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Deep-Sea Debris Identification Using Deep
Convolutional Neural Networks
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Abstract—Deep-sea debris is a globally growing problem, which
is negatively impacting biological and chemical ecosystems. More
seriously, the debris is likely to persist in the deep sea for long
periods. Fortunately, with the help of the debris detection system
the submersibles can clean up the debris. An excellent classifier is
critical to the debris detection system. Therefore, the objective of
this study is to determine whether deep convolutional neural net-
works can distinguish the differences of debris and natural deep-sea
environment, so as to effectively achieve deep-sea debris identifica-
tion. First, a real deep-sea debris images dataset is constructed for
further classification research based on an online deep-sea debris
database owned by the Japan Agency for Marine-Earth Science
and Technology. Second, the hybrid Shuffle-Xception network is
constructed to classify the deep-sea image as metal, glass, plastic,
rubber, fishing net & rope, natural debris, and cloth. Furthermore,
five common convolutional neural networks (CNNs) frameworks
are also employed to implement the classification process. Finally,
the identification experiments are carried out to validate the per-
formance of the proposed methodology. The results demonstrate
that the proposed method is superior to the state-of-the-art CNN
method and has the potential for deep-sea debris identification.

Index Terms—Channel shuffle, deep convolutional neural
network, deep-sea debris identification, deep-sea debris image
dataset, group convolution, sea floor.

I. INTRODUCTION

MARINE environment has always been getting more and
more attention all over the world. Debris is everywhere

from the shallow seas to the open seas, from the coast to
seabed [1], [2]. In most cases, these man-made marine trashes
will eventually sink to the bottom of the sea [3]. The deep sea
is a veritable marine rubbish repository [4]. Deep-sea debris
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causes more serious water pollution and greater damage to the
ecological environment than garbage on the sea surface and
beach [5]. Submersibles could solve this problem by surveying
and picking up submerged marine debris from the seabed with
the help of a debris detection system. However, without an
excellent classifier, a satisfying detection system is impossi-
ble [6]. Consequently, an accurate deep-sea debris classification
algorithm is not only essential for the detection system, but also
contributes to further scientific research on deep-sea debris and
marine ecological protection.

With the popularity of deep learning, some CNNs such as
ResNet [7], GoogleNet [8], as well as graph convolution [9],
[10], are applied to various object classifications including the
classification of underwater objects. However, most research
works on classification of underwater objects focus on the
classification of underwater fishes [11], [12], corals [13], plank-
ton [14], [15], unexploded ordnance and wrecks [16]–[18]. As
far as garbage research is concerned, synthetic aperture radar
technology [19] is often used to monitor marine debris. The
RGB camera onboard the unmanned aerospace surveillance on
a sandy beach is used to acquire marine macro litter images,
and k-nearest neighbor, support vector machine, etc., were used
as a comparison method to participate in the classification of
these images [20]. The remote sensing satellites [21] and drone
aerial photography [22] to obtain rubbish on the ocean surface
and beaches are also been adopted to achieve efficient garbage
detection [23]–[25] and classification with artificial intelligence
methods, including random forest [26] and deep learning meth-
ods [27]–[29].

So far, very little attention has been paid to the classification of
deep-sea debris with deep learning methods. CNN is employed
to detect submerged marine debris from forward-looking sonar
imagery [30]. Watanabe et al. [31] used YOLOV3 to improve
garbage detection and debris floating on the ocean surface,
undersea life was detected with 69.6% and 77.2% accuracy,
respectively. Meanwhile, the view of marine debris is shifted
from the ocean surface to the deep ocean [32]. This article first
collates a plastic marine debris dataset, and then uses it to train
YOLO, faster R-CNN, etc., to detect underwater plastic and
separate plastic from other objects. Although the abovemen-
tioned papers have systematically discussed the classification
of marine garbage, the problem is that in most of the literature
including the abovementioned articles, garbage objects used for
the classification of marine garbage only exist on the surface
of the ocean and the beach. Although papers [31] and [32]
discuss the classification and detection of seabed garbage using
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CNN, the accuracy of classification or detection is low and
cannot be used in practical applications, and Fulton et al. [32]
only limits the objects of detection to plastic debris on the seabed.
As a whole, the systematic study of classification of deep-sea
debris using deep convolutional neural networks is extremely
rare.

One of the reasons for the above situations is the scarcity
of deep-sea debris datasets. Deep-sea garbage data needs to be
captured by specialized deep-sea submersibles using sophis-
ticated imaging equipment in the deep sea, which is costly
and difficult. This makes deep-sea garbage datasets very scarce
and relevant research cannot be carried out. The other reason
is serious intraclass variability and interclass similarity of the
seabed garbage. The rubbish flows from land to the deep sea,
and is squeezed and eroded by sea water all the year round
in the deep sea. The original shape and texture of the rubbish
have been greatly different, which intensifies the complexity
of the characteristics of deep-sea rubbish. Simultaneously, the
optical imaging problems in the ocean and the turbid marine
environment have caused the characteristics of marine debris
to be no longer prominent in the image. And the temporal and
spatial distribution of deep-sea debris and camera differences
also make marine debris features diverse. These have caused
serious intraclass variability and interclass similarity of deep-
sea debris [6], which has posed a particular challenge to the
identification of deep-sea debris.

Based on the above analysis, this article intends to solve the
above problems. The main work and contributions of this article
are as follows.

1) The deep-sea debris images dataset named DDI dataset is
generated in this article. Compared with the marine litter
images on the sea surface or the beach and the trash images
dataset generated by simulating the underwater environ-
ment, DDI dataset is established based on the deep-sea
debris database obtained from the real deep sea by the
Japan Agency for Marine-Earth Science and Technology
(JAMSTEC) [33], so the DDI dataset is truly derived from
real deep-sea conditions. All experiments in this article are
performed on this dataset, which can achieve robustness
and suitability for practical applications to some extent.

2) Considering the special characteristics of deep-sea debris,
a hybrid convolutional neural network called Shuffle-
Xception is constructed, which mainly adopts separable
convolution and residual connection. Furthermore, the ad-
vantages of group convolution and channel shuffle strate-
gies are combined in Shuffle-Xception architecture. The
proposed method can improve the classification accuracy
of deep-sea debris significantly.

3) Five common CNNs are adopted as the state-of-the-art
networks to compare with the proposed Shuffle-Xception.
The extensive experiments’ results demonstrate that the
proposed method has strong data fitting ability and can
achieve promising classification results.

This study is among the first of that identifies deep-sea debris
using deep learning. The remaining part of this article proceeds
as follows. Section II introduces our proposed method in detail,

Fig. 1. Ordinary convolution process. m is the size of the feature map to be
convolved, andh is the number of channels. z is the size of the convolution filter.
k is the number of the filter. n is the size of the feature map after convolution.
The ordinary convolution attempts to learn filters in a 3-D space. The 3-D space
means 2-D width and height space,and 1-D channel space. This means the
convolution simultaneously maps the spatial correlation and channel correlation.

Section III reports the experimental results, and the article
concludes with summary in Section IV.

II. METHODOLOGY

Compared with traditional machine learning, many deep
convolutional neural networks are more popular in computer
vision classification tasks [34]. Taking into account the serious
intraclass variability and interclass similarity of the deep-sea
debris, this article proposes a new convolutional neural network
called Shuffle-Xception based on Xception [35] to achieve accu-
rate identification of deep-sea debris. First, the network mainly
adopts separable convolution operations that can extract more
abstract and advanced features from the seabed garbage. Second,
group convolution strategy is adopted to improve the efficiency
and representation ability of the model, meanwhile, channel
shuffle strategy is employed to excavate the channel information
of deep-sea debris feature map groups thoroughly. Finally, the
residual connection is adopted, which can make the network
easier to learn, and the information can be transmitted more
deeply.

A. Separable Convolution

The structure of depthwise convolution followed by pointwise
convolution is called depthwise separable convolution [36].
The main idea of separable convolution is that cross-channels
correlations and spatial correlations in the feature maps can
be fully decoupled. In ordinary convolution, the convolutional
layer learns the information of the spatial dimension of the
feature map and the information of the channel dimension at
the same time. That is to say, ordinary convolution considers
the cross-channels correlations and spatial correlations of the
feature map synchronously [35], as displayed in Fig. 1. However,
separable convolution assumes that the channel mapping and
spatial mapping of the convolution filter can be completely sep-
arated. Specifically, the separable convolution operation can be
divided into two steps: first, the depthwise convolution is used to
complete the separate mapping of each feature map channel; and
second, the pointwise convolution (1× 1 convolution) operation
is adopted to perform the spatial mapping of the feature map.
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Fig. 2. It first performs 1× 1 convolution (pointwise convolution), and then convolves each channel of the feature map separately (depthwise convolution).

The operation can be described as follows:

F l
j = Γl−1

j ∗ ωl
j + αl

j j = 1, 2, . . . , h (1)

Γl+1
i =

h∑
j=1

F l
j ∗ μl+1

ji + βl+1
i i = 1, . . . , k (2)

where Γl−1
j is the feature map of the jth channel of the l − 1th

layer; αl
j is the deviation term; ∗ denotes the convolution opera-

tion; ωl
j is the convolution kernel of depthwise convolution; F l

j

is the feature map of the ith channel of the lth layer; h represents
the number of channels ofΓl−1; βl+1

i denotes the deviation term
of other operation. Here, ul+1

ji represents the 1× 1 convolution
kernel of the l + 1th layer to convolve with F l

j . k is the number
of channels of Γl+1.

In fact, the structure of pointwise convolution followed by
depthwise convolution as shown in Fig. 2 is equivalent to
depthwise separable convolution because these operations are
always been used in the stacked setting, the order does not
matter much [35]. It is noted that no intermediate activation
between pointwise convolution and depthwise convolution in
the separable convolution structure used in our proposed method
since the activation may bring information loss to the shallow
feature space such as depthwise convolution [35].

This convolutional structure makes the cross-channels cor-
relations and spatial correlations mapping of the feature map
completely separated, which makes it more powerful to extract
high-level abstract features than ordinary convolution [35]. Our
proposed Shuffle-Xception network uses this separable convolu-
tion to extract the more advanced and abstract category informa-
tion contained in the seabed debris images, which can accurately
determine the category to which the debris belongs. Moreover,
this convolution can be more efficient, i.e., it reduces the amount
of required parameters and operation costs. For example, Figs. 1
and 2 both illustrate the process of convolving a feature map
of size m×m into a size of n× n. Parameters required for
the ordinary convolution shown in Fig. 1 is z2 × h× k, while
separable convolution in Fig. 2 is onlyh× k + z2 × k. The ratio

of the operation costs of the two convolutions is illustrated as

m2kh+ n2kz2

z2hkn2
=

(m
zn

)2

+
1

h
. (3)

The numerator is the operation cost of convolution in Fig. 2,
and the denominator is the calculation cost of ordinary convo-
lution. In the actual convolution process, the ratio of this term is
always less than 1.

B. Group Convolution and Channel Shuffle

As mentioned in Section II-A, separable convolution uses a
combination of pointwise convolution and depthwise convolu-
tion so as to realize the spatial mapping and channel mapping
of the feature map separately, which can fully mine the in-
formation of the feature map. At the same time, through the
above analysis, we also know that the number of parameters
required for separable convolution is much lower than that of the
ordinary convolution. In fact, most of the parameters of separable
convolution are mainly provided by pointwise convolution. That
is to say, in a separable convolution, the parameters of the
pointwise convolution are much more than that of the depthwise
convolution, which can be verified from Fig. 2. In Fig. 2, the
parameters of pointwise convolution are h× k and depthwise
convolution are z2 × k. In general, with the deepening of the
network depth and the increase in the number of feature map
channels, the channel amount h of the point convolution kernel
also increases and z2 is generally a constant (z = 3 in the
figure). Therefore, the situation h× k � z2 × k becomes more
obvious as the number of network layers increases, besides, the
operation cost m2 × k × h of point convolution is also higher
than the operation cost n2 × z2 × k of depthwise convolution
(m ≥ n, h > z2). These show that point convolution is the main
complexity of separable convolution.

A natural idea is, can full consideration be given to point
convolution to make the model more efficient. Group convolu-
tion [37] can do this very well. The idea of group convolution:
first, the input feature maps are grouped, then these groups
are convolved with different filter groups, respectively, and
finally the generated feature maps are concatenated together.
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Fig. 3. Group convolution and channel shuffle. The size of the feature map
is not considered here, only the channels. Suppose that after group convolution
with group number g, we get g groups of feature maps and each group has
n channels, then, the g groups of feature maps are reshaped to (g, n), and
transposed to (n, g), finally flattened. The above operations explain the actual
operation process of channel shuffle.

Group convolution greatly reduces the number of parameters,
reducing generalization error to a certain extent and making the
model more efficient. For example, supposing that the feature
map with the number of channels h is mapped to a size of n× n
by a z × z × k convolution kernel. As a result, the parame-
ters and operation cost required for ordinary convolution are
z2 × h× k and z2 × h× k × n2, while the group convolution
with group number set to g only needs 1/g times the parameters
and cost of the ordinary convolution. In fact, the filter groups can
learn a better representation than 2-D convolution, which is the
fundamental reason why the group convolution is effective [38],
[39]. Motivated by these, we apply the group convolution to
the pointwise convolution in the separable convolution used by
Shuffle-Xception.

However, frequently stacking group convolutions will cause
the output of a certain group to be only related to the input of
that group, blocking the flow of channel information between
groups. To solve this problem, channel shuffle operation was
introduced [40], as given in Fig. 3. It allows group convolution
to obtain input data from different groups, which ensures that
the input and output channels are completely correlated and
enhances representation.

Group number required for group convolution has an impact
on the accuracy of the final classification of deep-sea debris
images [39]. Although the use of group convolution can improve
the classification ability, it does not mean that the more groups
are the better. As group number increases, the channels number
in each feature map group decreases, which will cause the
information capacity of the deep-sea debris feature map in each
group to be too low to support the filter to extract sufficient
debris image features, and ultimately weaken representation of
the model. A reasonable group number can have a better impact
on the classification results. The detailed information will be
discussed in Section III-C2.

The structure of the separable convolution combined group
convolution and channel shuffle strategies is illustrated in Fig. 4.
So, the Shuffle-Xception can not only use separable convolution

Fig. 4. Main unit/module used by Shuffle-Xception network (SX
unit/module).

to extract a large number of rich advanced features from the
deep-sea debris feature map, but also employ group convolution
to improve the representation level and computational efficiency.
Considering the shortcomings of group convolution that the
information within the group cannot be shared between groups,
channel shuffle is introduced to make the channel information
of the deep-sea debris feature map between each group fully
correlated.

C. Residual Connection

Intuitively speaking, the deeper network will have the stronger
expression ability and the better performance. However, gradient
disappearance arises. Consequently, better optimization meth-
ods, better initialization strategies, batch normalization (BN)
layers, ReLU, and other activation functions have all been used,
but their ability to improve the problem is limited. The emer-
gence of residual connections makes deeper network training
possible. Shuffle-Xception with residual connections can be
described as follows:

yl = ψ
(
xl
)
+H

(
xl, θl

)
(4)

xl+1 = φ
(
yl
)

(5)

where xl and xl+1 represent the input and output of the lth
residual unit containing SX modules, respectively; H(xl, θl)
is the residual function, which completes the mapping of SX
modules to xl and θl denotes the parameters in the lth residual
unit. In Shuffle-Xception, φ is identity mapping function and ψ
represent identity mapping or 1× 1 convolution.

The SX modules combined with the residual connection are
shown in Fig. 5. The Shuffle-Xception network can be stacked
by several Fig. 5(b) and (c) modules.

D. Network Architecture

The proposed Shuffle-Xception is detailed illustrated in Fig. 6.
Generally speaking, the model can be divided into three parts:
entry, middle, and exit stage.

In the entry stage, to begin this stage, the image is subjected
to ordinary convolution twice for the initial processing of data.
Next, an SX unit is performed six times. Among these six times,
each twice can be divided into one group, so there are three
groups in total, and each group is connected with a shortcut.
Convolution filters with a stride size of 2 are used on the short-
cut branch to reduce the resolution to facilitate the additional
operation. In the middle stage, feature maps are subjected to 24
SX units, and every three units are a group. So, there are eight
groups in total. Similarly, each group has an identity shortcut
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Fig. 5. SX modules combined with the residual connection. (a) gives the SX module. (b) and (c) are the two main modules of the Shuffle-Xception network.
“Activation-SX-BN” is repeated three times in module (b), but twice in module (c).

Fig. 6. Structure diagram of Shuffle-Xception based Xception architecture. In the entry stage of the model, the model first uses two ordinary convolutions for
the initial processing of data. Subsequently, the following operations called a group are carried out: First, the SX unit is executed twice, and the number of 1× 1
group convolution filters in the two SX units is 128 and 128, respectively. Second, the max pooling layer is accessed to reduce the resolution of the feature map.
Finally, the obtained feature map and the shortcut branch are added to get the output of this group operation. In the entry stage, the group operation is executed
three times repeatedly, and the number of 1× 1 group convolution filters of the two SX units in the first group is 128, 128, the second group is 256, 256, and the
third group is 728, 728. Parameter description of the middle stage and the exit stage can be deduced according to the figure. The group number required for group
convolution in this figure is defaulted to 2.
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branch. Note that there is no resolution reduction operation in
the branch connection due to the fact that the net do not perform
any pooling operation in the residual branch. In the final exit
stage, the model performs four SX units. The first two times are
a group, and a shortcut connection is also performed. As usual,
a convolution operation with a step size of 2 is performed on
this connection. The final output layer does not directly fully
connect to the output feature maps of the last two SX units for
the reason that the huge amount of parameters brought by the
full connection may cause overfitting of the model. Accordingly,
the model uses global average pooling (GAP) here, which can
reduce the number of parameters without affecting the network’s
ability to classify deep-sea debris images.

The convolution kernels used in the depthwise convolution are
all 3× 3. For those convolution filters that perform convolution
operations on the shortcut connection, they are all 1× 1 in size,
and the step size is 2. The network adopts operation sequence
shown in Fig. 5(b) and (c) and the activation function is selected
as ReLU. The final fully connected layer uses the SoftMax
function for probability output for deep-sea debris categories.

III. EXPERIMENTS

A. Dataset Description

Deep-sea debris database is available online as part of the
larger JAMSTEC E-Library of Deep-sea Images dataset pro-
vided by JAMSTEC and contains photographs and videos of
marine debris taken by submersibles “SHINKAI 6500” and
“HYPER-DOLPHIN,” in the deep sea [33]. The shooting time
of these videos and images that contain deep-sea debris in the
database can be traced back to 1982, with a shooting depth of up
to 10900 m. This database is entirely composed of debris data on
the real seabed, which is different from the marine litter images
on the beach, ocean surface, and the debris images generated
by simulating the deep-sea environment. It is the database that
meets the real conditions in a true sense. So the authenticity and
reliability of the deep-sea debris are guaranteed.

JAMSTEC only simply classifies images or videos in the
online database, and each video or picture always contains
multiple categories of deep-sea debris. Besides, the number of
images is relatively fewer compared to the number of videos. The
above points indicate that this online database cannot be directly
employed for classification tasks. For the sake of constructing
a deep-sea debris dataset suitable for image classification, the
images and videos from the online database are downloaded
and reorganized. To ensure the established dataset can inherit
the authenticity and reliability of the database data, we do not
do processing that damages the authenticity of the original data
so that the classification and identification algorithm trained on
this dataset can be implemented in actual scenes as much as
possible.

A real deep-sea debris images dataset named DDI is finally
constructed, in which each image contains only one type of
garbage. It includes 13 914 undersea debris images of seven
types of garbage, namely cloth, fishing net & rope, metal, plastic,
natural debris, rubber, and glass. All the images are organized
from real submerged litter data provided by deep-sea debris
database. Table I presents the types of deep-sea debris and the

TABLE I
DEEP-SEA DEBRIS CLASSES AND ITS SAMPLES FROM DDI DATASET

amount of debris in each category. Fig. 7 provides some debris
images of each category in the dataset. As mentioned before,
deep-sea debris has intraclass variability and interclass similar-
ity, which can be seen in Fig. 7. For example, the shape, size,
and color of debris within each category are diverse in Fig. 7;
the background environment of glasses is changeable; natural
debris, glasses, and others have serious visual field dependence;
there are interclass similarities between clothing and plastics.
For that reason, the feature representation used for our task must
be powerful enough to highly represent each major class.

B. Comparative Methods

Five classic deep learning networks that are often used in
computer vision classification are selected as the comparative
methods. Table II gives their main units, activation function,
and whether they use BN operation and regularization. ResNet
adopts V2 structure [34] in this article. MobileNet adopts depth-
wise separable convolution and ReLU6 function that limits the
maximum output value of the ReLU function to six [41]. Al-
though both MobileNet and Xception use separable convolution
instead of ordinary convolution, an activation function is used
between pointwise convolution and depthwise convolution in
the separable convolution used by MobileNet, while Xception
does not use intermediate activation. The sigmoid function used
by the original LeNet [42] is replaced with the popular ReLU,
and the subsampling is replaced with the current max pooling
of CNN mainstream.

C. Experimental Results

1) Experiment Settings: All models used in this experiment
are built based on Keras, which runs with TensorFlow, CHTK,
and Theano as the backend. Models run on the computer that is
equipped with a GeForce GTX 1080Ti GPU and installed with
Intel(R) Xeon(R) W-2133 CPU at 3.60 GHz, 31.7 GB RAM,
Windows10 operating system.

DDI dataset samples are divided into three subsets: 70% as the
training set, 15% as the validation set, and the remaining 15%
as the test set. The input size of networks is set to 224 × 224
commonly used by CNNs, which is the result of tradeoff un-
der the experimental condition. Too small input size may lose
information, while too large may cause memory overflow and
larger calculations. In addition, with limited memory, if the input
image scale is too large, batch size will be restricted (batch size
= 1, 2), which may cause the network to obtain an unreasonable
classification accuracy. The image is sent to networks after being
normalized and adopt data augmentation and early stopping
strategies for all networks to prevent overfitting. The learning
rate autodecay strategy will be executed if the validation set
loss value is not reduced after four epochs; the training will
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Fig. 7. Examples of seven types of deep-sea debris from DDI dataset. The types of deep-sea debris are fishing net & rope, metal, cloth, glass, rubber, plastic, and
natural debris from (a) to (g), respectively.

TABLE II
FIVE COMPARATIVE MODELS AND THEIR MAIN ATTRIBUTES

GAP represents global average pooling.

Fig. 8. Examples of deep-sea debris using data augmentation.

be terminated early if the validation set loss value does not
decrease after nine epochs. The data augmentation used in the
experiments includes random horizontal flip, random zoom in
or zoom out, up, down, left, and right translation, and image
rotation. Some “fake” debris data can be generated to fill the
training set. An example of data augmentation is shown in Fig. 8.

Adam is used as the optimizer. Dropout probability of Mo-
bileNet is 1e− 3 and ResNet uses a weight decay (L2 regular-
ization) rate of 1e− 4. Shuffle-Xception that does not use other
regularization terms is expected to have better results.

For the setting of the learning rate and batch size of models,
a technique called the LR Range Test [43] is used to ensure that
models find the optimal learning rate in a few iterations. Taking

Fig. 9. Curves of LR Range Test with different batch sizes about Shuffle-
Xception (group = 2).

Shuffle-Xception (group = 2) as an example, as depicted in
Fig. 9, four experiments with different batch sizes are carried
out to find the best learning rate and batch size with the help of
LR range test. Closer inspection of Fig. 9, the general trend of
all the curves is that the loss value does not change when the
learning rate is between 1× 10−9 and 1 × 10−6; the loss value
drops rapidly when the learning rate is between 1 × 10−6 and
1 × 10−3, and the loss value starts to rise when it is greater than
1 × 10−3. Therefore, 1 × 10−3 is chosen as the initial learning
rate of Shuffle-Xception. In addition, it can be seen from Fig. 9
that the larger the batch size, the smoother the curve. This is
because that the large batch size can create a stable gradient
calculation, which is beneficial to network optimization. Conse-
quently, the batch size of Shuffle-Xception is set as 24 to tradeoff
the lower loss value.

2) Experimental Results and Discussion: Influence of the
Group Number. As mentioned in the previous Section II-B, the
group number required for group convolution has an impact on
the network representation. The overall classification accuracy
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TABLE III
CLASSIFICATION ACCURACY AND SIZE OF SHUFFLE-XCEPTION WITH

DIFFERENT GROUP NUMBERS

group = 1 Represents that group convolution and channel shuffle strategies are not
adopted.

Fig. 10. Validation accuracy and loss curves of Shuffle-Xception with different
group numbers. The solid lines represent the loss curves, and the dotted lines
represent the accuracy curves. Different colors represent different groups.

(OA) and average accuracy (AA) of Shuffle-Xception under
different number of groups are reported in Table III.

Table III implies that group number has a certain impact on
the classification accuracy. It can be found that Shuffle-Xception,
which uses group convolution and channel shuffle strategies, is
always better than unused ones (group = 1). Obviously, adopt-
ing the strategies will improve the network’s ability to identify
seabed garbage. This is because the effect brought by the group
convolution and the channel shuffle that makes the informa-
tion fusion between groups allow Shuffle-Xception to obtain
information with richer garbage category characteristics. When
group = 2, 4, the accuracy is the highest, which is because the
filter groups at this time can learn the best representation, but as
the group number increases, the accuracy decreases. It indicates
that excessive reduction of information within each feature map
group caused by excessive grouping does have a negative impact
on the classification ability of the model. The reason may be
that each filter group can not extract sufficient valuable features
from the group with too low information content, resulting in
information loss.

Fig. 10 intuitively depicts the accuracy and loss changes of
the Shuffle-Xception under different group numbers in the actual
training process. Although group = 1, 8, 16 have the advantage
in the early stage, group = 2 reaches the best of the whole
groups in the 49th epoch of the later stage.

Therefore, the group number of Shuffle-Xception recom-
mended in this article is 2, and the following experiments adopt
this setting.

Table III also clearly reports the parameters of the
Shuffle-Xception with different groups. Obviously, the number
of parameters gradually decreases as the number of groups

increases, which is consistent with the parameter changes caused
by group convolution discussed in the previous Section II-B.

Comparative Experiments of All Models. The confusion ma-
trix of all models is built as illustrated in Fig. 11 for the
purpose of clearly showing the classification details of each
model for each category in the DDI dataset. According to
the confusion matrix, kappa values are calculated according
to kappa = (po − pe)/(1− pe), where po is the probability of
observed agreement and pe is the probability of agreement by
chance.

In Fig. 11, Shuffle-Xception correctly classifies 284 cloth,
327 fishing net & rope, 285 glass, 276 metal, 259 natural debris,
260 plastic, 290 rubber, and the value on the diagonal of its
confusion matrix is the highest among all confusion matrices,
which means that it classifies each type of garbage in DDI dataset
most accurately among all models. Shuffle-Xception has the
highest kappa value, followed by Xception, and LeNet has the
worst. Although MobileNet also uses separable convolution, it
does not perform well on our deep-sea dataset, which may be due
to the intermediate activation between the pointwise convolution
and the depthwise convolution in the separable convolution used
by MobileNet, which leads to the loss of information [35]. At the
same time, the low-precision function ReLU6 used by this model
may cause losses to this complex deep-sea debris classification
task with high precision requirements. The kappa coefficient of
ResNetV2-152 is higher than ResNetV2-34 since ResNetV2-
152 is deeper. Even so, Xception, which has a lower number of
layers than ResNetV2-152, has achieved a better kappa value due
to the use of depthwise separable convolution operations. And
our method is higher than the classification result of Xception,
which illustrates once again the feasibility and effectiveness of
the strategies adopted by Shuffle-Xception.

In the confusion matrix, the color darkens as the number
increases. It can be observed from Fig. 11 that the rectangular
areas surrounded by metal, natural debris, and plastic of all
confusion matrices are always filled with dark colors except for
the diagonals. Of course, the color will be relatively lighter with
the enhancement of model performance, but this phenomenon
still exists. This implies a problem: all models have serious
mutual confusion for the three categories of metal, natural debris,
and plastic. Similarly, most confusion matrices have similar
problems in the lower left corner. As given in Fig. 11(c), we
take ResNetV2-34 as an example and mark these areas with red
dashed lines.

In order to further demonstrate this phenomenon, a part of
the pictures in the red dashed boxes are selected randomly,
as given in Fig. 12. It can be inferred from Fig. 12 that the
features expressed by deep-sea debris images between different
categories have strong similarities (interclass similarity), and
at the same time the features expressed by garbage images
of the same category also have strong complexity (intraclass
variability). These attributes cause most nets to easily confuse
these different types of features in the feature extraction process,
resulting in a situation where the categories are confused with
each other. The similarity and variability are caused by each
other. The specific situations where the interclass similarity
causes models to confuse garbage classes were discussed in
detail in the next paragraph.
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Fig. 11. Confusion matrix of each model on the DDI dataset.

Fig. 12. Some deep-sea debris pictures that are confused by most network models from the red dashed box of all confusion matrices. (a), (b), (c), (d), respectively,
shows a category of garbage images and the other two categories of garbage images that are confused into that category.
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For intercategory similarity, one is the similarity in appear-
ance between categories. For example, metal buckets and the
slender plastics in Fig. 12(b) have strong similarities with natural
debris in terms of shape, color, and texture; in Fig. 12(d), the
plastic and the cloth are so similar that our eyes cannot clearly
distinguish them, and the tires with white attachments on the
surface are also recognized as white cloth by most models; the
metal bucket and plastic bucket in Fig. 12(c) are almost the
same in shape or color, and their smaller size in the images
also makes the model unable to clarify the difference between
them; similarly, the white trunks in Fig. 12(c) are very similar
to plastic buckets in shape and color, so they are misjudged as
plastic by most models; the plastic garbage and natural debris
in Fig. 12(a) are also very similar to metal in shape and color,
which makes most models think that the yellow matrix plastic
toy car is a matrix metal showing yellow rust spots, and the
black tree trunk is a metal stick. The second is that the deep-sea
debris images have a strong viewpoint dependence, which also
causes the similarity between different debris categories to a
certain extent. For example, there are too many white shells in
the background of the second image in the rubber category in
Fig. 12(d), so that the models mistakenly regard the white shells
as the main body and classify the image as the cloth category,
ignoring the small size rubber tires; in Fig. 12(c), since the first
image of the natural object category has white marine life, most
models consider it to be a plastic, ignoring the tiny branches
behind the marine life; the same problem also exists in the plastic
bottles and branches in Fig. 12(a); since the plastic bottles and
branches occupy a small size in the image, the background is
occupied by rocks that look like metal (or it can be said that the
rock background of plastic bottles and branches is the same as
the rock background in the real metal category), which makes
the models ignore the existence of the subject and overconsider
the background factors to classify them as metals.

It should be pointed out that except for the two plastic images
in Fig. 12(a) that are misclassified as metal by most models con-
taining Shuffle-Xception, the other images that are misclassified
by most models are correctly classified by Shuffle-Xception,
which to a certain extent means that the Shuffle-Xception
network’s classification level of deep-sea debris images is higher
than other network models. In the next part, heat map method
is adopted to focus on showing and explaining the difference
in feature extraction capabilities between Shuffle-Xception and
other network models when classifying seabed garbage.

A variety of evaluation indicators, including precision as (6),
recall as (7), and F value as (8) are adopted to comprehensively
evaluate the similarities and differences between all models

Precisioni =
TPi

TPi + FPi
(6)

Recalli =
TPi

TPi + FNi
(7)

F1i =
2 · Precisioni ·Recalli
Precisioni +Recalli

(8)

where i = 1, . . . , L, L is the number of categories. TPi means
the number of correctly classified images of the ith category;

TABLE IV
PRECISION PERFORMANCE OF SIX MODELS FOR EACH CLASS ON

THE DDI DATASET

FPi represents the number of images that are incorrectly clas-
sified as the ith category; TNi represents the number of images
that do not belong to the ith category and are classified into
other categories, and FNi is the number of the ith category
images classified into other classes. Precisioni represents the
proportion of true the ith class in the sample predicted to be the
ith class. Recalli refers to the proportion of samples that are
actually in the ith class and are predicted to be the ith class. F1i
represents F1−score of the ith category.

The various evaluation index values of all models for each
category are given in Table IV. It can be observed that our method
is almost optimal in various evaluation indicators, which fully
demonstrates the efficiency and feasibility of our method in the
task of deep-sea debris classification.

Although Xception achieved the highestPrecisioncloth with
a slight advantage of 0.85% higher than Precisioncloth of
Shuffle-Xception, it was 5.78% lower than Shuffle-Xception
on Recallcloth. This indicates that Xception’s certainty that
samples with the predicted label of cloth really belongs to cloth
is slightly higher than that of Shuffle-Xception at the cost of
serious omission of the cloth class, which is not cost-effective
and leads to the fact that the final classification of the cloth class
by Xception is not the best (Low F1cloth). Shuffle-Xception
dominates the Precision and Recall of each category (except
Precisioncloth), which implies that Shuffle-Xception controls
FP and FN of each category to the lowest, which is the result
we are most willing to see. It is worth noting that, compared with
other models, Shuffle-Xception is more inclined to the situation
where Recall is greater than the Precision. This illustrates
that Shuffle-Xception would rather misreport the debris category
than omit the debris, which seems to be more in line with our
willingness to clean up deep-sea debris in the actual deep ocean.

The F1 values in Table IV take into account both the recall
and precision, which can most intuitively show the classification
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Fig. 13. Area that contributes to the final classification result of the deep-sea debris image is displayed in the form of a heat map. We take the final convolutional
layer of each model to form a heat map. Heat map of LeNet is not given here since it has too few layers and poor classification performance. The figure shows a
total of seven types of garbage images (a), and heat maps (b)–(f) of five networks for each type of image.

ability of each model for each category. Shuffle-Xception has
the best performance on glass, reaching 0.9913, but the worst
classification performance on plastic, metal, and natural debris,
reaching 0.8889, 0.9020, and 0.9435, respectively. In fact,
similar situations exist for most of the remaining models.
The reason is that the prominence and uniformity of the
characteristics of this kind of garbage caused by the invariance,
uniqueness, and antidegradability of glass garbage make the
model fit well to this kind of garbage, while most models have
low F1 values for metal, plastic, and natural debris because
of the confusion between the three categories mentioned
earlier.

In order to visually give the reasons for the classification
differences between models, we deliberately selected pictures
with more interference information from each type of deep-sea
garbage images as given in Fig. 13. The severe noise interference
in the seabed debris image puts a certain pressure on models to

accurately identify the garbage. The heat map reflects the image
area that makes a significant contribution to the final classifica-
tion, which is presented in the form of heat. The contribution
of the area to the classification becomes stronger as the heat of
the area increases. The classification contribution area reflected
by the heat map of Shuffle-Xception is the most accurate and
reasonable. The specific location of the garbage is accurately
covered by the heat area, highlighting that the debris features of
interest extracted by Shuffle-Xception are the most correct and
effective, which intuitively explains the reason for the strong
classification ability of Shuffle-Xception. The heat areas of other
networks do not accurately cover the specific location of the
garbage, resulting in the capture of nondebris features, which is
detrimental to classification. It can be said that compared with
other networks, the feature extraction and analysis capabilities
of the Shuffle-Xception occupy an advantage even in a complex
environment.
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IV. CONCLUSION

This article aims to study classification of deep-sea debris
using deep convolutional neural networks. In this article, the first
real deep-sea debris images dataset (DDI dataset) is established;
Shuffle-Xception network model is proposed and experimented
with five other network models. Through the research of this
article, the following conclusions can be drawn.

1) Constructing a deep-sea debris dataset is crucial for the
research of submarine garbage classification, and experi-
ments in this article has demonstrated the feasibility of this
dataset in the task of submarine garbage classification.

2) The performance of our method on the dataset is satisfac-
tory due to its hybrid architecture. Compared with the five
methods, our network is more feasible and efficient in the
task of deep-sea debris classification.

3) Although plastic, metal, and natural debris are confused
with each other, the proposed method gives the best results.

This article provides the first comprehensive assessment of
the classification of deep-sea debris using deep learning. In the
future, we will explore how to further improve the performance
of CNNs in deep-sea debris identification tasks. Furthermore,
our work can be combined with object detection methods to
locate and mark the location of objects, which is conducive to
the further application and implementation of deep-sea detection
systems mounted on submersibles.
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