of interest in
mining and geology communities.

Geological mapping, as well as the detection of potentially
economical rock formations, may require high resolutions (both
spectral and spatial at the same time) that might not be attained
by satellites. To address this issue, airborne and drone-borne
data have been used to fill the gap between field and satellite
observations.

Drone-borne Laser Scanning (also referred to as LiDAR)
supports the structural analysis with information on elevation
patterns [92]. UAS hyperspectral data can provide valuable
information with respect to narrow absorption features in the
visible and near-infrared range (e.g., Rare earth elements or
iron-oxides/hydroxides) [93].

Hyperspectral images provide abundant spectral information
recorded in several narrow and contiguous bands along the
electromagnetic spectrum. However, due to the limited sun
irradiance, there is an inevitable tradeoff between spatial and
spectral resolutions. Therefore, hyperspectral data with high
spectral resolutions usually have low spatial resolutions, which
cannot fully identify and delineate the patterns of all the minerals
present in the target of interest. On the other hand, the integration
of visible images (e.g., RGB or multispectral image) with hyper-
spectral data provides images with high spatial-spectral resolu-
tions, which produce accurate and more detailed classification
results. Furthermore, hyperspectral data in different imaging
ranges can record different mineral properties as mentioned
in Section II-A. Consequently, many multisensor data fusion
approaches have been investigated for more reliable and com-
plete mineral identification in complicated terrain or complex
samples, which can be roughly classified into the following
two types: pixel-level fusion approaches and feature-level fusion
approaches.

A. Pixel-Level Fusion

The pixel-level fusion approaches are used to directly fuse
the original images, and then, the fused data are fed into the
classifier [94]–[97]. For example, Yokoya et al. [94] developed
a matrix factorization method for mineral mapping by fusing
EnMAP and Sentinel-2 multispectral images, which demon-
strated that the spatially enhanced hyperspectral image can
contribute to mineral classification. In [95], an intrinsic compo-
nent decomposition model was used to integrate the RGB and
hyperspectral images, where the illumination component was
calculated from the RGB image, and the reflectance component
was estimated from the hyperspectral image. Here, we briefly
describe a recently proposed pixel-level fusion approach, which
has been used for mineral mapping.

1[Online]. Available: https://landsat.usgs.gov/what-are-band-designations-
landsat-satellites

https://landsat.usgs.gov/what-are-band-designations-landsat-satellites
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Let the original image be X. According to the principle of the
intrinsic image decomposition model, an ideal hyperspectral im-
age can be modeled as the dot multiplication of the illumination
component SH and the reflectance component RH

X = SH ·RH . (13)

The aim of this fusion model (13) is to estimate SH and RH

by exploiting a low resolution hyperspectral image and an RGB
image. The specific steps are shown as follows:

First, the RGB image is transformed into the YCbCr space,
and the luminance band is taken as the estimated illumination
component SH , since the luminance band mainly reflects the
spatial details of the RGB image⎧⎨

⎩
Y = 0.257R+ 0.564G+ 0.098B+ 16
Cb = −0.148R− 0.291G+ 0.439B+ 128
Cr = 0.439R− 0.368G− 0.071B+ 128

(14)

where Y represents the estimated illumination component SH .
Then, to estimate the reflectance component, a bicubic down-

sampling operation with 1/4 scale is conducted on the original
image X to obtain a low-resolution hyperspectral data XL.
Moreover, the same operation is also conducted on the SH to
yield a low-resolution illumination componentSL. Based on the
principle of intrinsic image decomposition, the low-resolution
reflectance component RL is calculated by

RL =
XL

SL
. (15)

Finally, the fused high-resolution hyperspectral data can be
obtained by

F = RH · SH (16)

where RH denotes the high-resolution reflectance component,
which is obtained by bicubic upsampling (4× scale).

B. Feature-Level Fusion

The principle of feature-level fusion approaches is to first
extract discriminative features from original images, and then,
the extracted features are fused together by using a fusion
scheme, such as a low-rank model [92], [98], [99], composite
kernel [87], [100], and so on [75], [101]. For example, in [26], a
sparse and smooth low-rank analysis was developed to integrate
multiple optical datasets for mineral classification, where these
optical datasets have different spectral and spatial resolutions
and different spectral coverage. Ghamisi et al. [87] developed a
three-stream CNN for mineral classification, in which a compos-
ite kernel technique was used to fuse high-level features obtained
by CNN. Here, we describe a general multisensor fusion method
called subspace sensor fusion (SubFus) [102], which is presented
as follows.

Let original images be X1 and X2. First, the morphological
profiles (MPs) are used to extract the spatial features of the
original images

Hi = MP(Xi). (17)

Then, the spatial features from different sensors are modeled
into a low-dimensional space by using a low-rank representation

model

(F̂, V̂1, V̂2) = argmin
F,V1,V2

J(F,V1,V2)

s.t. VT
1 V1 = I and VT

2 V2 = I (18)

where

J(F,V1,V2) =
1

2

∥∥H1 − FVT
1

∥∥2
F
+

λ1

2

∥∥H2 − FVT
2

∥∥2
F

+ λ2TV (F).
(19)

Here, λ1 and λ2 are the smoothing parameters. The alternat-
ing direction method of multipliers [103] is used to solve the
objective function (18).

When the fused features are obtained, the spectral classifier is
performed on the fused features to yield the classification map.

C. Experimental Results

To assess the classification performance of different fusion
methods, pixel-level (i.e., coupled nonnegative matrix factor-
ization (CNMF) [94] and intrinsic image decomposition model-
based fusion (IIDF) [95]) and feature-level (SubFus [102]) meth-
ods are considered. Experiments are conducted on the Finland
dataset.

Fig. 8(e), (g), and (f) presents the classification maps of the
fusion methods. The pixel-level fusion method yields noisy
classification maps, whereas the feature-level method obtains
smoother results. The main reason is that the feature-level fu-
sion method considers the spatial information among neighbor
pixels. Furthermore, Table II gives the objective accuracies. By
comparing the classification accuracies of SVM, IIDF, and Sub-
Fus methods, we can see that the multisensor fusion techniques
are able to improve the classification accuracies. Moreover,
by comparing the classification accuracies of CNMF, IIDF,
and SubFus methods, it is found that the feature-level-based
multisensor fusion technique can achieve a better classification
performance than those of the pixel-level fusion methods. The
reason is that the pixel-level fusion methods enhance the spatial
resolution of the original hyperspectral image, whereas the
feature-level-based fusion method increases the discrimination
of different classes.

V. FROM 2-D RASTER TO 3-D POINT CLOUD

Modern surveying methods, such as light detection and rang-
ing (LiDAR [104]) and structure from motion (see [105]–[107]),
directly generate centimeter to sub-centimeter resolution 3-D
point clouds. Most workflows convert these to image or raster
formats (e.g., digital elevation models or orthomosaics) before
further analysis (cf. [105]), but a rapidly increasing number of
methods are being developed to work directly with dense point
cloud data. Nonetheless, the machine learning tools to process
multifeature point clouds do not exist yet.

This approach has several advantages. First, it reduces the total
processing required, facilitating the real-time analysis necessary
for, e.g., self-driving vehicles and machinery (cf. [108] for a de-
tailed review). Second, it prevents the smoothing and distortion
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Fig. 9. Geology map of an open-pit mine in southern Spain (Corta Atalaya, Rio Tinto) created by applying an RF classifier to hypercloud data [116]. The
hypercloud approach allowed the fusion of ten ground-based and 357 UAV-based hyperspectral images while simultaneously mitigating distortions and facilitating
subsequent 3-D geological interpretation and modeling. Colored circles show the locations, where hand samples were collected and used to train the classifier.

that inevitably occurs when data are projected onto a planar
image grid, so retains the original data quality and resolution.
Finally, and perhaps most importantly for mapping applications,
it allows seamless and true 3-D analysis of arbitrarily complex
surfaces.

Open-pit and underground mines tend to have a geometry that
severely limits traditional nadir data acquisition and analysis (see
Fig. 9). Subvertical pit walls become extremely distorted and
spatially unrelated data is juxtaposed by projection to give mis-
leading neighborhood relations or occlusions. While projection
onto a different plane (e.g., a cross-section) is suitable in some
situations, this is always a compromise, and for many geometries
(e.g., tunnels, stopes, and open-pits), no reasonable projection
exists [109]. To ameliorate these issues, a small but growing
body of research is being conducted in true 3-D using methods
specifically developed for point cloud data. These can be divided
into the following two distinct but converging categories: 1)
spatial methods that make predictions based on geometry and
spatial relationships [110]–[115] and 2) spectral methods that
use textural features and/or point spectra [116]–[119].

A. State of the Art

Geometric classifiers have become popular in the geotech-
nical community, where they are frequently used to identify
and map subplanar fractures that define rock-faces in mining

operations, helping prevent accidents and collapses [110], [111].
Similarly, Weidner et al. [112] use a variety of geometric features
to distinguish surface materials for geotechnical hazards analy-
sis, while Singh et al. [120] use a similar feature set and random
sample and consensus algorithm to map geotechnical support
(rock bolts) in point clouds of an underground mine captured us-
ing a portable laser scanning device. A variety of authors [113]–
[115] have also explored the use of dense photogrammetric
or LiDAR point clouds to estimate grain size distributions in
blasted rock mass, facilitating blast performance analysis and
optimization of, e.g., crushing processes. These applications all
apply geometric or shallow statistical techniques, so applications
of recently developed deep networks (e.g., PointNet; [121])
remain unexplored.

At the other end of the spectrum, geologists are increasingly
applying spectral classifiers to remotely sensed point clouds
(e.g., hyperclouds; [122]) to map mineralization and associated
rock types to optimize mineral extraction or build knowledge that
can be used to find new resources. Many of these applications
classify each point separately based entirely on its spectral char-
acteristics (e.g., by using the RF method to classify individual
point spectra [116]; Fig. 9), but a few approaches that incorporate
spatial and texture or reflectance information are beginning to
emerge [117]–[119]. These provide a first step toward combined
spectral–spatial classification of multi or hyperspectral point
clouds.
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TABLE III
LIST OF PUBLICLY AVAILABLE SOFTWARE TOOLS FOR PREPROCESSING, SPECIFICALLY DENOISING, AND UNSUPERVISED LEARNING TOOLBOXES

B. Key Challenges

The main challenges that limit the application of cutting-edge
machine learning methods to point cloud data result from the
fundamental lack of defined topological structure associated
with this data type. This can be an advantage, making, e.g., data
fusion relatively straightforward [116], [122], but makes it chal-
lenging to define and compute, e.g., neighborhood relationships
and gradients. Furthermore, the kernel operations that form the
basis of many modern approaches to image classification (e.g.,
CNNs) cannot be directly translated to unstructured data. Meth-
ods based on similar but topologically more flexible approaches
are emerging (see [123], [124]), but further work is needed and
we are not aware of specific applications in the mining sector
yet.

Another more profound challenge relates to the complex di-
mensionality of point cloud data [125]. Information is recorded
in 3-D, but can only be captured from exposed surfaces even
though, at least for geological and geotechnical applications,
the properties of interest are volumetric. This results in data
sampled from an arbitrarily complex manifold embedded in 3-D
space, from which volumetric properties need to be interpolated
into the subsurface. Current machine learning efforts focus on
classifying the surface properties, but there is no fundamental
reason they could not also consider and predict volumetric 3-D
geometry by combination with advanced geological interpola-
tion techniques (see [126] and [127]).

Finally, point clouds are generally large, so any process-
ing approach inevitably runs into computational challenges
that require massive parallelization and out-of-core computa-
tion/visualization. Out-of-core visualization methods have ad-
vanced significantly, with algorithms like PoTree [128] and
EPT2 able to facilitate visualization of point clouds contain-
ing trillions of points (over a standard internet connection3).
However, out-of-core processing and classification remain a
challenge.

2[Online]. Available: www.entwine.io
3[Online]. Available: https://usgs.entwine.io/

VI. LIST OF AVAILABLE RESOURCES

The scientific community has been, fortunately, moving to-
ward open science principles by sharing data, papers, libraries,
and software tools. These important principles provide a valu-
able basis for other researchers to develop their ideas more
efficiently, enable reproducible scientific research, and push the
boundaries of science forward. In Table III, we share some
resources, which could be used by researchers at different stages.

The shared resources in Table III can be summarized as
follows.

1) advanced denoising techniques deployed as the final step
in preprocessing of datasets used for mineralogical map-
ping;

2) unsupervised (clustering) algorithms to provide a valuable
insight on the under processing datasets without a demand
to any prior knowledge; and

3) open-source algorithms for the projection, correction, ana-
lyzing hyperspectral data, and fusion of hyperspectral data
with 3-D point clouds.

VII. CONCLUDING REMARKS AND FUTURE DIRECTIONS

The field of mining and geology is extremely broad and
it is impossible to cover it comprehensively in one literature
review. This article focuses particularly on recent advances and
algorithmic approaches that have been developed, adapted, or
proposed for a particular subject of remote sensing and machine
learning for responsible mining, covering a number of key
research areas, such as preprocessing, denoising, supervised,
and unsupervised classification, multisensor data fusion, and
3-D data interpretation.

The role of remote sensing and machine learning cannot
be underestimated for applications related to sustainable min-
ing. Undoubtedly, the use of remote sensing data [both ac-
tive (e.g., LiDAR) and passive (e.g., hyperspectral)] have been
well-established in the geology and mineralogy communities.
Machine learning together with remote sensing allow for a sys-
tematic investigation of mining applications, providing useful
and spatially consistent information in support of evidence-
based decision making. The considerable amount of UAVs,
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airborne, and space-borne data as well as the increasing number
of scientific publications on this particular subject demonstrate
that the area of remotely sensed data analysis in mining is
substantial, dynamic, and vibrant.

The collection of adequate high-quality ground truth is one
of the most challenging issues in developing scalable machine
learning approaches for mining-related applications. These are
needed both for training data-hungry DL approaches and for
evaluating their outputs, but are costly and time-consuming
to develop. For geological applications, these challenges are
compounded by a philosophical issue: All geology maps are
interpretations, often with a specific context, framing or goal, so
it is very difficult to define “ground-truth” labels in a rigorous
and meaningful way [130], [131].

One possible means for ameliorating this issue is to instead
focus on estimating mineral abundance, as this can be robustly
(albeit expensively) quantified. Standard and widely applied ge-
ological classification schemes could then be applied to translate
mineralogy into geological labels (e.g., [132]). This approach
also opens the possibility of using spectral libraries containing
measurements for minerals and mineral mixtures as training data
(e.g., [133]–[137]). But, as discussed by Thiele et al. [116],
translating between laboratory data and remotely sensed spectra
is fraught with additional challenges. Despite these challenges,
carefully designed approaches can derive significant value from
spectral library datasets (e.g., [138], [139]).

The general lack of training and validation data should also
be tackled in the following two complementary ways: 1) From
the theoretical point of view, more emphasis should be dedi-
cated to the development of unsupervised, weak-supervised, or
self-supervised approaches to produce classification and change
maps partially independent from the existence of high-quality
and high-amount of labeled data. 2) It is important to move
away from closed data to more open science principles by
making data, software tools, and libraries publicly available.
These developments push this vibrant community forward and
will eventually lead to transparent and reproducible scientific
research, reuseable data and methods, and more efficient creation
of new data products.

From the methodological perspective, several research di-
rections still demand developments. First of all, with the great
opportunity of acquiring multimodal datasets, developing mul-
tisensor and multiscale fusion algorithms are vital and of great
demand since such approaches enable us to benefit from en-
riched datasets from different sources. Second, as mentioned
before, it is expensive and time-consuming to annotate a large
number of training sets for mineral mapping. Therefore, the
development of advanced classification approaches that are able
to produce accurate maps using scarce limited samples is of
vital importance. Furthermore, captured multisensor data are
usually contaminated with different noise types. How to im-
prove the quality of the input data shapes an important line
of research. The success of this step can largely influence the
success of the further processing steps, such as mapping and
tracking.

The future mine will require series of imaging sensors that
will acquire continuous data streams from multiple platforms.

Data will be required to process in real-time to allow rapid
decision-making and process adaptation. This review highlights
the bottlenecks, challenges but also the immense progress made
by the community toward these goals.
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