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Identifying Urban Building Function by Integrating
Remote Sensing Imagery and POI Data
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Lanting Zhao, and Jiang Zhu

Abstract—Identifying urban building function plays a critical
role in understanding the complexness of urban construction and
improving the effectiveness of urban planning. The emergence of
user generated contents has brought access to massive semantic
information which complements the traditional remote sensing
data for identifying urban building functions and exploring the
spatial structure in urban environment. This article proposes a
stepwise identification framework for urban building functions
based on remote sensing imagery and point of interests (POIs)
data, which merges the spatial similarity of buildings and kernel
density to improve the identification accuracy and completeness.
Taking Wuhan as an example, Google earth images and POI data
were obtained to identify the seven primary categories for the
individual buildings in the core urban area. The results suggest
that the proposed stepwise framework is feasible to identify the
urban building functions as the identification results exhibit the
superiority in terms of accuracy and completeness. Our results
suggest that the identification of urban building function is sensitive
to the bandwidth of kernel density estimation and 200 meter is
the optimal size. The findings also indicate that significant spatial
agglomeration exists in residential and commercial buildings at
both macro and microlevels.

Index Terms—Google earth image, kernel density estimation
(KDE), point of interest (POI) data, spatial similarity, urban
buildings, user generate contents (UGCs).

I. INTRODUCTION

URBAN LAND use information is essential for urban
and environmental studies [1]. As the fundamental units

of cities, buildings serve as the functional spaces for living,
working, entertaining and other socio-economic activities, and
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reflect detailed land use information [2]. That is, building func-
tion refers to its actual use, such as commercial, residential,
or industrial, rather than the initial designed purpose. Identi-
fying the building functions could not only facilitate a bet-
ter understanding of urban morphology but also contribute to
various applications in emergency response [3], policy mak-
ing [4], resources management [5], and other fields. However,
information of urban building functions was mostly collected
from field investigations by government agency, which could
be time-consuming and rarely open to public. Therefore, an
automated and efficient way to identify urban building function
is absolutely important for refining urban land use mapping, and
thereby allows the further applications to the benefit of urban
development and urban planning.

Urban land use mapping largely depends on the interpretation
of remote sensing imageries as they reflect land use information
in a large extent with high temporal frequency [6], [7]. The
history of land use mapping by remote sensing technology dates
back to 1970s when the first satellite remote sensing for Earth
observation has provided the unique opportunity for quantitative
analysis and dynamic monitoring in urban land use [8], [9]. Not
until around 2000 has a variety of very-high-resolution (VHR)
satellite sensors been available and shown a clearer representa-
tion of the ground truth [10]–[13]. More recently, plenty of vir-
tual global platforms, such as Google Earth, NASA World Wind,
and Bing Maps, have opened a new era of digital earth [14], [15].
For instance, the high resolution Google earth images, as free
and open access data source, have become one of the primary
supplementary date source of the traditional land use mapping
[16], [17]. In specific, the richness in texture, tone and geometric
features of Google earth images provide detailed information for
land use classification at object level, including buildings and
other artificial structures [18], [19]. However, remote sensing
imageries are typically more useful for delineating the physical
layout of ground objects rather than identifying their specific
functional usage for human activities due to the deficiency in
semantic information [20]. Fortunately, the emergence of user
generate content (UGC) has demonstrated highly successful in
allowing for active users to participate in collecting, updating
and sharing the massive data that reflect human activities and
social attributes [21]–[23]. Point of interests (POIs), a typical
UGC data, has greatly addressed the semantic gap in remote
sensing images [24]–[26]. Preliminary studies have introduced
POI data as the reference data or training data for land use
classification [27]–[29]. With the explosive growth in recent
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years, POI data have been playing a more important role in land
use study. Zhang et al. [30] made use of POI data to automatically
delineate the urban functional zones in Hangzhou, China. Hong
and Yao [31] took advantage of POI data to identify the urban
functional zones in Guangzhou, China. Andrade et al. [32]
conducted land use identification based on the numeric features
extracted from POI data in Lisbon city, Portugal. Besides the
single data source, there are studies fusing multiple sources of
data for identifying urban functional zones. Zhang et al. [33]
developed hierarchical semantic cognition for urban functional
zones using VHR images and POI data. Zhong et al. [34]
integrated POI, OpenStreetMap data, and VHR images for urban
land use mapping. Liu et al. [35] recognized urban functional
zones combined landscape features from Landsat image and
human activities from POI and taxi GPS trajectories. Despite
these significant contributions for classifying urban functional
zone, few research has yet been attempted to combine remote
sensing image and POIs for a better interpretation of urban land
use at the finer scale, that is urban building unit rather than the
street block or parcel. After all, not only has the variety of build-
ing functions increased in metropolitan areas, but also many
sophisticated urban analyses regarding fine urban population
mapping, emergency management, environmental monitoring
and so on deeply depend on the detailed classification of urban
buildings.

Besides the data sources, identification approach is another
core part of land use study. Various models have been developed
and applied to identify the urban functional areas, which taking
advantage of semantic information from UGC data to comple-
ment the remote sensing imagery. The essential and preliminary
way is to extract semantic information from POI or other UGC
data spatially associated with buildings or parcels to classify the
functions [36]–[38]. Later researches introduced the frequency
index of POI data to distinguish the functions of urban areas
[39], [40]. Furthermore, a topic-based model inferring on iden-
tify the functions of each region was proposed [41]. K-means
algorithm based on object distance is suitable for processing
high-dimensional objects [42] and it has been applied to identify
the categories of land use clusters in many studies [43], [44].
However, few studies have yet taken the spatial distribution of
POI data into account so that they failed to identify built-up areas
where missing POI data, or resulted in low accuracy. Fortunately,
the kernel density estimation (KDE) method, which exploits the
strength of the estimation nonparametric random variables of
point distribution, has significantly enabled us to transform the
POI data into continuous surface features [45]. That is to say,
KDE can be utilized to extract distribution characteristics of
different land use from POI semantic information, enabling us to
infer the building functions particularly for functional buildings
with significant spatial aggregations. Not only the distribution
characteristics of POI data deserve further exploitation, but also
are the spatial features of buildings extracted from VHR images
worthy further interpretation. For example, in a residential com-
munity or business district, buildings show certain textural or
geometric similarities. That is to say those spatial features can
be used to infer the building functions under the assumption
that buildings with the similar spatial features always have

Fig. 1. Identification framework of urban building functions.

the similar functions within a certain region. Therefore, it is
critically important to develop a hybrid identification method
taking advantage of spatial similarity and POI distribution to
achieve 100% identification rate of urban buildings with high
accuracy.

The objective of this article is to propose a stepwise iden-
tification framework for urban building functions based on
Google earth image and POI data, which merges the spatial
similarity of buildings and KDE to improve the identification
accuracy and completeness, and further examines the spatial
aggregation characteristics of different type of buildings. The
thorough understanding of urban building function will help
policy makers take a deep insight into urban structures and
improve the effectiveness of urban planning.

II. METHODS

A. Identification Framework of Urban Building Functions
Integrating Remote Sensing Imagery and POI Data

To reveal the urban building functions, we proposed a stepwise
identification framework of urban building functions, which
integrates remote sensing imagery and POI data. As shown
in Fig. 1, building functions were identified by three steps se-
quentially, including the direct usage of POI data, measurement
of spatial similarity using VHR images and building footprint
geometries, and KDE of POI data in different categories.

In the first step, we reclassified POI data according to the
classification standards for urban development land and coordi-
nate, and then decide building function according to POI inside
buildings or within the distance of 5 m. Notably, POI data with
low importance, but high density were used to decide building
function by data frequency, and POI with high importance
but low density were used by the priority order. Second, we
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Fig. 2. Typical examples of different functional buildings with similar geo-
metric and textural features.

applied spatial similarity to infer the building functions for those
have no POI data inside the boundary. In specific, eight geo-
metric features and eight textural features were extracted from
building footprint geometries and VHR images, principle com-
ponents analysis were employed to reduce dimensions for the
spatial features. So that cosine similarity between unidentified
and identified buildings in a buffer zone could be calculated to
infer the building function. Third, in order to improve recogni-
tion rate of building functions, kernel densities from each POI
category were calculated and normalized, and zone statistic of
them were conducted for all buildings. Normalized Euclidean
distance (NED) was performed to calculate the similarity of
kernel densities between identified and unidentified buildings to
complete the function identification.

B. Identifying Building Functions Based on Spatial Similarity

Although associating the POI type to the overlapped building
is the most efficient way to decide building functions, there is not
always POI data inside or near the building. Under the circum-
stances, additional methods are needed which could infer the
building function by extra information. Actually, it is observed
from Google earth images that buildings with same functions in
a small extent always show the similar geometric and textural
features as shown in Fig. 2. So that we could take advantage
of those features to infer the building function when there is
identified building with similar spatial patterns.

To fully capture the spatial similarity of buildings, multiple
geometric features and textural features were deriving from
building footprint geometry and Google earth images. Specifi-
cally, eight classical geometric features, including area, perime-
ter, compactness, number of nodes, radius shape index [46],
regularity, and aspect ratio orientation, were selected and calcu-
lated for all buildings. Detailed illustrations and equations of the
eight geometric features are shown in Fig. 3. Meanwhile, texture
is an important spatial feature measuring the spatial distribution
of tones across the pixels of remote sensing image, which has
been widely used for object identification and image segmenta-
tion [47]. The textural features were extracted from Google earth
images by grey-level co-occurrence matrix (GLCM). Despite

Fig. 3. Graph illustration of eight building geometrical features.

dozens of textural features can be derived from GLCM, we
selected the most important and popular eight features including
mean, variance, homogeneity, contrast, dissimilarity, entropy,
second moment and correlation [48]. Detailed explanations and
equations of each measure can refer to the literature [49].

Since all features are derived from either building geome-
try or Google earth images, it is inevitable that information
redundancy exists between them. In order to reduce the di-
mensionality of selected features, principal component analysis,
one of the most popular multivariate statistical methods, was
applied to keep the variance of raw data as well as minimize
information loss [50]. With the results of n principal compo-
nents, we could form the spatial feature vector of identified
building, Fi = [F1, F2, . . . Fn], and unidentified building,
Fu = [F1′, F2′, . . . Fn′]. So that spatial similarity between
unidentified building and surrounding identified building can be
calculated by cosine similarity

Cosine (Fi, Fu) =

∑n
i=1 Fi · Fu√∑n

i=1 Fi
2 ·

√∑n
i=1 Fu

2
. (1)

The original cosine value ranges from −1 to +1, but the
spatial similarity was decided by the magnitude of cosine value
regardless of the direction between two spatial feature vectors.
That is, the greater the absolute value of cosine value, the higher
the spatial similarity. In the buffer zone with one unidentified
building in center, we iteratively compared its spatial features
with identified buildings, the function of most similar identified
building was assigned to the unidentified one.

C. Identifying Building Functions Based on KDE

For those buildings could not be matched with nearby build-
ings by spatial similarity, KDE of POI data was applied to
identify the function. Differences in the spatial distribution of
POI density reflect the distribution characteristic of functional
area [51]. Therefore, POIs were converted to continuous den-
sity surface representing the distribution characteristic by KDE
method, and applied to infer the building function.

KDE is a useful method to estimate unknown density function
in probability theory. It computes the density contribution of
each sample point in the specified range to the centre point of
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each grid through the kernel function, and finally generates a
smooth surface indicating the density map [52]. The amount
of POI data in different categories varies greatly, for example,
the number of POI data in commercial and business category
is greater than the number in other categories. To avoid the un-
balanced distribution POI data in distinct categories and further
improve the identification rate, the normalized of KDE is applied
in the third step, which can be expressed as [53]

f (x) =
1

Nhd

N∑
i = 1

K

(
x− xi

h

)
(2)

where f(x) is the KDE calculation function at the location x; d
is the spatial dimension; h is the bandwidth; N is the number
of points which distance ≤ h from the location xi; and K is the
spatial weight function.

NED is a similarity measure applied for calculating the simi-
larity of kernel density between unidentified buildings and each
building type, which has been previously used for land use
mapping [54], [55]. With the kernel densities of POIs in each
category, the average KDE values inside the building geometry
were calculated as the kernel density of each building. The iden-
tified buildings based on POI and spatial similarity were selected
as training samples, and their kernel density values were used for
calculating the average value and standard deviation of different
building types. The results were then used for computing NED
as follows:

Si =

√√√√ 1

m

m∑
j=1

(
xj − xi
σi

)2

(3)

where xi and σi represent the average and standard deviation
of the ith type of building kernel densities, respectively, m
represents the total amounts of identification types,xj represents
the kernel density values of the jth unidentified building. Among
all NED values of different types, the type with minimum NED
(highest similarity) was assigned to the unidentified building.

III. STUDY AREA AND DATA PROCESSING

A. Study Area

Wuhan is the capital city of Hubei province in the central
China covering a region of longitudes from 29°58′N to 31°22′N
and latitudes from 113°41′E to 115°05′E, which is one of
most important economic development centers in China. The
administrative area of Wuhan city covers an area of approxi-
mately 8569.15 Km2 and has a permanent residential population
of nearly 11.21 million. With the rapid growth of regional
economy and government management of urban construction,
the functions of building have become more diverse and more
complex [56]. Given that the diversity of building functions and
rapid urbanization in Wuhan, it provides an excellent case for
identifying the urban building functions. For this article, the most
urbanized area inside third ring road of Wuhan was selected as
the study area. The geographical location of the study area is
shown in Fig. 4.

Fig. 4. Study area, Wuhan, China.

B. Data Processing

Three different datasets were used in this article, including
google earth images, POI data, and building footprint geometries
in the study area. Google earth images were downloaded through
GGGIS,1 an open-access platform specialized for Google Earth.
These Google earth images, acquired on March 2019, have red,
green and blue bands with a spatial resolution of 1.2 m. Building
footprint geometries in the format of shapefile were collected
from National Platform for Common Geospatial Information
Services.2 The geometries were re-projected and modified to
keep consistency with Google earth images.

POI data not only contain the spatial location but also provide
a great number of attribute information, including name, address,
and type, which could contribute to identify the urban building
function. POI data are usually the locations representing real ge-
ographical entities generated by commercial or crowed-sourced
platforms. In this article, 120 589 POI records were collected
through application programming interfaces of Amap, one of
the most popular map applications in China. POI data from
Amap have been proven reliable source for POI data since they
were widely used in urban research due to the high precision,
wide coverage and frequent update [57], [58]. The original POI
data are classified into dozens of types, which are inconsistent
with the national standard of land use category. Thus, POI
data were reclassified according to the National Urban Land
Use and Planning Standard (GB50137-2011). So that POI data
were reclassified into seven primary categories as shown in
Table I: residential (R); administration and public services (A);
commercial and business facilities (B); municipal utilities (U);
logistics and warehouse (W); road, street, and transportation
(S); and industrial, manufacturing (M). It was noticed that the
public awareness and importance of different types of POI did
not correspond to the density. In particular, the commercial
type of POI occupied the largest proportion of the entire POI
data, but most of them are small business that could not decide
the primary use of the building. So that, POIs were divided to
two types, type I: low importance but high density (B and W),
type II: high importance but low density (R, A, S, T, M). If

1http://www.gggis.com/
2https://www.tianditu.gov.cn/

http://www.gggis.com/
https://www.tianditu.gov.cn/
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TABLE I
CATEGORY MAPPING DICTIONARY BETWEEN NATIONAL STANDARD

AND POI LABEL

there are only type I of POIs in the building, the function of
building will be decided by the frequency of POI. Otherwise, the
building function was decided by the priority order in type II as
listed above. Specifically, residence is recognized as the primary
usage regardless any auxiliary usage. Administration and pub-
lic services, mainly including governmental office, school and
hospital, were of greater public awareness over the rest types.

IV. RESULTS

A. Results of Identified Buildings Based on POI Data

The first and most efficient identification way is to associate
POI data and building data by overlay analysis which decides
building function depending on whether POI data are inside
the any of the buildings. By this method, 21 701 buildings
were assigned proper functions in the study area, including
8069 residential, 3780 administration and public services, 9232
Commercial and business facilities, 89 Industrial or manufac-
turing, 289 logistics and warehouses, 231 municipal utilities,
and 11 road, street and transportation. Business, residential, and
administrative buildings have been largely identified as there is a
great number of POI data with these three categories in the study

Fig. 5. Identification results of urban building functions based on POI data.

area. It was also found that only 35.15% POI data were inside
the building or within the distance of 5 m, and 27.98% building
were identified. That is to say large proportion of buildings could
not be directly identified by POI data.

In detail, four typical areas, located in Jiang’an district, Qing-
shan district, Qiaokou district and Hongshan district, were se-
lected to exhibit the identification results (see Fig. 5). Locations
and extents of them have been labelled in Fig. 4. Obviously, four
areas show different identification rate, and identified buildings
in area 4© is far less than the other three areas. This is because
area 4© is at the edge of core urbanized area in Wuhan, and POI
data were less dense here. The results indicate that the spatial
heterogeneity of POI data lead to the imbalance identification
rate in different areas in the city. Area with higher POI density
shows more identified buildings. Meanwhile, semantic infor-
mation of 64.85% POI data remains unused in this step, which
suggests that additional method is necessary if we would like to
make full use of POI and improve the identification rate.

B. Results of Identified Buildings Based on Spatial Similarity

Taking advantage of Google earth images and building foot-
print, eight textural features and eight geometric features, were
calculated for 77 545 buildings in the study area. Notably,
although textural analysis was performed for red, green, and blue
band of Google earth images, only the textural features derived
from red band were used. This is due to the high consistency
among the results from different bands, which has been proven
by the high values of correlation coefficients. Moreover, there
are similar patterns between different textural features as shown
in Fig. 6. For instance, results of variance [see Fig. 6 (b)] and
contrast [see Fig. 6 (d)] look like each other. Also, the similar
trend among different geometric features could be observed.
Hence, PCA was conducted to reduce the dimensionality and
keep the most important information. It can be seen from com-
ponent matrix as given in Table II that there are two textural
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Fig. 6. Eight textural features of Google Earth image in the study area.

components and three geometric components extracted from the
raw sixteen spatial features.

The spatial feature vectors consisting of the five components
were calculated and used for measuring the cosine similar-
ity between the unidentified and identified buildings in the
buffer zone. Under the assumption that nearby buildings with
similar spatial features are of similar function, spatial similarity
contributes to assign functions for 33.67% buildings, including
7496 residential, 4213 administration, 13204 commercial, 278
industrial, 475 logistics and warehouses, 413 municipal utilities,
and 7 transportation. The identification results for the selected
four areas by spatial similarity are shown in Fig. 7.

Comparing with the identification results based on POI, a
large amount of buildings was labeled, especially for commer-
cial (area 3©) and residential (area 1©) usage. Areas 2© and 4©
have less identified buildings because POI-based method did not
provide sufficient examples that can be used to infer the function

TABLE II
COMPONENT MATRIX OF SPATIAL FEATURES

∗Indicates the largest loading of each feature on a certain component among the five.

Fig. 7. Identification results of urban building functions based on spatial
similarity method.

of nearby buildings. That is to say, the identification performance
of spatial similarity method heavily depends on the sample sets,
namely identified buildings based on POI. This method greatly
improved the identification rate with the assistant of remote
sensing imagery, but still could not finish the identification left
by the first step.

C. Results of Identified Buildings Based on KDE

To fully make use of POI data, we introduced KDE to
complete the identification. Based on the kernel density of
POI in different categories, the rest 38.38% buildings were all
assigned proper functions, including 2897 residences and 26 864
commercial and business facilities. The number of Commercial
and business facilities is much higher than that of residential,



8870 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 8. Identification results of urban building functions based on KDE.

Fig. 9. Identification results of urban building functions based on the POI data,
spatial similarity and KDE method.

which is related to the number of POIs and the spatial patterns
of different categories of buildings. As shown in Fig. 8, the
significant improvement can be seen in areas 2© and 4© that
KDE mainly complements the identification of residential and
commercial buildings.

In the study area, the identification results of building func-
tions based on three different methods are shown in Fig. 9.
Besides 27.98% building functions directly identified by POI

data, spatial similarity and KDE method contributed to the iden-
tification of 33.64% residential building and 38.38% business
buildings, respectively. As shown in Fig. 9(b), the primary types
are business, residential and administrative buildings which
occupy 63.58%, 23.80%, and 10.31% of the entire building areas
in the study area. Moreover, the proportion of each category of
identified buildings based on the three methods were calculated
[see Fig. 9(c)], and the results suggest that spatial similarity and
KDE made great improve of building function identification on
the basis of POI-based results.

V. DISCUSSION

A. Performance Assessment of Identification Results

As the proposed step-wise identification integrates spatial
similarity and KDE, it is necessary to compare its performance
with the single method. This could be done through comparing
the identification accuracy between different methods. Hence,
we separated buildings identified based on POI data as training
sample and test sample in order to test the performance of spatial
similarity and KDE. That is to say, the identification results of
test samples were compared with the results based on POI to
calculate the producer’s accuracy, user’s accuracy, and overall
accuracy (OA) as given in Table III. Notably, most of Road, street
and transportation can be directly identified based on the POI
data, it is unnecessary to include this type when using spatial
similarity or KDE. For spatial similarity method, the OA is
0.68, and the highest accuracy is 0.78 for residential buildings.
The accuracy of administration, commercial and residential
buildings are much higher than the other three types. Notably,
there is a significant difference between producer’s accuracy and
user’s accuracy of Municipal utilities as many municipal utilities
have been incorrectly identified as commercial and business
facilities. This is mainly due to retail stores are always mixed
with factories.

Because majority of POI belongs to residential and commer-
cial types (see Table I), and they are the main building functions
in urban area, KDE method was only employed to identify
these two categories. Although the accuracy rates based on KDE
for residential (0.65), and commercial and business (0.67) are
lower than that of spatial similarity, the identification rate greatly
increase from 61.62% to 100% for whole buildings in study
area. After identification based on POI recognition method,
spatial similarity and KDE, the accuracy rates of commercial
and business and residential are 0.66 and 0.78, respectively.
Therefore, stepwise identification of urban building functions,
which merges the KDE of POI data and the spatial similarities
of building data can improve the identification accuracy and
efficiency effectively.

To further examining the accuracy of identified building
function by proposed method, the results were compared with
urban planning map of Wuhan from Wuhan planning and design
institute.3 Since the urban planning map only exhibits the func-
tion of each street blocks, the building function identified in this
article could not compare with it directly. Instead, the use of each

3http://www.wpdi.cn/project-1-i_11296.htm

http://www.wpdi.cn/project-1-i_11296.htm
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TABLE III
ACCURACY OF IDENTIFYING BUILDINGS BASED ON THE SPATIAL SIMILARITY AND KDE

Fig. 10. Results of comparing identified urban functional zones between
proposed method and urban planning map.

street blockwas decided by the primary building function (largest
amount) inside the block, and the results were compared with
planning map. As shown in Fig. 10, the urban functional zones
on planning map were reclassified to accord with the land use
categories used in this article, and the misidentified blocks were
shadowed. Statistically, there are 1372 blocks in the study area,
and 71.33% of them were correctly identified, including 78.89%
adminstrative blocks, 78.80% business blocks, 70% residential
blocks, 37.50% warehouse blocks, and 32.86% manufactory
blocks. The results suggest that the inferred function of buildings
are quite reliable when identifying the urban functional zone
especially for adminstrative, business and residential types.

In order to prove the hypnosis of spatial similarity method, the
cosine similarities were measured for the buildings (identified
by POIs) in the same type as well as in different types within
the small distance (100 m). Notably, only three building types,
administration, commercial and residential, were examined be-
cause the identification accuracy of them by spatial similarity is
much higher than the other types (see Table III), and the results
were given in Table IV. It can be observed that the average

TABLE IV
SPATIAL SIMILARITY BETWEEN SAME/ DIFFERENT BUILDING TYPES

spatial similarities of the same type were greatly higher than
that of different types. Also, buildings in the same types have
larger proportion of high spatial similarity, greater than 0.5. The
results provide the evidence supporting the assumption behind
building function identification based on spatial similarity.

B. Impact of KDE Bandwidth Sensitivity on Building
Identification Accuracy

It is generally believed that in KDE, the most critical issue is
the selection of bandwidth [59], [60]. Improper bandwidth will
seriously affect the accuracy of the KDE [61]. However, this is
a parameter that usually decided by personal judgement without
verification. Since identification results using KDE method are
sensitive to the bandwidth, this article determines the bandwidth
selection of KDE through a large number of experiments to find
the optimal one that brings out the highest overall classification
accuracy. Also, considering the effect of the proportions of
training samples, 90%, 75%, and 50% of the identified buildings
were selected as the training samples to exam the OA under
different bandwidths.

As shown in Fig. 11, the similar curve pattern under the
90%, 5%, and 50% of training samples illustrates that the
proportions of training samples have few influences on the
identification results. Most surprisingly, we found interesting
results for different and widths of KDE. It can be seen that OA of
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Fig. 11. Accuracy comparison of the identification results with different
bandwidth.

urban building functions using KDE method shows an increasing
trend from 100 to 200 meter and a decreasing trend after 200
meter. Although the trends for residential buildings (R) and the
commercial buildings (B) are slightly different from that of the
OA, we can still conclude that 200 m is the optimal bandwidth
in identification of urban building functions based on the KDE
method. This is perhaps because that the average size of the
street blocks in study area is about 200 m, and buildings in the
street blocks are more likely of homogeneous functions. So that
it is more appropriate to interpret building functions according
to the spatial characteristics extracted from KDE at 200 m scale.

C. Examining the Spatial Clustering of Buildings With
Different Functions

Different types of buildings exhibit different clustering in
space, and this aggregation feature can be taken advantage
of to identify the type of building [62]. Through the above
experiments results, we observed that different types of buildings
have different aggregation patterns, but this is only the inference
from observation. In this section, we will use two indicators to
quantify the spatial clustering of different types of buildings
from the macro and microperspectives.

In order to measure the spatial auto-correlation of the build-
ings with different functions, we calculated global Moran’s I

TABLE V
MORAN’S I INDEX OF BUILDINGS IN DIFFERENT CATEGORIES

∗∗Moran’s I index is significant at the 0.01 level.

Fig. 12. Enrichment factors of buildings in different categories.

index for each category (see Table V), the Moran’s I index and
z-value of three building functions, including commercial and
business facilities, residential, and administration and public
services are much higher than the other building functions,
which demonstrates that these three types of buildings have
significant spatial clustering characteristics. While the other
types of buildings show few or none clustering pattern since
they consist of extremely low proportions of urban buildings in
the entire study area.

To furtherly explore the spatial clustering characteristics of
buildings at microlevel, we introduced the building enrichment
factor (BEF) [31]. A large BEF value indicates high spatial
aggregation degree. As shown in Fig. 12, we calculate the BEF of
three building types with high spatial autocorrelation. Compared
with other two types, most BEFs for Commercial and business
facilities [see Fig. 11(c)] are close to one, which suggests that
this type of buildings has a much higher degree of enrichment.
This is because that Wuhan is the most important economical
center in central China and one amongst the new first tier cities.
Moreover, residential buildings are commonly surrounded with
commercial buildings as we can see that where the red areas are
clustered in Fig. 11 (b) mostly fill up the green areas in Fig. 11 (c).
On the one hand, areas where residence clustered are attractive
for those who want to start their business. On the other hand,
places where full of business facilities providing convenient
services are the optimal location for living in the cities. As to
the Administration and public buildings, they present the lowest
enrichment with few red areas [see Fig. 11 (a)]. These buildings
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are the urban infrastructure for public service, such as admin-
istrative offices, universities, primary and secondary schools,
nursing homes, hospitals, etc. It makes sense that this type of
facilities should be scattered among the city to serve citizens as
much as possible. In general, residential and business buildings
have obvious spatial clustering characteristics all over the study
area, while Administration and public services buildings show
clustering characteristics in local areas and relatively dispersed
at macrolevel.

VI. CONCLUSION

Along with the rapid urbanization, the diversity and com-
plexity of building functions have increased in metropolitan
areas. Identifying land use at a finer scale contributes to a
new perspective for urban design, environment monitoring, and
emergency management, etc. To address this issue, this article
proposes a stepwise identification framework for urban building
functions based one remote sensing imagery and POI data, which
merges the spatial similarity of buildings and KDE of POI data.
The main conclusions can be drawn as follows.

1) Two proposed methods, spatial similarities based on
Google earth images and building geometry, and KDE
based on POI data, have proven efficient ways of identify-
ing urban building functions as they merge the strength of
geometrical characteristic of building and spatial distribu-
tion of POI data. This has improved identification rate up
to 100% with high OA.

2) The identification results are sensitive to the bandwidth of
KDE method. In this article, the iterative methods with a
series of bandwidth indicate that 200 m is the optimal size
in identification of urban building functions.

3) Different functional buildings exhibit various spatial cor-
relation and spatial agglomeration. Notably, residential
and commercial buildings are significantly more clustered
than other types of urban buildings at both macro and
microlevels. A deep insight into spatial characterizes of
different functional buildings assists policy makers in
optimizing the effectiveness of urban management.

Although the achievements in this article, there are still some
aspects deserving being investigated in future study. Since only
POI and Google earth images were used in this article, it is
necessary to improve the proposed method by incorporating
with multiple UGC and remote sensing data sources, such as
taxi GPS trajectories data, social media data, remote sensing of
night-time light, etc., to further enrich the semantic information
regarding the urban building function. Also, we could promote
this methodology to identify building functions in other cities
around the world to enhance the applicability of the proposed
identification framework.
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